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Preserver Problems



Preserver problems in matrix theory

A typical PRESERVER PROBLEM demands a characterization of
all maps

Φ : M→M

on a set M of matrices that preserve some

subset

function

relation

etc.

Sometimes there are some additional assumptions on Φ: linearity,
additivity, bijectivity, etc.
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Preserver problems

Example 1: Determinant preservers (Frobenius, 1897)

A linear bijective map Φ : Mn(C)→ Mn(C) preserves determinant,
that is, det Φ(A) = det A for all A, if and only if

Φ(A) = PAQ or Φ(A) = PA>Q,

where det(PQ) = 1.

Example 2: Invertibility preservers

Let F be a field with |F| ≥ 3. A linear bijective map
Φ : Mn(F)→ Mn(F) preserves invertibility in both directions, that
is, A ∈ GLn(F)⇐⇒ Φ(A) ∈ GLn(F) if and only if

Φ(A) = PAQ or Φ(A) = PA>Q,

where P,Q ∈ GLn(F).
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Preserver problems

Example 3: Adjacency preservers

A BIJECTIVE map Φ : Mn(F)→ Mn(F) preserves adjacency in
BOTH directions, that is,
rk(A− B) = 1⇐⇒ rk(Φ(A)− Φ(B)) = 1 iff

Φ(A) = PAσQ + B or Φ(A) = P(Aσ)>Q + B,

where P,Q ∈ GLn(F), B ∈ Mn(F), and field automorphism
σ : F→ F is applied entry-wise.

The above result is called the fundamental theorem of geometry of
matrices (for Mn(F)). Example 2 follows from it by observing:

rkA = 1

⇐⇒
∀B ∈ GLn(F) : B + λA ∈ GLn(F) for all but at most one λ ∈ F
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Fundamental theorems of geometry of matrices (m, n ≥ 2)

Mm×n(F) = rectangular matrices

Φ(A) = PAσQ + B or Φ(A) = P(Aσ)>Q + B (m = n)

Sn(F) = symmetric matrices

If (F, n) 6= (F2, 3) : Φ(A) = aPAσP> + B

Hn(F) = hermitian matrices

Φ(A) = aPAσP∗ + B

An(F) = alternate matrices

If n ≥ 5 : Φ(A) = aPAσP> + B
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Adjacency preservers (one direction, no bijectivity)

Hn(C) (Šemrl, Huang 2008, Canad. J. Math.)

H2(D) (Huang 2008, Aequationes Math.)

Sn(R) (Legǐsa 2011, Math. Commun.)

Hn(Fq2) (Orel 2009, Finite Fields Appl.)

Sn(Fq) (Orel 2012, J. Algebraic Combin.)

Mm×n(D) (Šemrl 2014, Mem. Amer. Math. Soc.)
(de Seguins Pazzis & Šemrl, 2015, J. Algebra)

(Huang & Šemrl 2016, Linear Algebra Appl.)

Mm×n(Fq)(Huang, Huang, Li, Sze 2014, Linear Algebra Appl.)

HGLn(Fq2), q ≥ 4 (Orel 2016, Linear Algebra Appl.)

An(Fq) (Huang, Huang, Zhao 2015, Discrete Math.)
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Graph theory



Graphs: undirected (finite) without loops/multiple edges

A homomorphism between graphs Γ1 and Γ2 is a map
Φ : V (Γ1)→ V (Γ2) such that

{u, v} ∈ E (Γ1) =⇒ {Φ(u),Φ(v)} ∈ E (Γ2).

An isomorphism between graphs Γ1 and Γ2 is a bijective map
Φ : V (Γ1)→ V (Γ2) such that

{u, v} ∈ E (Γ1)⇐⇒ {Φ(u),Φ(v)} ∈ E (Γ2).

If Γ1 = Γ2, then
homomorphism = endomorphism
isomorphism = automorphism.

For finite graphs: bijective endomorphism = automorphism
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Example

The Fundamental theorem of geometry of matrices in Mn(F)
characterizes all automorphisms of Γ with

V (Γ) := Mn(F) E (Γ) :=
{
{A,B} : rk(A− B) = 1

}
,

Adjacency preservers (in 1 direction) are the endomorphisms of Γ.

Cores

A graph is a core if all its endomorphisms are automorphisms.

Basic examples:

complete graphs

odd cycles
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The clique number ω(Γ) of graph Γ is the largest number of
pairwise adjacent vertices.

The chromatic number χ(Γ) of graph Γ is the smallest number of
colors needed to color the vertices in such way that adjacent
vertices get different colors.

ω(Γ) = 3 χ(Γ) = 4

χ(Γ) ≥ ω(Γ)
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Many graphs are either cores or χ(Γ) = ω(Γ).

Cameron, Kazanidis 2008, J. Aust. Math. Soc.

If Aut(Γ) acts transitively on unordered pairs of non-adjacent
vertices, then Γ is a core or χ(Γ) = ω(Γ).

Godsil, Royle 2011, Ann. Comb.

If Γ is connected regular and Aut(Γ) acts transitively on unordered
pairs of vertices at distance 2, then Γ is a core or χ(Γ) = ω(Γ).

To show that χ(Γ) > ω(Γ) for a particular graph, lower bounds for
χ(Γ) can be useful:

Hoffman, 1970

If E (Γ) 6= ∅, then

χ(Γ) ≥ 1 +
λmax

−λmin
.

13 / 1



Example 1: Graph from Orel 2009, Finite Fields Appl.:

V (Γ) = Hn(Fq2)

E (Γ) =
{
{A,B} : rk(A− B) = 1

}
Eigenvalues: (−q)2n−r−1

q+1 (r = 0, 1, . . . , n).

χ(Γ) ≥ 1 +
λmax

−λmin
>q = ω(Γ).

Godsil & Royle =⇒ Γ is a core =⇒ Adjacency preservers:

Φ(A) = PAσP∗ + B
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Example 2: Finite graph from

Šemrl 2014, Mem. Amer. Math. Soc.
Huang, Huang, Li, Sze 2014, Linear Algebra Appl.

V (Γ) = Mm×n(Fq)

E (Γ) =
{
{A,B} : rk(A− B) = 1

}
Eigenvalues: qm+n−r−qm−qn+1

q−1 (r = 0, 1, . . . ,min{m, n}).

χ(Γ) ≥ 1 +
λmax

−λmin
=qmax{m,n} = ω(Γ).

Roberson 2016, arXiv

Every endomorphism of a primitive strongly regular graph is either
an automorphism or a coloring.

Adjacency preservers on Mn×2(Fq) or M2×n(Fq):

Φ(A) = PAσQ + B

Φ(A) = P(Aσ)>Q + B (n = 2)

Image(Φ) = {pairwise adjacenct matrices}
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Finite geometry



Let q = pk , p an odd prime, and A = A> ∈ GLn(Fq). The set

Q = {〈x〉 : x>Ax = 0, x 6= 0}

is a quadric.
Here, 〈x〉=1-dimensional subspace that is spanned by x ∈ Fn

q.

Definition

If n is odd, then the quadric is parabolic.
If n is even, then the quadric is hyperbolic if

|Q| = (qn/2−1)(qn/2−1+1)
q−1 , and elliptic if |Q| = (qn/2+1)(qn/2−1−1)

q−1 .

A projective subspace V is totally singular if x>Ay = 0 for all
points 〈x〉, 〈y〉 in V .
Maximal totally singular subspaces are generators and all of them
have the same dimension.
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Ovoid - definition

An ovoid of an orthogonal polar space is a set of points meeting
every generator in precisely one point.

Spread - definition

A spread of an orthogonal polar space is a set of generators that
partition the point set Q.

Existence of ovoids/spreads is a long standing open problem.

The point graph of an orthogonal polar space is graph Qε
n−1(q) s.t.

V
(
Qε

n−1(q)
)

= Q,

E
(
Qε

n−1(q)
)

=
{
{〈x〉, 〈y〉} : x>Ay = 0, 〈x〉 6= 〈y〉

}
.
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Cameron, Kazanidis 2008, J. Aust. Math. Soc.

Qε
n−1(q) is a core ⇐⇒ the associated polar space does not

have a partition into ovoids.

The complement Qε
n−1(q) is a core ⇐⇒ the associated polar

space has not an ovoid or has not a spread.

Analogous result on a unitary polar space was applied in:

Orel, LAA 2016

Adjacency preservers Φ : HGLn(Fq2)→ HGLn(Fq2) for q ≥ 4 are:

Φ(A) = PAσP∗ Φ(A) = P(A−1)σP∗

Huang, Huang, Zhao; Discrete Math. 2015

Let q be odd. Adjacency preservers Φ : A4(Fq)→ A4(Fq) with

Image(Φ) = {pairwise adjacenct matrices}

exist iff Q+
7 (q) has a spread.
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Let q be odd, A = A> ∈ GLn(Fq). Lester (Canad. J. Math. 1977)
characterized bijective maps Φ : Fn

q → Fn
q that satisfy:

(x− y)>A(x− y) = 0, x 6= y

=⇒(
Φ(x)− Φ(y)

)>A
(
Φ(x)− Φ(y)

)
= 0, Φ(x) 6= Φ(y)

i.e., the automorphisms of the Affine polar graph VOε
n(q):

V
(
VOε

n(q)
)

= Fn
q

E
(
VOε

n(q)
)

=
{
{x, y} : (x− y)>A(x− y) = 0, x 6= y

}
If A = M = diag(1,−1, . . . ,−1), −1 ∈ Fq is not a square, n ≥ 3:

Φ(x) = αLxσ + x0

Φ(x) = αKxσ + x0 (n is even)

L>ML = M , K>MK = −M, σ : Fq → Fq a field automorphism.
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What if there is no bijectivity assumption?

VO+
n (q) VO−n (q) VOn(q)

n even, A hyperbolic n even, A elliptic n odd, A parabolic

Proposition (Orel, J. Combin. Theory Ser. A, 2017)

Either Γ = VOε
n(q) is a core or χ(Γ) = ω(Γ).

Theorem (Orel, JCTA 2017)

If n ≥ 4 and q is odd, then VO−n (q) is a core.

Theorem (Orel, JCTA 2017)

Let Γ = VOε
n(q) be parabolic or hyperbolic (with Witt index ≥ 2).

If χ(Γ) = ω(Γ), then Qε
n−1(q) has an ovoid.

(A ‘weak’ backward implication is also true.)

Constructions of known ovoids can be used to construct (weird)
nonbijective maps (endomorphisms) Φ.
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Thank you for your attention!


