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Preserver Problems



Preserver problems in matrix theory

A typical PRESERVER PROBLEM demands a characterization of
all maps
- M—->M

on a set M of matrices that preserve some

@ subset

e function

@ relation

@ etc.

Sometimes there are some additional assumptions on ®: linearity,
additivity, bijectivity, etc.

4/1



Preserver problems

Example 1: Determinant preservers (Frobenius, 1897)

A linear bijective map ® : M,(C) — M,(C) preserves determinant,
that is, det ®(A) = det A for all A, if and only if

®(A) = PAQ or ®(A)=PATQ,
where det(PQ) = 1.

| \

Example 2: Invertibility preservers
Let F be a field with |F| > 3. A linear bijective map

& : My(F) — Mu(F) preserves invertibility in both directions, that
is, A € GL,(F) <= ®(A) € GL,(F) if and only if

®(A) = PAQ or ®(A)=PA'Q,

where P, Q € GL,(IF).

5/1



Preserver problems

Example 3: Adjacency preservers

A BIJECTIVE map & : M,(F) — M,(F) preserves adjacency in
BOTH directions, that is,
rk(A — B) =1 < rk(®(A) — ¢(B)) =1 iff

®(A)=PA°Q+B or ®(A)=P(A°)"Q+ B,

where P, Q € GL,(F), B € Mp(F), and field automorphism
o :F — F is applied entry-wise.

The above result is called the fundamental theorem of geometry of
matrices (for Mp(IF)). Example 2 follows from it by observing:

tkA=1
<~
VB € GL,(F) : B+ AA € GL,(F) for all but at most one A € F
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Fundamental theorems of geometry of matrices (m, n > 2)

Mpmxn(F) = rectangular matrices

P(A)=PA°Q+B or ®(A)=PA)'Q+B (m=n)

Sn(IF) = symmetric matrices

If (F, n) # (F2,3) : ®(A) = aPA°PT + B

H,(F) = hermitian matrices

®(A) = aPA’P* + B

An(F) = alternate matrices

Ifn>5:  &(A) =aPA°PT +B

A
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Adjacency preservers (one direction, no bijectivity)

e H,(C) (Semrl, Huang 2008, Canad. J. Math.)
o Hy(D) (Huang 2008, Aequationes Math.)
e S,(R) (Legi%a 2011, Math. Commun.)
o Ho(Fy) (Orel 2009, Finite Fields Appl.)
o S5,(Fq) (Orel 2012, J. Algebraic Combin.)
o Mpxn(DD) (Semrl 2014, Mem. Amer. Math. Soc.)
(de Seguins Pazzis & Semrl, 2015, J. Algebra)

(Huang & Semrl 2016, Linear Algebra Appl.)

® My n(Fq)(Huang, Huang, Li, Sze 2014, Linear Algebra Appl.)
® HGLy(Fgp2), g >4 (Orel 2016, Linear Algebra Appl.)
o An(Fq) (Huang, Huang, Zhao 2015, Discrete Math.)
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Graph theory



Graphs: undirected (finite) without loops/multiple edges

A homomorphism between graphs I'; and > is a map
®: V(1) = V(I2) such that

{u,v} € E(I'1) = {®(u),d(v)} € E(I).

An isomorphism between graphs ['; and I, is a bijective map
®: V([1) — V(I2) such that

{u,v} € E(T'1) <= {®(u),®(v)} € E(T2).

If [{ =T, then
homomorphism = endomorphism
isomorphism = automorphism.

For finite graphs: bijective endomorphism = automorphism
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Example

The Fundamental theorem of geometry of matrices in M,(F)
characterizes all automorphisms of ' with

V() := M,(F)  E(T) := {{A B} :1k(A—B) =1},

Adjacency preservers (in 1 direction) are the endomorphisms of T.

A graph is a core if all its endomorphisms are automorphisms

Basic examples:
@ complete graphs
@ odd cycles
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The clique number w(I") of graph I is the largest number of
pairwise adjacent vertices.

The chromatic number x(I') of graph T is the smallest number of
colors needed to color the vertices in such way that adjacent
vertices get different colors.
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Many graphs are either cores or x(I') = w(I').

Cameron, Kazanidis 2008, J. Aust. Math. Soc.

If Aut(I") acts transitively on unordered pairs of non-adjacent
vertices, then I is a core or x(I') = w(IN).

Godsil, Royle 2011, Ann. Comb.

If T is connected regular and Aut(I") acts transitively on unordered
pairs of vertices at distance 2, then I is a core or x(I') = w(I).

| \

To show that x(I') > w(I") for a particular graph, lower bounds for
x(I) can be useful:

Hoffman, 1970

If E(T') # 0, then
X(1) = 14 2m

min
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Example 1: Graph from Orel 2009, Finite Fields Appl.:

V(T) = Ha(F )
E(N) = {{A,B} : tk(A— B) =1}

Eigenvalues: (_q):# (r=0,1,...,n).
>\max
X(MN =1+ —F—>qg=w(l).

Godsil & Royle = T is a core => Adjacency preservers:

®(A) = PAP* + B
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Example 2: Finite graph from
o Semrl 2014, Mem. Amer. Math. Soc.
@ Huang, Huang, Li, Sze 2014, Linear Algebra Appl.
V(F) = Mmxn(Fq)
E(N)={{A B} :tk(A— B) =1}

Eigenvalues: w (r=0,1,...,min{m, n}).
A
M(M) 2 14 Ze—qn i) = wo(T).
min

Roberson 2016, arXiv

Every endomorphism of a primitive strongly regular graph is either
an automorphism or a coloring.

Adjacency preservers on M,y2(Fg) or Moy n(Fq):
®(A) = PA’Q+ B
P(A)=P(A°)TQ+B (n=2)
Image(®) = {pairwise adjacenct matrices}
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Finite geometry



Let g = p, p an odd prime, and A = AT € GL,(Fy). The set
Q= {(x):x"Ax = 0,x # 0}

is a quadric.
Here, (x)=1-dimensional subspace that is spanned by x € Fg-

Definition

If nis odd, then the quadric is parabolic.
If nis even, then the quadric is hyperbolic if

Q] = @PENGEE g eliptic if |Qf = @A)

A projective subspace V is totally singular if xT Ay = 0 for all

points (x), (y) in V.
Maximal totally singular subspaces are generators and all of them
have the same dimension.
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Ovoid - definition

An ovoid of an orthogonal polar space is a set of points meeting
every generator in precisely one point.

Spread - definition

A spread of an orthogonal polar space is a set of generators that
partition the point set Q.

Existence of ovoids/spreads is a long standing open problem.

The point graph of an orthogonal polar space is graph Q_;(q) s.t.

V( il(q)):Q
E(Q1(q)) = {{(x), (y)} : x" Ay = 0, (x) # (y)}.
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Cameron, Kazanidis 2008, J. Aust. Math. Soc.

@ Q:_,(q) is a core <= the associated polar space does not
have a partition into ovoids.

@ The complement Q5_;(q) is a core <= the associated polar
space has not an ovoid or has not a spread.

Analogous result on a unitary polar space was applied in:

Orel, LAA 2016
Adjacency preservers ® : HGL,(F ) — HGL,(F,2) for g > 4 are:

®(A) = PA7P" ®(A) = P(A"L)7 p*

Huang, Huang, Zhao; Discrete Math. 2015
Let g be odd. Adjacency preservers ® : Ay(Fq) — As(Fq) with

| A\

Image(®) = {pairwise adjacenct matrices}

exist iff @ (q) has a spread.
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Let g be odd, A= AT € GL,(F,). Lester (Canad. J. Math. 1977)

characterized bijective maps ® : Fg — Fg that satisfy:

(x—y)TA(x—y)=0, x#y
_—

(®(x) = () "A(S(x) — &(y)) =0, &(x) # d(y)
i.e., the automorphisms of the Affine polar graph VO%(q):
V(VO;i(q)) = Fg
E(VO;(q)) = {{x.y} : (x —y) TA(x —y) =0, x # y}

If A= M = diag(1,—1,...,—1), =1 € Fq is not a square, n > 3:

d(x) = alx? + xg
d(x) = aKx? +xg (n is even)

L"TML=M, KTMK = —M, ¢ : Fq — Fq a field automorphism.
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What if there is no bijectivity assumption?

VO; (q)
n even, A hyperbolic

VO, (q)

n even, A elliptic

VO,(q)
n odd, A parabolic

Proposition (Orel, J. Combin. Theory Ser. A, 2017)

Either ' = VO:(q) is a core or x(I') = w(I).

Theorem (Orel, JCTA 2017)
If n>4 and g is odd, then VO, (q) is a core.

Theorem (Orel, JCTA 2017)

Let I = VO;(q) be parabolic or hyperbolic (with Witt index > 2).
If x(I') =w(l), then Q:_;(q) has an ovoid.
(A ‘weak’ backward implication is also true.)

Constructions of known ovoids can be used to construct (weird)
nonbijective maps (endomorphisms) ®.
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Thank you for your attention!



