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Main results

Main results:
1 Quantitative bounds on the fraction of positive maps that are

completely positive.

2 An algorithm to produce positive maps which are not
completely positive is given (from random input data).

A main tool is the real algebraic geometry techniques developed by
Blekherman to study the gap between positive polynomials and
sums of squares.
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Notation

F . . . the field {R or C}
Mn(F) . . . n × n matrices over F equipped with (conjugate)

transposition as the involution ∗
Sn . . . real symmetric matrices
A � 0 . . . the matrix A is positive semidefinite
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Positive and completely positive maps

For n,m ∈ N, a linear map Φ : Mn(F)→ Mm(F) is:
1 ∗-linear if Φ(A∗) = Φ(A)∗ for every A ∈ Mn(F).
2 positive if Φ(A) � 0 for every A � 0.
3 completely positive (cp) if for all k ∈ N the ampliations

Ik⊗Φ : Mk(F)⊗Mn(F)→ Mk(F)⊗Mm(F), M⊗A 7→ M⊗Φ(A)

are positive.
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Research questions

Question
What is the probability that a random positive map Φ is cp?

Theorem (Arveson, 2009)

Let n,m ≥ 2. Then the probability p that a positive map
ϕ : Mn(C)→ Mm(C) is cp satisfies 0 < p < 1.

Question
Can we find more precise bounds for p in Arveson’s theorem?

Question
How to construct positive map Φ which are not cp?
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Main results

Theorem

For integers n,m ≥ 2, the probability pFn,m that a random positive
map Φ : Mn(F)→ Mm(F) is completely positive, is bounded by

pFn,m <

(228−dimR F
) 1

2 · 3−
5
2 · 52 · 10

2
9 · 1√

min(n,m)− 1
2

DMCF

,

where DMCF
=
{

n2m2 − 1, if F = C,
nm(nm+1)

2 , if F = R.

If min(n,m) ≥
(
228−dimR F

)
· 3−5 · 54 · 10 4

9 , then

lim
max(n,m)→∞

pFn,m = 0.
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Main results

Theorem
For integers n,m ≥ 3 the probability pn,m that a positive map
Φ : Sn → Sm is completely positive, is bounded by(

3
√
3

210 · 72 ·
√
min(n,m)

)DM

< pn,m <

(
212 · 52 · 6 1

2 · 10 2
9

33 ·
√
min(n,m) + 1

)DM

,

where DM =
(n+1

2
)(m+1

2
)
− 1.

If min(n,m) ≥ 225·54·10
4
9

35 , then

lim
max(n,m)→∞

pn,m = 0.
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Positive maps and biforms

L(Sn, Sm) . . . the vector space of all linear maps from Sn to Sm
R[x, y]2,2 . . . biforms in x := (x1, . . . , xn) and y := (y1, . . . , ym) of

bidegree (2,2)

There is a natural bijection Γ between L(Sn,Sm) and R[x, y]2,2
given by

Γ : L(Sn,Sm)→ R[x, y]2,2, Φ 7→ pΦ(x, y) := y∗Φ(xx∗)y.

Proposition

Let Φ : Sn → Sm be a linear map. Then
1 Φ is positive iff pΦ is nonnegative;
2 Φ is completely positive iff pΦ is a sum of squares.
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Positive maps and biforms

Corollary
Estimating the probability that a positive map Φ : Sn → Sm is cp,
is equivalent to estimating the probability that a positive
polynomial p ∈ R[x, y]2,2 is a sum of squares (sos) of polynomials,
i.e., p =

∑
i q2

i for some qi ∈ R[x, y]1,1.

Now one can employ powerful techniques, based on harmonic
analysis and classical convexity, developed by Barvinok and
Blekherman, to obtain bounds on the probability.
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Constructing positive maps that are not cp

The Blekherman-Smith-Velasco algorithm (2013) produces positive
forms of degree 2 that are not sos on nondegenerate totally-real
subvariety X ⊆ Pn such that deg(X ) > 1 + codim(X ).

The Segre variety X := σn,m(Pn−1 × Pm−1) ⊆ Pnm−1 where

σn,m([x1 : . . . : xn], [y1 : . . . : ym]) =
= [x1y1 : x1y2 : . . . : x1ym : . . . : xnym],

is an example of such subvariety of degree
(n+m−2

n−1
)
, dimension

n + m − 2 and codimension (n − 1)(m − 1).
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Constructing positive maps that are not cp

X is the zero locus of the ideal In,m ⊆ R[z11, z12, . . . , z1m, . . . , znm]
generated by all 2× 2 minors of the matrix (zij)i ,j .

Therefore,
there is the injective ring homomorphism

σ#
n,m : C[z]/In,m → C[x, y], σ#

n,m(zij + In,m) = xiyj

for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Moreover,

σ#
n,m(R[z]2/In,m) = R[x, y]2,2.
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Algorithm
Let d := n + m − 2 = dim(X ), e := (n − 1)(m − 1) = codim(X ).

1 Construction of linear forms h0, . . . , hd .
1 Choose e + 1 random points x (i) ∈ Rn and y (i) ∈ Rm and

calculate their Kronecker tensor products
z (i) = x (i) ⊗ y (i) ∈ Rnm.

2 Choose d random vectors v1, . . . vd ∈ Rnm from the kernel of
the matrix (

z (1) . . . z (e+1))∗
.

The corresponding linear forms h1, . . . , hd are

hj(z) = v∗
j · z ∈ R[z] for j = 1, . . . , d .

3 Choose a random vector v0 from the kernel of the matrix(
z (1) . . . z (e))∗

.

(Note that we have omitted z (e+1).) The corresponding linear
form h0 is

h0(z) = v∗
0 · z ∈ R[z].
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Algorithm
Let a be the ideal in R[z]/In,m generated by h0, h1, . . . , hd .

2 Construction of a quadratic form
f := v∗ · (z⊗ z) ∈ (R[z]/In,m) \ a2.

1 Let g1(z), . . . , g(n
2)(m

2)(z) be the generators of the ideal In,m,
i.e., 2× 2 minors of the matrix (zij)i,j . For each i = 1, . . . , e
compute a basis {w (i)

1 , . . . ,w (i)
d+1} ⊆ Rnm of the kernel of the

matrix (
∇g1(z (i)) · · · ∇g(n

2)(m
2)(z (i))

)∗
.

2 Let ei denote the i-th standard basis vector of the
corresponding vector space. Choose a random vector
v ∈ Rn2m2 from the intersection of the kernels of the matrices(

z (i) ⊗ w (i)
1 · · · z (i) ⊗ w (i)

d+1

)∗
for i = 1, . . . , e

with the kernels of the matrices(
ei ⊗ ej − ej ⊗ ei

)∗ for 1 ≤ i < j ≤ nm.
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Algorithm

3 Construction of a quadratic form in R[z]/In,m that is positive
but not a sum of squares.
Calculate the greatest δ0 > 0 such that δ0f +

∑d
i=0 h2

i is
nonnegative on VR(In,m). Then for every 0 < δ < δ0 the
quadratic form

(δf +
d∑

i=0
h2

i )(z)

is nonnegative on VR(In,m) but is not a sum of squares.

Positive vs completely positive



Algorithm

3 Construction of a quadratic form in R[z]/In,m that is positive
but not a sum of squares.

Calculate the greatest δ0 > 0 such that δ0f +
∑d

i=0 h2
i is

nonnegative on VR(In,m). Then for every 0 < δ < δ0 the
quadratic form

(δf +
d∑

i=0
h2

i )(z)

is nonnegative on VR(In,m) but is not a sum of squares.

Positive vs completely positive



Algorithm

3 Construction of a quadratic form in R[z]/In,m that is positive
but not a sum of squares.
Calculate the greatest δ0 > 0 such that δ0f +

∑d
i=0 h2

i is
nonnegative on VR(In,m). Then for every 0 < δ < δ0 the
quadratic form

(δf +
d∑

i=0
h2

i )(z)

is nonnegative on VR(In,m) but is not a sum of squares.

Positive vs completely positive



An example

pΦ(x , y) = 104x2
1 y2

1 +283x2
1 y2

2 +18x2
1 y2

3−310x2
1 y1y2+18x2

1 y1y3+
+4x2

1 y2y3+310x1x2y2
1−18x1x3y2

1−16x1x2y2
2 +52x1x3y2

2 +4x1x2y2
3−

−26x1x3y2
3−610x1x2y1y2−44x1x3y1y2+36x1x2y1y3−200x1x3y1y3−

− 44x1x2y2y3 + 322x1x3y2y3 + 285x2
2 y2

1 + 16x2
3 y2

1 + 4x2x3y2
1

+63x2
2 y2

2 +9x2
3 y2

2 +20x2x3y2
2 +7x2

2 y2
3 +125x2

3 y2
3−20x2x3y2

3 +16x2
2 y1y2+

+ 4x2
3 y1y2 − 60x2x3y1y2 + 52x2

2 y1y3 + 26x2
3 y1y3 − 330x2x3y1y3−

− 20x2
2 y2y3 + 20x2

3 y2y3 − 100x2x3y2y3.
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Thank you for your attention!
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