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Two-parameter eigenvalue problem

Two-parameter eigenvalue problem:

(Al + )\Bl + /J,Cl)X =0
(2EP)
(A2 + ABy + uG)y =0,

where A;, B;, C; are n x n matrices, \,u € C, x,y € C".
Eigenvalue: a pair (A, 1) that satisfies (2EP) for nonzero x and y.
Eigenvector: the tensor product x ® y.

There are n? eigenvalues, which are solutions of

det(A1 + AB1+uG) = 0
det(Az + AB> + ,uCz) = 0.
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Tensor product approach

(A1 + ABl + uCl)X =0

2EP
(A2 +ABy 4+ uC)y =0 (2EP)
On C"® C" we define n?2 x n? matrices, so called operator determinants
B, C
Dy = | =BeG-GoB
B, Gl
G A
A = PN =GeA-A®G
C2 A2 ®
A1 B
N, = [0 TH =AQB - B ®A,.
A B,
Nonsingular 2EP (<= A is nonsingular) is equivalent to a coupled GEP
Alz == AA()Z
Aoz = gz, (4)

where Ag'A; and Ay'A; commute and z = x ® y. (Atkinson 1970)

Using this relation we can compute all eigenpairs of a nonsingular (2EP).
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Singular two-parameter eigenvalue problem

Aix = ABix + /I,C1X DN =B1RG-CGR®R B A1z = NAgz
Ay = AByy + nGy AM=ARG-CGRA Doz = pAgz
(2EP) A =B RA—-—A ®B, (A)

Singular 2EP: All linear combinations of Ag, Ay, and A, are singular. J

We can numerically extract the common finite regular part of matrix pencils (A)
using the modified staircase algorithm. (Muhi¢, P. '09)

We get Zo, 51, and 52 such that Zo is nonsingular and eigenvalues of

AZ = Mz
AQE = ,quE

are exactly the finite regular eigenvalues of (A).
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For each monic polynomial p(x) = po + p1x + -+ + po_1x" "1 4+ x" we can
construct a matrix A € C"™*", such that det(x/ — A) = p(x).

One option is the companion matrix

0 1 0 0
0 0 1
Ap = : : . 0
0 0 1
—Po —P1 o —Paei

We can then compute the zeros of p as eigenvalues of A, using standard
eigenvalue solvers.

That is how function roots works in Matlab.

Can we do something similar for a system of bivariate polynomials?
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The main idea (P., Hochstenbach, SISC 20

We want to compute the zeros of a system of two bivariate polynomials

n  n—i

plx.y) =Y _> pix'y =0,

i=0 j=0

n  n—i

q(x,y) = Z Z gix'yl =0.

i=0 j=0
An analogous approach: find matrices A1, By, C1, Az, B, G, such that

det(A1 + xB1 + yCi) = p(x, y),
det(Az + xB; + yG) = q(x,y),

we call these determinantal representations or linearizations of p and gq.

This gives a two-parameter eigenvalue problem

(A1 +xBy+ yG)up =0,
(A +xBy +yG)up =0

such that its finite regular eigenvalues are the zeros of p(x, y) =0, g(x,y) = 0.
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A pencil A+ xB + yC is a determinantal representation of p(x, y) of size n if
p(x,y) = det(A+ xB + yC)

and A, B, C are n X n matrices.

Dixon (1902)

For each scalar bivariate polynomial of degree n there exists a determinantal
representation of size n with symmetric matrices.

Dickson (1921)

The above result can not be generalized to generic polynomials in three or more
variables except for polynomials in three variables of degrees 2 and 3 and
polynomials in four variables of degree 2.
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Overview of determinantal representations

Although it is known since 1902 that each bivariate polynomial of degree n,

n n—i

pl,y) =D pix' v,

i=0 j=0
admits a determinantal representation of size n, there is no simple construction.

We can use larger matrices, but then the 2EP is singular. The idea is to find a
linearization that can be constructed fast and is as small as possible.
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Overview of determinantal representations

Although it is known since 1902 that each bivariate polynomial of degree n,
n n—i
pOy) =Y > pix' v,
i=0 j=0
admits a determinantal representation of size n, there is no simple construction.

We can use larger matrices, but then the 2EP is singular. The idea is to find a
linearization that can be constructed fast and is as small as possible.

Uniform representations (no computation) for bivariate polynomials of degree n:
e Khazanov (2007): size n?,

Muhig, P. (2010): asymptotic size n?/2,

Quarez (2012): symmetric matrices of asymptotic size n?/4.

P., Hochstenbach (2014): asymptotic size n?/4.

Boralevi, van Doornmalen, Draisma, Hochstenbach, P. (2016): size 2n — 1.
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Overview of determinantal representations

Although it is known since 1902 that each bivariate polynomial of degree n,
n n—i
pOy) =Y > pix' v,
i=0 j=0
admits a determinantal representation of size n, there is no simple construction.

We can use larger matrices, but then the 2EP is singular. The idea is to find a
linearization that can be constructed fast and is as small as possible.

Uniform representations (no computation) for bivariate polynomials of degree n:
e Khazanov (2007): size n?,

Muhig, P. (2010): asymptotic size n?/2,

Quarez (2012): symmetric matrices of asymptotic size n?/4.

P., Hochstenbach (2014): asymptotic size n?/4.

Boralevi, van Doornmalen, Draisma, Hochstenbach, P. (2016): size 2n — 1.

Non-uniform representations (computation is required):
e P, Hochstenbach (2014): asymptotic size n?/6.
@ Buckley, P. (2016): size n for any polynomial of degree n <5,
e P. (2017): size n for any polynomial.
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Homogenization

We can homogenize p(x,y) of degree n into

n  n—i

Xy S
ph(x,y,2) = 2"p (;, ;) = 2; 2; py x'yl 2"
=0 j=

Clearly, if det(zA + xB + yC) = pn(x,y, z), then det(A 4+ xB + yC) = p(x, y).

The homogeneous form gives us are more freedom, as we can apply a linear
change of variables

X
z

N < X

to transform the polynomial into an appropriate initial form.
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Initial transformation

We have a bivariate polynomial

n  n—i

pix,y) =D > pix'y.

i=0 j=0

If pis a square-free polynomial, then after a linear transformation of variables we
can assume that

a) pno # 0,
b) pon = po,n—1 =0,
c) all zeros &1, ...,&y,—1 of the polynomial
V(€) = Pro€" " + Pn-11€" 2 -+ a1

are simple and nonzero.

Bor Plestenjak (University of Ljubljana)

Minimal determinantal representations of bivariate poly



Linerization of size n for a square-free polynomial

We apply bivariate polynomials qo, . .., g,—1, defined recursively as
qo(x,y) =1,
q1(x,y) = f1qo(x, y),
(%, y) = f1q1(x, y) + f200(x, ),

Gn-1(x,¥) = fam11Gn-2(x, ¥) + fom12Gn-3(x,y) + - - - + fo_1.0-190(x, ¥),
where f;j = ajix + By and ajj =1 for i < n—1.

(Y00 + 710X ! Y2 o Yn—2 PnoX |
—f1 1
—fn —hy 1
A+xB+yC= —f33 —f3 —f 1
| —fo—tn-1 —foip—2 - o —foi1n 1|

det(A+xB+yC) = vo0+710X +7191(X, ¥) ++ - -+ Vn—2Gn—2(X, ¥) + ProXqn—1(x, y).
We can find ajj, 8ij, Y00, V10, V15 - - - » Yn—2 such that det(A+ xB + yC) = p(x, y).

J
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Sketch of the algorithm for n =5

ps(x,y) = poo + - 4 psox® + parx*y+ - - -+ praxy®, where psg # 0, pos = pos = 0.

ps(x,y)
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Sketch of the algorithm for n =5

ps(x,y) = poo + - 4 psox® + parx*y+- - -+ praxy”, where psg # 0, pos = pos = 0.

Factor psox® + - + praxy® = psox(x — C1y) -+ (x — Gay)

ps(x,y)
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Sketch of the algorithm for n =5

ps(x,y) = poo +- -+ Psox® + parx*y+ - -+ praxy®, where pso # 0, pos = pos = 0.

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

9 = 1, ps(x, )
q1 = (x — 1Y),
@ =(x—Gy)n
3= (x — G3y)q
qs = (x — (4y)q3 o o
@] @] @)
(@] O
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Sketch of the algorithm for n =5

ps(x,y) = poo +- -+ Psox® + parx*y+ - -+ praxy®, where pso # 0, pos = pos = 0.

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

q =1, ps(x, y)—psoxqa(x,y)
q1 = (x — C1y)qo,
@ = (x—Cy)n
g3 = (x—Gy)ge
qs = ( - <4}/)Q3 0 0
o o o}
(5} o}

Bor Plestenjak (University of Ljubljana) Minimal determinantal representations of bivariate poly



Sketch of the algorithm for n =5

ps(x,y) = poo +- -+ Psox® + parx*y+ - -+ praxy®, where pso # 0, pos = pos = 0.

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

q =1, ps(x, y)—psoxqa(x,y)
q1 = (x — 1y)qo;
0 = (x — Qy)an
g3 = (x—Gy)ge
qs = ( - C4}/)Q3 0 0
o o o}
o} o}
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

qgo =1, ps(x,y)—psoxqa(x, y)
q1 = (x — C1y)q0,

g2 = (x — Qay)aq1 + f2q0,

=(x—QGy)a+ a
q4—( —Cay)q3 + fa2qo ° °

Q@ O
Find: O O O O O O

@ fon = x — [y,

o f3 = x — I3y,
0 fap = auox — Pary

to annihilate monomials of degree 4
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

g =1, ps(x,y)—psoxqa(x, y)
q1 = (x — C1y)q0,
= (x — Qy)a1 + f2q0,
=(x—QGy)g + g o
qs = (x — Gay)q3 + fa2qo ° °
O O O
(@) (@)
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

go =1, Ps(x, ¥) —psoxqa(x, y)—7393(x, ¥)
q1 = (x — G1y)qo,
= (x = GQy)aq1 + f2qo,
=(x—Qy)g + fq
qs = (x — Qay) g3 + fa2q> o P
O O O O O
Find 3 to zero the coefficient at y3 usinggs. O O O
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

go =1, ps(x,y)—psoxqa(x, y) —73q3(x, )
q1 = (x — (1¥)qo;
= (x = Qy)aq1 + f2qo,
= (x = Gy)g2 + faq o
qs = (x — Gay)q3 + fa2qo o o
O O O
(@) (@)
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

go =1, Ps(x, y)—psoxqa(x, y) —7393(x, ¥)
q1 = (x — C1y)q0,
= (x — Qy)a1 + f2q0,
= (x = Gy)aq2 + f2q1 + f330q0,
qs = (x — Gay)as + fa2q2 + fa3q1 PY o
O O
Find:

® f33 = x — 3y,
@ f13 = quzx — [azy

to annihilate monomials of degree 3
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

go =1, Ps(x, ¥) —psoxqa(x, y)—7393(x, ¥)
q1 = (x — C1y)q0,

= (x — Qy)a1 + f2q0,

= (x — Q3y)q2 + F2q1 + f33q0,

(@)
s = (x — Gay)as + fa2qo + fa3qn o o
O O O
(@) (@)
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

q =1, ps(x, y)—psoxqa(x, ) —7393(x, ¥) —7292(x, ¥)
q1 = (x — 1y)qo;
:( — G2y)q1 + f2qo,
= (x — Q3y)q2 + F2q1 + f33q0,
s = (x — Gay)as + fa2qo + fa3qn o o
O O O O O
Find 7, to zero the coefficient at y2 usinggop. O O O
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

qgo =1, Ps(x, ¥)—psoxqa(x, ) —73q3(x, ¥) —7292(x, ¥)
q1 = (x — 1y)qo;

= (x — Qy)a1 + f2q0,

= (x — Q3y)q2 + F2q1 + f33q0,

(@)
s = (x — Gay)as + fa2qo + fa3qn o o
O O O
(@) (@)
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Sketch of the algorithm for n =5

Ps(x,y) = poo +- -+ Psox® + parx*y+ - -+ praxy*, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

Go=1, Ps(x, y)—psoxqa(x, y) =73q3(x, ¥) —7292(x, ¥)
q1 = (x — (1Y),
:( — Gay)a1 + f2qo,
= (x — Gy)q2 + f2q1 + f33q0,
qs = (X — Cay)q3 + fa2G2 + fazq1 + faaqo, o o
o) o)
Find:

— 3
® fa4 = auusx — PBasy

to annihilate monomials of degree 2
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

q =1, ps(x,y)—pPsoxqa(x, y) —73q3(x, ¥) —72q2(x, y)
q1 = (x — (1¥)qo;
= (x = GQy)aq1 + f2qo,
= (x = Gy)aq2 + f2q1 + f33q0,
qs = (X — Cay) a3 + fa2q2 + f43q1 + fasaqo, o © o
@) @) @)
O O
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

q =1, Ps(x, ¥)—psoxqa(x, ) —73q3(x, ¥) —7292(x, ¥)
q1 = (x — 1y)qo; —m41(x,y)
a2 = (x — Gy)q1 + f2q0,
= (x — Q3y)q2 + F2q1 + f33q0,
q4_( *C4}/)‘73+f42‘72+ﬁ13Q1+ﬁMQOa OOO OOO
O O O O O
Find ~1 to zero the coefficient at y using g;. O O O
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Sketch of the algorithm for n =5

ps(x,y) = poo +- -+ Psox® + parx*y+ - -+ praxy®, where pso # 0, pos = pos = 0.

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

q =1, ps(x,y)—pPsoxqa(x, y) —73q3(x, ¥) —72q2(x, y)
q :( — (1Y) 0, —7191(x, y)

= (x = Qy)a1 + f2qo, °

= (x = Gy)aq2 + f2q1 + f33q0, @ O
q4—( — CaY)q3 + fa2qo + fazqi + faaqo, OOOOOOO

o O O O O
0 0 O o o ©°

The residual is r(x,y) = Y00 + Y10X-
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

q =1, ps(x,y)—pPsoxqa(x, y) —73q3(x, ¥) —72q2(x, y)
a1 :( — (1Y) 0, —741(x, y) — (700 +710%)qo(X, y)
= (x = Qy)a1 + f2qo, ®
= (x = Gy)aq2 + f2q1 + f33q0, @ O
qs = (X — Cay) a3 + fa2q2 + f43q1 + fasaqo, © 0. 0©

o O o
o O O O O
0 O O O
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Sketch of the algorithm for n =5

ps(x,y) = poo +- - -+ psox® 4 parx*y+ - - -+ praxy®, where pso # 0, pos = pos = 0

Factor psox® + -+ - + praxy* = psox(x — C1y) - -+ (x — Cay) and define

qgo =1, Ps(x, ¥)—psoxqa(x, ) —73q3(x, ¥) —7292(x, ¥)
q1 = (x — C1y)q0, —7191(x, ) — (700 +710%)Go(x, ¥)
g2 = (x — Qay)aq1 + f2q0, o
g3 = (x — G3y)q2 + f32q1 + f33q0, O O
q4—( — Cay)q3 + fa2qo + f43q1 + faaqo, OOOOOOO
O O O O O
O O O O O O
Yoo + 710X 94! Y2 Y3 PsoX
—x + (1y 1
A+xB+yC = —fr —x + Gy 1
—f33 —f —x + (3y 1
—faq —fa3 —fa2 —x+Gy 1
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Representation of non square-free polynomials

For such polynomials we have several options:

a) For n <5 we can apply an algorithm (Buckley, P.) that works for non
square-free polynomials as well.

b) We factorize p into a product

p(x,y) = p1(x, y)p2(x,y) - - p(x, y),

where p; is a square-free polynomial for i = 1,..., k. Now we apply algorithm
to obtain matrices A;, B;, and C; such that p;(x,y) = det(A; + xB; + yC;) for
i=1,...,k and arrange them in block diagonal matrices A, B and C.

Combined with a square-free factorization, one can thus find a determinantal
representation of size n for each bivariate polynomial of degree n.

c) Square-free factorization is expensive. In our case, where we use

representations to solve a system of two polynomials, it is more efficient to
use larger representations that can be constructed faster.
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Minimal uniform representations

(Boralevi, van Doornmalen, Draisma, Hochstenbach, P., to appear in SIAGA)

For a bivariate polynomial of max degree n there exists a uniform linearization of
size 2n+ 1. In case n = 4,

4 4
) = 37 pyx'l = det(A 38+ 1C)
i=0 j=0
for
1« _
-1 x
-1 x
-1 x

A+xB+yC= |pas p3s paa p1s pos —1
P43 P33 P23 P13 Pz y —1

Pa2 P32 P23 P12 Po2 y -1
Pa1 P31 P21 P11 Po1 y -1
LP40 P30 P20 P10 Poo y
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Linerization of size 2n — 1 for any bivariate polynomial

Slight modification of previous results gives a uniform representation of size 2n — 1

for a bivariate polynomial

of degree n.

In case n = 4, ps(x,y) = det(A+ xB + yC) for

-1

A+xB+yC =

| P30 + XPao

Bor Plestenjak (University of Ljubljana)

X
-1 X
-1 X
P13X + Posy
P12 + p22X  Po2 + posy
p21 + p31x p11 Po1
P20 P10 Poo

Minimal determinantal representations of bivariate poly

-1
y -1
y




Some numerical results

This is implemented in package BiRoots, available from Matlab Central File
Exchange. We compared the code to NSolve in Mathematica and PHCLab for
Matlab.

Table: Average computational times in milliseconds for MinRep, MinUnif, NSolve, and
PHCLab for random bivariate polynomial systems of degree 3 to 10. For MinUnif and
NSolve separate results are included for real (R) and complex polynomials (C).

d | MinRep MinUnif (R) MinUnif (C) NSolve (R) NSolve (C) PHCLab
3 6 6 6 10 55 210
4 8 9 11 18 93 247
5 11 15 18 34 147 289
6 15 25 32 56 225 344
7 20 40 55 169 525 409
8 29 70 98 177 548 499
9 46 112 172 419 913 607
10 64 184 301 990 2219 739

MinRep is fast but not accurate enough for polynomials of degree n > 11.
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Some numerical results

This is implemented in package BiRoots, available from Matlab Central File
Exchange. We compared the code to NSolve in Mathematica and PHCLab for
Matlab.

Table: Average computational times in milliseconds for MinRep, MinUnif, NSolve, and
PHCLab for random bivariate polynomial systems of degree 3 to 10. For MinUnif and
NSolve separate results are included for real (R) and complex polynomials (C).

d | MinRep MinUnif (R) MinUnif (C) NSolve (R) NSolve (C) PHCLab
3 6 6 6 10 55 210
4 8 9 11 18 93 247
5 11 15 18 34 147 289
6 15 25 32 56 225 344
7 20 40 55 169 525 409
8 29 70 98 177 548 499
9 46 112 172 419 913 607
10 64 184 301 990 2219 739

MinRep is fast but not accurate enough for polynomials of degree n > 11.

Thank you for your attention!
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