A Variation Principle for Ground Spaces

8th Linear Algebra Workshop Faculty of Mathematics and Physics Ljubljana, Slovenia June 12–16, 2017

Stephan Weis

Centre for Quantum Information and Communication Université libre de Bruxelles, Belgium

Notation

• $\mathcal{A} \subset M_n$ *-subalgebra, inner product $\langle a, b \rangle = tr(a^*b)$

▶ hermitian matrices A = {a ∈ A : a* = a} (energy operators/Hamiltonians)

- ▶ projection lattice $\mathcal{P}(\mathcal{A}) = \{ p \in \mathcal{A} : p^2 = p^* = p \}$
- ▶ smallest eigenvalue $\lambda_0(a)$ of $a \in A$ (ground state energy)
- projection p₀(a) ∈ P(A) onto eigenspace of a ∈ A corresponding to λ₀(a) (ground space projection)

I) Motivation: Many-Body Systems

• $\mathcal{A} = \mathcal{B}^{\otimes N}$, *n*-fold tensor product of \mathcal{B}

- a k-local Hamiltonian is a sum of terms a₁ ⊗ · · · ⊗ a_N ∈ A each summand having at most k non-scalar tensor factors
- vector space of k-local Hamiltonians $A_{(k)} \subset A$

Local Hamiltonian Problem (condensed matter physics, quantum chemistry)

- ▶ given $a \in A_{(k)}$ and $(\xi \eta) \propto 1/\text{poly}(N)$, determine whether $\lambda_0(a) > \xi$ or $\lambda_0(a) < \eta$
- hard problem even on a quantum computer (see for example the book by Zeng et al. arXiv:1508.02595)

ground state problems have a natural geometry

► state space $C_A = \{\rho \in A : \rho \succeq 0, tr(\rho) = 1\}$ of A

 $a \leq b$ or $b \succeq a$ means that b - a is positive semi-definite $(a, b \in A)$

▶ projection
$$\pi$$
 : $A \rightarrow A$ onto $A_{(k)}$

► for
$$a \in A_{(k)}$$
: $\lambda_0(a) = \min_{\rho \in C_A} \langle \rho, a \rangle = \min_{b \in \pi(C_A)} \langle b, a \rangle$

GOAL: study geometry of $\pi(C_A)$ (set of k-body marginals)

b this problem is closely related to study the lattice of ground space projections P(A_(k)) = {p₀(u) : u ∈ A_(k)} ∪ {0}

II) Exposed Faces

- convex subset C ⊂ A (Euclidean space), subspace U ⊂ A, π : A → A projection onto U
- ▶ an exposed face of *C* is either \emptyset or a subset of the form $F_C(u) = \operatorname{argmin}_{x \in C} \langle x, u \rangle$ for some $u \in A$
- lattice of exposed faces *E*(*C*) (ordered by inclusion) is a complete lattice with infimum equal intersection
- ► lifted faces $\mathcal{L} = \pi |_{\mathcal{C}}^{-1}(\mathcal{E}(\pi(\mathcal{C}))) \subset \mathcal{E}(\mathcal{C})$
- ▶ closure operation $cl_{\mathcal{L}} : 2^{\mathcal{C}} \to \mathcal{L}, X \mapsto \bigcap \{F \in \mathcal{L} : X \subset F\}$

Lemma. Let $X \subset C$. Then $X \in \mathcal{L}$ if and only if $X = \bigvee \{ G \in \mathcal{E}(C) : cl_{\mathcal{L}}(G) = cl_{\mathcal{L}}(X) \}.$

III) Normal Cones

 (inner) normal cone N_C(x) = {u ∈ A : ⟨y − x, u⟩ ≥ 0} of C at x ∈ C

N_C(∅) = A and N_C(X) = N_C(x) for a non-empty convex subset X ⊂ C with relative interior point x

Theorem 1. Let $|\pi(C)| > 1$ and $X \subset C$ convex. Then $X \in \mathcal{L}$ iff $X = \bigvee \{ G \in \mathcal{E}(C) : N_C(G) \cap U = N_C(X) \cap U \}.$

Pf. lattice isomorphisms $\mathcal{E}(\pi(C)) \cong \mathcal{L}$, $\mathcal{E}(\pi(C)) \cong \{\text{normal cones of } \pi(C)\},\$ and normal cones $N_{\pi(C)}(\pi(X)) = N_C(X) \cap U$

IV) Ground Space Projections

- ► exposed faces of $C_{\mathcal{A}} \cong$ projections of \mathcal{A} (Kadison) Pf. use $\phi(p) = \{ \rho \in C_{\mathcal{A}} : s(\rho) \preceq p \}$ with $s(\rho)$ support projection of ρ
- vector space of hermitian matrices U ⊂ A ⊂ A, lattice of ground space projections P(U) = p₀(U) ∪ {0}
- positive cone A⁺ = {a ∈ A : a ≥ 0}, we define for p ∈ P(A) and p' = 1 − p the cone

$$K(p) = p'A^+p' \cap U = \{u \in U : p_0(u) \succeq p, u \succeq 0\}$$

Theorem 2. Let $1 \in U$ and $p \in \mathcal{P}(\mathcal{A})$. Then $p \in \mathcal{P}(U)$ if and only if $p = \bigvee \{q \in \mathcal{P}(\mathcal{A}) : K(q) = K(p)\}.$

 $\mathsf{Pf.}\ \mathcal{P}(U) = \phi^{-1}(\mathcal{L}), \, \mathsf{N}_{\mathcal{C}_{\mathcal{A}}}(\rho) = \{ u \in \mathsf{A} : \mathsf{s}(\rho) \preceq \mathsf{p}_0(u) \} = \mathbb{1}\mathbb{R} + \mathsf{s}(\rho)'\mathsf{A}^+\mathsf{s}(\rho)' \square$

V) Coatoms of the Lattice of Ground Space Projections

- a coatom of $\mathcal{P}(U)$ is a maximal element of $\mathcal{P}(U) \setminus \{1\}$
- P(U) is coatomistic, that is every element is an infimum of coatoms (arXiv:1606.03792 [math.MG], also W. 2012)

Pf. $\mathcal{P}(U) \cong \mathcal{E}(\pi(C_A))$, the polar of $\pi(C_A)$ is a spectrahedron, its exposed face lattice is atomistic by Minkowski's theorem

Theorem 3. Let $1 \in U$, $|\pi(C_A)| > 1$, and $p \in \mathcal{P}(U)$. Then p is a coatom of $\mathcal{P}(U)$ if and only if K(p) is a ray.

VI) Example 2-local 3-bit Hamiltonians

- (commutative) three-bit algebra A = (C²)^{⊗3} ≅ {X → C} with 3-bit configuration space X = {0,1} × {0,1} × {0,1}
- ► the coatoms of P(A₍₂₎) are easily computable from Theorems 2 and 3, here they are

000	001	000	001	000	001	000	001	000	001	000	001	000	001	000	001
010	011	010	011	010	011	010	011	010	011	010	011	010	011	010	011
100	101	100	101	100	101	100	101	100	101	100	101	100	101	100	101
110	111	110	111	110	111	110	111	110	111	110	111	110	111	110	111
000	001	000	001	000	001	000	001	000	001	000	001	000	001	000	001
010	011	010	011	010	011	010	011	010	011	010	011	010	011	010	011
100	101	100	101	100	101	100	101	100	101	100	101	100	101	100	101
110	111	110	111	110	111	110	111	110	111	110	111	110	111	110	111

► the lattice $\mathcal{P}(A_{(2)})$ is visualizable on the complete bipartite graph $K_{4,4}$

Open Problems

- (non-commutative) three-qubit algebra $\mathcal{A} = M_2 \otimes M_2 \otimes M_2 \cong M_8$
- can you compute the coatoms of P(A₍₂₎) for the three-qubit algebra?
- ► the lattice P(A₍₂₎) is not closed (in the norm topology), see Example 8.1 of Rodman, Spitkovsky, Szkoła, W. (2016)
- ► can you compute the closure of P(A₍₂₎) for the three-qubit algebra?

Thank you for the attention

General refrence arXiv:1704.07675 [math-ph]