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Main results

Main results:
© Quantitative bounds on the fraction of positive maps that are
completely positive.

@ An algorithm to produce positive maps which are not
completely positive is given (from random input data).

A main tool is the real algebraic geometry techniques developed by
Blekherman to study the gap between positive polynomials and
sums of squares.
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F... the field {R or C}

Mp(F) ... n x n matrices over F equipped with (conjugate)
transposition as the involution *

Sy ... real symmetric matrices

A= 0... the matrix A is positive semidefinite
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Positive and completely positive maps

For n,m € N, a linear map ® : M,(F) — Mp(F) is:
@ x-linear if ®(A*) = ®(A)* for every A € M,(F).
@ positive if P(A) = 0 for every A = 0.
© completely positive (cp) if for all kK € N the ampliations

1D : M(F)@M,(F) = Mi(F)Mm(F), M®RA > Md(A)

are positive.
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Research questions

What is the probability that a random positive map ® is cp? \

Theorem (Arveson, 2009)

Let n,m > 2. Then the probability p that a positive map
¢ : Mp(C) = Mp,(C) is cp satisfies 0 < p < 1.
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Theorem (Arveson, 2009)

Let n,m > 2. Then the probability p that a positive map
¢ : Mp(C) = Mp,(C) is cp satisfies 0 < p < 1.

Can we find more precise bounds for p in Arveson’s theorem? l
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Research questions
What is the probability that a random positive map ® is cp? I

Theorem (Arveson, 2009)

Let n,m > 2. Then the probability p that a positive map
¢ : Mp(C) = Mp,(C) is cp satisfies 0 < p < 1.

Can we find more precise bounds for p in Arveson’s theorem? I

How to construct positive map ® which are not cp?
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Main results

For integers n,m > 2, the probability pf}m that a random positive
map ® : My(F) — Mp,(F) is completely positive, is bounded by

min(n, m) — %

! > 1 e
. 5 5
Prm < (228*mmRF)2-3*5-52-106- 5
2

here D n”?m? —1, if F = C,
wnere =
Meg nminmil) - fF =R
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Main results

For integers n,m > 2, the probability pf}m that a random positive
map ® : My(F) — Mp,(F) is completely positive, is bounded by

1

1 DMC]F
pf < (2287dimR]F)§ R e 1
n,m 9
min(n, m) — 5

here D n”?m? —1, if F = C,
wnere =
Meg nminmil) - fF =R

If min(n, m) > (228*‘1"“]1*]1“) .375.5%.109, then

lim pr . =0.
max(n,m)—oo "’

Positive vs completely positive



Main results

Theorem

For integers n, m > 3 the probability p, m that a positive map
®: S, — S, is completely positive, is bounded by

S o < < 212 5263 .103 "M
210.72 . /min(n, m) Prm 33 . /min(n,m) +1 ’

where Dpq = (”'51) (méi-l) -1
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Main results

Theorem

For integers n, m > 3 the probability p, m that a positive map
®: S, — S, is completely positive, is bounded by

3V3 P 212.52.6% 105 \
< < )
210.72 . /min(n, m) Prm 33 . /min(n,m) +1
where Dpq = (”'51) (m;j) -1
If min(n, m) > 22553& then

lim Pn,m = 0.
max(n,m)—oo
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Positive maps and biforms

L(Sp,Sm) ... the vector space of all linear maps from S, to S,
R[x,y]22 ... biforms in x := (x1,...,x,) and y := (y1,...,¥m) of
bidegree (2,2)
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Positive maps and biforms

L(Sp,Sm) ... the vector space of all linear maps from S, to S,
R[x,y]22 ... biforms in x := (x1,...,x,) and y := (y1,...,¥m) of
bidegree (2,2)

There is a natural bijection I' between L(S,,Sp) and R[x, y]2,2
given by

[ L(Sh,Sm) = R[x,y]02, ®— po(x,y) =y P(xx")y.

Proposition

Let : S, — S,, be a linear map. Then
@ o is positive iff py is nonnegative;

Q@ o is completely positive iff py is a sum of squares.
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Positive maps and biforms

Estimating the probability that a positive map ® : S, — S, is cp,
is equivalent to estimating the probability that a positive
polynomial p € R[x,yl22 is a sum of squares (sos) of polynomials,
ie, p=>;q? for some q; € R[x,y]11.
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Positive maps and biforms

Estimating the probability that a positive map ® : S, — S, is cp,
is equivalent to estimating the probability that a positive
polynomial p € R[x,yl22 is a sum of squares (sos) of polynomials,
ie, p=>;q? for some q; € R[x,y]11.

Now one can employ powerful techniques, based on harmonic
analysis and classical convexity, developed by Barvinok and
Blekherman, to obtain bounds on the probability.
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Constructing positive maps that are not cp

The Blekherman-Smith-Velasco algorithm (2013) produces positive
forms of degree 2 that are not sos on nondegenerate totally-real
subvariety X C P" such that deg(X) > 1 + codim(X).

The Segre variety X := a,,7m(IP’"_1 x Pm=1) C P"™=1 where

Onm([x1 . ox, 1ot ym]) =
=Dayi:ixaye o i XiYm e XnYm)s

n+m—2
n

is an example of such subvariety of degree ( 1 ), dimension

n+ m — 2 and codimension (n —1)(m — 1).
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Constructing positive maps that are not cp

X is the zero locus of the ideal I m C Rlz11, 212, .- -, Zim, - - - s Znm)

generated by all 2 x 2 minors of the matrix (zj), ;.
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X is the zero locus of the ideal I m C Rlz11, 212, .- -, Zim, - - - s Znm)

generated by all 2 x 2 minors of the matrix (ZU)iJ' Therefore,
there is the injective ring homomorphism

O’n#’m : Clz]/In,m — C[x,y], J#m(ZU + Inm) = Xiy;

for1<i<nl<j<m
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Constructing positive maps that are not cp

X is the zero locus of the ideal I m C Rlz11, 212, .- -, Zim, - - - s Znm)

generated by all 2 x 2 minors of the matrix (ZU)iJ' Therefore,
there is the injective ring homomorphism

O’n#’m : Clz]/In,m — C[x,y], J#m(ZU + Inm) = Xiy;
for1 <i<n,1<j<m. Moreover,

ol m(R[zl2/Inm) = R[x, y]2,2-
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Algorithm

Let d :=n+ m—2=dim(X),e:=(n—1)(m— 1) = codim(X).
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Algorithm

Let d :=n+ m—2=dim(X),e:=(n—1)(m— 1) = codim(X).
@ Construction of linear forms hg, ..., hg.

© Choose e + 1 random points x() € R" and y() € R™ and
calculate their Kronecker tensor products
z0) = x() @ () e R,

@ Choose d random vectors v, ... vy € R" from the kernel of
the matrix

(20 .. ),

The corresponding linear forms hy, ..., hy are

hi(z) = v/ -z€R[z] forj=1,...,d.
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Algorithm

Let d :=n+ m—2=dim(X),e:=(n—1)(m— 1) = codim(X).
@ Construction of linear forms hg, ..., hg.
© Choose e + 1 random points x() € R" and y() € R™ and
calculate their Kronecker tensor products
z0) = x() @ () e R,
@ Choose d random vectors v, ... vy € R" from the kernel of
the matrix
(20 .. ),
The corresponding linear forms hy, ..., hy are

hi(z) = v/ -z€R[z] forj=1,...,d.

® Choose a random vector vy from the kernel of the matrix
(z(l) .. z(e))* .

(Note that we have omitted z(¢*1).) The corresponding linear
form hq is
ho(z) = v§ - z € R[z].
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Algorithm

Let a be the ideal in R[z]/l, » generated by hg, hy, ..., hg.
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Let a be the ideal in R[z]/l, » generated by hg, hy, ..., hg.

@ Construction of a quadratic form
fi=v' (z®z) € (R[2]/Inm)\ o
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Algorithm

Let a be the ideal in R[z]/l, » generated by hg, hy, ..., hg.
@ Construction of a quadratic form
fi=v' (z®z) € (R[2]/Inm)\ o
0 Let g1(2),... ,g(g)(n;)(z) be the generators of the ideal /, m,

i.e., 2 x 2 minors of the matrix (zj), ;. Foreachi=1,... e
compute a basis {w!”, ..., W(S"J)rl} C R of the kernel of the
matrix

(Vgl(z(i)) - VeE)m) (Z(i))) .

2)\2
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Algorithm

Let a be the ideal in R[z]//, » generated by hg, h1, ..., hg.
@ Construction of a quadratic form
fi=v' (z®z) € (R[2]/Inm)\ o
0 Let g1(2),... ,g(g)(n;)(z) be the generators of the ideal /, m,

i.e., 2 x 2 minors of the matrix (zj), ;. Foreachi=1,... e
compute a basis {w!”, ..., W(S"J)rl} C R of the kernel of the
matrix

2

(Vgl(z(i)) Vg(n)(m)(z(i)))

@ Let e; denote the i-th standard basis vector of the
corresponding vector space. Choose a random vector
2, 2 . . H
v € R™™ from the intersection of the kernels of the matrices

(Z(f)®wl(’) z(")@yyg"l) fori=1,...,e
with the kernels of the matrices

(e;@ej—ej@)e,-)* for1§i<j§nm.
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Algorithm

© Construction of a quadratic form in R[z]//, m that is positive
but not a sum of squares.

Calculate the greatest dg > 0 such that dof + Zflzo h? is
nonnegative on Vr(/n,m). Then for every 0 < 6 < dp the
quadratic form

d
(6f +>_ h?)(z)
i=0

is nonnegative on Vg(/, m) but is not a sum of squares.
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Algorithm

© Construction of a quadratic form in R[z]//, m that is positive
but not a sum of squares.

Calculate the greatest g > 0 such that dof + Zflzo h? is
nonnegative on Vr(/n,m). Then for every 0 < 6 < g the
quadratic form

d
(6f +>_ h?)(z)
i=0

is nonnegative on V(/,m) but is not a sum of squares.
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An example

po(x,y) = 104x7yf +283x7 y3 +18x{ y3 —310x7 y1y2 +18x7 y1y3+
+4X12y2y3 +310x1x2y12 — 18x1X3y12 — 16x1x2y22 +52X1X3y22 —|—4x1x2y32—
—26x1x3y3 —610x1X0y1y2 —44x1 X3y1y2+36X1X2)1Y3 — 200X1 X3y1 Y3 —
— 44x1x0)0y3 + 322x1x3Y0Y3 + 285x22y12 + 16x32y12 + 4X2X3y12
+63x22y22+9x32y22+2OXQX3y22+7x22y32+125x§y32 —20xQX3y32+16x22y1y2+
+ 45 y1y2 — 60xx3y1y2 + 52x5y1ys + 26x3y1ys — 330x2x3y1y3—
— 20x3y2y3 + 20x3y2y3 — 100x2X3y2 3.
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Thank you for your attention!
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