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Notation

I A ⊂ Mn *-subalgebra, inner product 〈a,b〉 = tr(a∗b)

I hermitian matrices A = {a ∈ A : a∗ = a}
(energy operators/Hamiltonians)

I projection lattice P(A) = {p ∈ A : p2 = p∗ = p}

I smallest eigenvalue λ0(a) of a ∈ A (ground state energy)

I projection p0(a) ∈ P(A) onto eigenspace of a ∈ A
corresponding to λ0(a) (ground space projection)



I) Motivation: Many-Body Systems

I A = B⊗N , n-fold tensor product of B

I a k -local Hamiltonian is a sum of terms a1 ⊗ · · · ⊗ aN ∈ A
each summand having at most k non-scalar tensor factors

I vector space of k -local Hamiltonians A(k) ⊂ A

Local Hamiltonian Problem (condensed matter physics,
quantum chemistry)

I given a ∈ A(k) and (ξ − η) ∝ 1/poly(N), determine whether
λ0(a) > ξ or λ0(a) < η

I hard problem even on a quantum computer (see for
example the book by Zeng et al. arXiv:1508.02595)



ground state problems have a natural geometry

I state space CA = {ρ ∈ A : ρ � 0, tr(ρ) = 1} of A
a � b or b � a means that b − a is positive semi-definite (a, b ∈ A)

I projection π : A→ A onto A(k)

I for a ∈ A(k): λ0(a) = minρ∈CA〈ρ,a〉 = minb∈π(CA)〈b,a〉

GOAL: study geometry of π(CA) (set of k -body marginals)

I this problem is closely related to study the lattice of ground
space projections P(A(k)) = {p0(u) : u ∈ A(k)} ∪ {0}



II) Exposed Faces

I convex subset C ⊂ A (Euclidean space), subspace U ⊂ A,
π : A→ A projection onto U

I an exposed face of C is either ∅ or a subset of the form
FC(u) = argminx∈C〈x ,u〉 for some u ∈ A

I lattice of exposed faces E(C) (ordered by inclusion) is a
complete lattice with infimum equal intersection

I lifted faces L = π|−1
C (E(π(C))) ⊂ E(C)

I closure operation clL : 2C → L, X 7→
⋂
{F ∈ L : X ⊂ F}

Lemma. Let X ⊂ C. Then X ∈ L if and only if
X =

∨
{G ∈ E(C) : clL(G) = clL(X )}.



III) Normal Cones

I (inner) normal cone NC(x) = {u ∈ A : 〈y − x ,u〉 ≥ 0} of C
at x ∈ C

I NC(∅) = A and NC(X ) = NC(x) for a non-empty convex
subset X ⊂ C with relative interior point x

Theorem 1. Let |π(C)| > 1 and X ⊂ C convex. Then
X ∈ L iff X =

∨
{G ∈ E(C) : NC(G) ∩ U = NC(X ) ∩ U}.

Pf. lattice isomorphisms E(π(C)) ∼= L, E(π(C)) ∼= {normal cones of π(C)},

and normal cones Nπ(C)(π(X )) = NC(X ) ∩ U �



IV) Ground Space Projections

I exposed faces of CA ∼= projections of A (Kadison)
Pf. use φ(p) = {ρ ∈ CA : s(ρ) � p} with s(ρ) support projection of ρ �

I vector space of hermitian matrices U ⊂ A ⊂ A, lattice of
ground space projections P(U) = p0(U) ∪ {0}

I positive cone A+ = {a ∈ A : a � 0}, we define for
p ∈ P(A) and p′ = 1− p the cone

K (p) = p′A+p′ ∩ U = {u ∈ U : p0(u) � p,u � 0}

Theorem 2. Let 1 ∈ U and p ∈ P(A). Then p ∈ P(U) if
and only if p =

∨
{q ∈ P(A) : K (q) = K (p)}.

Pf. P(U) = φ−1(L), NCA(ρ) = {u ∈ A : s(ρ) � p0(u)} = 1R+ s(ρ)′A+s(ρ)′ �



V) Coatoms of the Lattice of Ground Space
Projections

I a coatom of P(U) is a maximal element of P(U) \ {1}

I P(U) is coatomistic, that is every element is an infimum of
coatoms (arXiv:1606.03792 [math.MG], also W. 2012)

Pf. P(U) ∼= E(π(CA)), the polar of π(CA) is a spectrahedron, its

exposed face lattice is atomistic by Minkowski’s theorem �

Theorem 3. Let 1 ∈ U, |π(CA)| > 1, and p ∈ P(U). Then
p is a coatom of P(U) if and only if K (p) is a ray.



VI) Example 2-local 3-bit Hamiltonians

I (commutative) three-bit algebra A = (C2)⊗3 ∼= {X → C}
with 3-bit configuration space X = {0,1} × {0,1} × {0,1}

I the coatoms of P(A(2)) are easily computable from
Theorems 2 and 3, here they are

I the lattice P(A(2)) is visualizable on the complete bipartite
graph K4,4



Open Problems

I (non-commutative) three-qubit algebra
A = M2 ⊗M2 ⊗M2

∼= M8

I can you compute the coatoms of P(A(2)) for the three-qubit
algebra?

I the lattice P(A(2)) is not closed (in the norm topology), see
Example 8.1 of Rodman, Spitkovsky, Szkoła, W. (2016)

I can you compute the closure of P(A(2)) for the three-qubit
algebra?
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