Circles in the spectrum and numerical ranges

Vladimir Müller

Ljubljana, 2017

Vladimir Müller Circles in the spectrum and numerical ranges

★ E > < E >

э

joint work with Yu. Tomilov, IM PAN, Warsaw

Vladimir Müller Circles in the spectrum and numerical ranges

イロン 不同 とくほ とくほ とう

(Arveson 1966) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent:

・ロト ・ 理 ト ・ ヨ ト ・

(Arveson 1966) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent: (i) $\sigma(U) = \mathbb{T}$;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(Arveson 1966) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent: (i) $\sigma(U) = \mathbb{T}$; (ii) for every $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that $x, Ux, \ldots, U^n x$ are orthogonal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

(Hamdan 2013) Let μ be a Rajchman measure.

Vladimir Müller Circles in the spectrum and numerical ranges

(Hamdan 2013) Let μ be a Rajchman measure. The following statements are equivalent:

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 990

(Hamdan 2013) Let μ be a Rajchman measure. The following statements are equivalent:

(i) supp $\mu = \mathbb{T}$;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

(Hamdan 2013) Let μ be a Rajchman measure. The following statements are equivalent:

(*i*) supp $\mu = \mathbb{T}$; (*ii*) for every $\varepsilon > 0$ there exists a function $f \in L^{1}(\mu)$, $||f||_{1} = 1$,

・ 同 ト ・ ヨ ト ・ ヨ ト …

(Hamdan 2013) Let μ be a Rajchman measure. The following statements are equivalent:

```
(i) supp \mu = \mathbb{T};
(ii) for every \varepsilon > 0 there exists a function f \in L^1(\mu), ||f||_1 = 1, f \ge 0
```

イロン 不得 とくほ とくほ とうほ

(Hamdan 2013) Let μ be a Rajchman measure. The following statements are equivalent:

(i) supp $\mu = \mathbb{T}$; (ii) for every $\varepsilon > 0$ there exists a function $f \in L^1(\mu)$, $||f||_1 = 1$, $f \ge 0$ such that $\sup_n |\hat{f}(n)| < \varepsilon$

・ 同 ト ・ ヨ ト ・ ヨ ト …

(Hamdan 2013) Let μ be a Rajchman measure. The following statements are equivalent:

(i) supp $\mu = \mathbb{T}$; (ii) for every $\varepsilon > 0$ there exists a function $f \in L^1(\mu)$, $||f||_1 = 1$, $f \ge 0$ such that $\sup_n |\hat{f}(n)| < \varepsilon$

Theorem

Let $U \in B(H)$ be a unitary operator such that $T^n \to 0$ (WOT). The following statements are equivalent:

ヘロト 人間 ト ヘヨト ヘヨト

(Hamdan 2013) Let μ be a Rajchman measure. The following statements are equivalent:

(i) supp $\mu = \mathbb{T}$; (ii) for every $\varepsilon > 0$ there exists a function $f \in L^1(\mu)$, $||f||_1 = 1$, $f \ge 0$ such that $\sup_n |\hat{f}(n)| < \varepsilon$

Theorem

Let $U \in B(H)$ be a unitary operator such that $T^n \to 0$ (WOT). The following statements are equivalent: (i) $\sigma(U) = \mathbb{T}$;

ヘロト ヘアト ヘビト ヘビト

(Hamdan 2013) Let μ be a Rajchman measure. The following statements are equivalent:

(i) supp $\mu = \mathbb{T}$; (ii) for every $\varepsilon > 0$ there exists a function $f \in L^1(\mu)$, $||f||_1 = 1$, $f \ge 0$ such that $\sup_n |\hat{f}(n)| < \varepsilon$

Theorem

Let $U \in B(H)$ be a unitary operator such that $T^n \to 0$ (WOT). The following statements are equivalent: (*i*) $\sigma(U) = \mathbb{T}$; (*ii*) for every $\varepsilon > 0$ there exists a unit vector $x \in H$ such that $\sup_{n \ge 1} |\langle U^n x, x \rangle| < \varepsilon$.

ヘロト 人間 ト ヘヨト ヘヨト

Let $T_1, \ldots, T_n \in B(H)$.

Vladimir Müller Circles in the spectrum and numerical ranges

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let $T_1, \ldots, T_n \in B(H)$. The joint numerical range is defined by

 $W(T_1,\ldots,T_n) = \left\{ (\langle T_1 x, x \rangle, \ldots, \langle T_n x, x \rangle) : x \in H, \|x\| = 1 \right\}$

Vladimir Müller Circles in the spectrum and numerical ranges

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let $T_1, \ldots, T_n \in B(H)$. The joint numerical range is defined by $W(T_1, \ldots, T_n) = \{(\langle T_1 x, x \rangle, \ldots, \langle T_n x, x \rangle) : x \in H, ||x|| = 1\}$

We write shortly $\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$.

イロン 不得 とくほ とくほ とうほ

Let $T_1, \ldots, T_n \in B(H)$. The joint numerical range is defined by $W(T_1, \ldots, T_n) = \{(\langle T_1 x, x \rangle, \ldots, \langle T_n x, x \rangle) : x \in H, ||x|| = 1\}$

We write shortly $\mathcal{T} = (T_1, \dots, T_n) \in B(H)^n$. For $x, y \in H$ write

$$\langle \mathcal{T}\mathbf{x},\mathbf{y}\rangle = (\langle \mathcal{T}_1\mathbf{x},\mathbf{y}\rangle,\ldots,\langle \mathcal{T}_n\mathbf{x},\mathbf{y}\rangle) \in \mathbb{C}^n$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Let $T_1, \ldots, T_n \in B(H)$. The joint numerical range is defined by $W(T_1, \ldots, T_n) = \{(\langle T_1 x, x \rangle, \ldots, \langle T_n x, x \rangle) : x \in H, ||x|| = 1\}$

We write shortly $\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$. For $x, y \in H$ write

$$\langle \mathcal{T}\mathbf{x},\mathbf{y}\rangle = (\langle \mathcal{T}_1\mathbf{x},\mathbf{y}\rangle,\ldots,\langle \mathcal{T}_n\mathbf{x},\mathbf{y}\rangle) \in \mathbb{C}^n$$

Definition

Let $\mathcal{T} = (T_1, \dots, T_n) \in B(H)^n$. The essential numerical range is defined by

Let $T_1, \ldots, T_n \in B(H)$. The joint numerical range is defined by $W(T_1, \ldots, T_n) = \{(\langle T_1 x, x \rangle, \ldots, \langle T_n x, x \rangle) : x \in H, ||x|| = 1\}$

We write shortly $\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$. For $x, y \in H$ write

$$\langle \mathcal{T}\mathbf{x},\mathbf{y}\rangle = (\langle \mathcal{T}_1\mathbf{x},\mathbf{y}\rangle,\ldots,\langle \mathcal{T}_n\mathbf{x},\mathbf{y}\rangle) \in \mathbb{C}^n$$

Definition

Let $\mathcal{T} = (T_1, \dots, T_n) \in B(H)^n$. The essential numerical range is defined by

 $W_{e}(\mathcal{T}) = \left\{ \lambda \in \mathbb{C}^{n} : \text{there exists an orthonomal sequence}
ight.$

$$(\mathbf{x}_k) \subset H$$
 such that $\lambda = \lim_{k \to \infty} \langle \mathcal{T} \mathbf{x}_k, \mathbf{x}_k \rangle$

If n = 1 then: W(T) is convex

Vladimir Müller Circles in the spectrum and numerical ranges

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

If n = 1 then: W(T) is convex conv $\sigma(T) \subset W(T)$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

If n = 1 then: W(T) is convex conv $\sigma(T) \subset W(T)$ Int $W(T) \subset W(T)$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

If
$$n = 1$$
 then: $W(T)$ is convex
conv $\sigma(T) \subset W(T)$
Int $W(T) \subset W(T)$
Int conv $\sigma(T) \subset W(T)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - のへぐ

If
$$n = 1$$
 then: $W(T)$ is convex
conv $\sigma(T) \subset W(T)$
Int $W(T) \subset W(T)$
Int conv $\sigma(T) \subset W(T)$

If $n \ge 2$ then in general $W(T_1, \ldots, T_n)$ is not convex

If
$$n = 1$$
 then: $W(T)$ is convex
conv $\sigma(T) \subset W(T)$
Int $W(T) \subset W(T)$
Int conv $\sigma(T) \subset W(T)$

If $n \ge 2$ then in general $W(T_1, ..., T_n)$ is not convex $W_e(T_1, ..., T_n)$ is convex (Li, Poon 2009)

(Wrobel 1988) $\mathcal{T} = (T_1, \dots, T_n) \in B(H)^n$ commuting operators then

$$\operatorname{conv} \sigma(T_1,\ldots,T_n) \subset \overline{W(T_1,\ldots,T_n)}$$

Vladimir Müller Circles in the spectrum and numerical ranges

Let
$$\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$$
.

Vladimir Müller Circles in the spectrum and numerical ranges

Let
$$\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$$
. Then

 $\operatorname{Int}(W_{e}(\mathcal{T})) \subset W(\mathcal{T}).$

Vladimir Müller Circles in the spectrum and numerical ranges

Let
$$\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$$
. Then

 $\operatorname{Int}(W_{e}(\mathcal{T})) \subset W(\mathcal{T}).$

Moreover, if $\mu \in \text{Int}(W_e(\mathcal{T}))$

Let
$$\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$$
. Then

Int $(W_e(\mathcal{T})) \subset W(\mathcal{T})$.

Moreover, if $\mu \in \text{Int}(W_e(\mathcal{T}))$ then for every subspace $M \subset H$ of a finite codimension there exists $x \in M$ such that ||x|| = 1 and

$$(\langle T_1 \mathbf{x}, \mathbf{x} \rangle, \dots, \langle T_n \mathbf{x}, \mathbf{x} \rangle) = \mu.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let
$$\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$$
. Then

Int $(W_e(\mathcal{T})) \subset W(\mathcal{T})$.

Moreover, if $\mu \in \text{Int}(W_e(\mathcal{T}))$ then for every subspace $M \subset H$ of a finite codimension there exists $x \in M$ such that ||x|| = 1 and

$$(\langle T_1 \boldsymbol{x}, \boldsymbol{x} \rangle, \dots, \langle T_n \boldsymbol{x}, \boldsymbol{x} \rangle) = \mu.$$

Corollary

Let
$$\mathcal{T} = (T_1, \ldots, T_n) \in \mathcal{B}(\mathcal{H})^n$$
. Let $\mu \in \text{Int}(W_e(\mathcal{T}))$.

イロト 不得 とくほ とくほ とう

Let
$$\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$$
. Then

Int $(W_e(\mathcal{T})) \subset W(\mathcal{T})$.

Moreover, if $\mu \in \text{Int}(W_e(\mathcal{T}))$ then for every subspace $M \subset H$ of a finite codimension there exists $x \in M$ such that ||x|| = 1 and

$$(\langle T_1 \mathbf{x}, \mathbf{x} \rangle, \dots, \langle T_n \mathbf{x}, \mathbf{x} \rangle) = \mu.$$

Corollary

Let $\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$. Let $\mu \in \text{Int}(W_e(\mathcal{T}))$. Then there exists an infinite-dimensional subspace $L \subset H$

ヘロン 人間 とくほ とくほ とう

Let
$$\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$$
. Then

Int $(W_e(\mathcal{T})) \subset W(\mathcal{T})$.

Moreover, if $\mu \in \text{Int}(W_e(\mathcal{T}))$ then for every subspace $M \subset H$ of a finite codimension there exists $x \in M$ such that ||x|| = 1 and

$$(\langle T_1 \boldsymbol{x}, \boldsymbol{x} \rangle, \dots, \langle T_n \boldsymbol{x}, \boldsymbol{x} \rangle) = \mu.$$

Corollary

Let $\mathcal{T} = (T_1, ..., T_n) \in B(H)^n$. Let $\mu \in \text{Int}(W_e(\mathcal{T}))$. Then there exists an infinite-dimensional subspace $L \subset H$ such that

$$P_L T_j P_L = \mu_j P_L \qquad (j = 1, \ldots, n).$$

ヘロン 人間 とくほ とくほ とう

Let
$$\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$$
. Then

 $\mathrm{Int}\,(\mathit{W}_{e}(\mathcal{T}))\subset \mathit{W}(\mathcal{T}).$

Moreover, if $\mu \in \text{Int}(W_e(\mathcal{T}))$ then for every subspace $M \subset H$ of a finite codimension there exists $x \in M$ such that ||x|| = 1 and

$$(\langle T_1 \mathbf{x}, \mathbf{x} \rangle, \dots, \langle T_n \mathbf{x}, \mathbf{x} \rangle) = \mu.$$

Corollary

Let $\mathcal{T} = (T_1, \ldots, T_n) \in B(H)^n$. Let $\mu \in \text{Int}(W_e(\mathcal{T}))$. Then there exists an infinite-dimensional subspace $L \subset H$ such that

$$P_L T_j P_L = \mu_j P_L \qquad (j = 1, \ldots, n).$$

Equivalently, Int $(W_e(\mathcal{T})) \subset W_{\infty}(\mathcal{T})$.

ヘロト ヘアト ヘビト ヘビト

ъ

Let $\mathcal{T} \in B(H)^n$. Then $W_{\infty}(\mathcal{T})$ is the set of all $\lambda \in \mathbb{C}^n$ for which there exists an infinite-dimensional subspace $L \subset H$ such that

$$P_L T P_L = \lambda P_L$$

Vladimir Müller Circles in the spectrum and numerical ranges

ヘロン 人間 とくほ とくほ とう

= 990
Let $\mathcal{T} \in B(H)^n$. Then $W_{\infty}(\mathcal{T})$ is the set of all $\lambda \in \mathbb{C}^n$ for which there exists an infinite-dimensional subspace $L \subset H$ such that

$$P_L T P_L = \lambda P_L$$

 $W_{\infty}(\mathcal{T})$ is always convex

ヘロン 人間 とくほ とくほ とう

= 990

Let $\mathcal{T} \in B(H)^n$. Then $W_{\infty}(\mathcal{T})$ is the set of all $\lambda \in \mathbb{C}^n$ for which there exists an infinite-dimensional subspace $L \subset H$ such that

$$P_L T P_L = \lambda P_L$$

 $W_{\infty}(\mathcal{T})$ is always convex it may be empty

ヘロン 人間 とくほ とくほ とう

Let $\mathcal{T} \in B(H)^n$. Then $W_{\infty}(\mathcal{T})$ is the set of all $\lambda \in \mathbb{C}^n$ for which there exists an infinite-dimensional subspace $L \subset H$ such that

$$P_L T P_L = \lambda P_L$$

 $W_{\infty}(\mathcal{T})$ is always convex it may be empty if $W_{\infty}(\mathcal{T}) = \emptyset$ then the *n*-tuple \mathcal{T} is "degenerated"

<ロ> <問> <問> < 回> < 回> < □> < □> <

æ

Let $\mathcal{T} \in B(H)^n$. Then $W_{\infty}(\mathcal{T})$ is the set of all $\lambda \in \mathbb{C}^n$ for which there exists an infinite-dimensional subspace $L \subset H$ such that

$$P_L T P_L = \lambda P_L$$

 $W_{\infty}(\mathcal{T})$ is always convex it may be empty if $W_{\infty}(\mathcal{T}) = \emptyset$ then the *n*-tuple \mathcal{T} is "degenerated"

Theorem

Let $\mathcal{T} \in B(H)^n$. Then

ヘロト ヘ戸ト ヘヨト ヘヨト

Let $\mathcal{T} \in B(H)^n$. Then $W_{\infty}(\mathcal{T})$ is the set of all $\lambda \in \mathbb{C}^n$ for which there exists an infinite-dimensional subspace $L \subset H$ such that

$$P_L T P_L = \lambda P_L$$

 $W_{\infty}(\mathcal{T})$ is always convex it may be empty if $W_{\infty}(\mathcal{T}) = \emptyset$ then the *n*-tuple \mathcal{T} is "degenerated"

Theorem

Let $\mathcal{T} \in B(H)^n$. Then (i) $W_e(\mathcal{T}) = \bigcup_{\mathcal{K} \in \mathcal{K}(H)^n} W_{\infty}(\mathcal{T} + \mathcal{K})$

くロト (過) (目) (日)

Let $\mathcal{T} \in B(H)^n$. Then $W_{\infty}(\mathcal{T})$ is the set of all $\lambda \in \mathbb{C}^n$ for which there exists an infinite-dimensional subspace $L \subset H$ such that

$$P_L T P_L = \lambda P_L$$

 $W_{\infty}(\mathcal{T})$ is always convex it may be empty if $W_{\infty}(\mathcal{T}) = \emptyset$ then the *n*-tuple \mathcal{T} is "degenerated"

Theorem

Let $\mathcal{T} \in B(H)^n$. Then

(i)
$$W_{e}(\mathcal{T}) = \bigcup_{\mathcal{K} \in \mathcal{K}(H)^{n}} W_{\infty}(\mathcal{T} + \mathcal{K})$$

(ii) there exists an n-tuple ${\mathcal K}$ of compact operators such that

$$W_{e}(\mathcal{T}) = \overline{W_{\infty}(\mathcal{T} + \mathcal{K})}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Let $\mathcal{T} \in B(H)^n$. Then

$\mathsf{Int}\,\mathsf{conv}\,\big(\mathit{W}_{e}(\mathcal{T})\cup\sigma_{p}(\mathcal{T})\big)\subset \mathit{W}(\mathcal{T})$

Vladimir Müller Circles in the spectrum and numerical ranges

Let $\mathcal{T} \in B(H)^n$. Then

$$\mathsf{Int}\,\mathsf{conv}\,\big(\mathit{W}_{e}(\mathcal{T})\cup\sigma_{p}(\mathcal{T})\big)\subset \mathit{W}(\mathcal{T})$$

Corollary

Let $\mathcal{T} = (T_1, \dots, T_n) \in B(H)^n$ be a commuting tuple. Then

 $\operatorname{Int}\operatorname{conv}\sigma(\mathcal{T})\subset \mathit{W}(\mathcal{T})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Let $T \in B(H)$ and let $\lambda \in \text{Int } \hat{\sigma}(T)$.

Vladimir Müller Circles in the spectrum and numerical ranges

Let $T \in B(H)$ and let $\lambda \in \text{Int } \hat{\sigma}(T)$. Then

$$(\lambda, \lambda^2, \ldots, \lambda^n) \in \operatorname{Int}(W_e(T, T^2, \ldots, T^n)).$$

for all $n \in \mathbb{N}$.

Vladimir Müller Circles in the spectrum and numerical ranges

Let $T \in B(H)$, $0 \in Int \hat{\sigma}(T)$.

Vladimir Müller Circles in the spectrum and numerical ranges

Let $T \in B(H)$, $0 \in \text{Int } \hat{\sigma}(T)$. Then for every $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$\mathbf{x} \perp T\mathbf{x}, \ldots, T^n \mathbf{x}$$

Corollary

Let $T \in B(H)$, $0 \in \operatorname{Int} \hat{\sigma}(T)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let $T \in B(H)$, $0 \in \text{Int } \hat{\sigma}(T)$. Then for every $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$\mathbf{x} \perp T\mathbf{x}, \ldots, T^n \mathbf{x}$$

Corollary

Let $T \in B(H)$, $0 \in \text{Int } \hat{\sigma}(T)$. Then for every $n \in \mathbb{N}$ there exists an infinite-dimensional subspace $L \subset H$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Let $T \in B(H)$, $0 \in \operatorname{Int} \hat{\sigma}(T)$. Then for every $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$\mathbf{x} \perp T\mathbf{x}, \ldots, T^n \mathbf{x}$$

Corollary

Let $T \in B(H)$, $0 \in \text{Int } \hat{\sigma}(T)$. Then for every $n \in \mathbb{N}$ there exists an infinite-dimensional subspace $L \subset H$ such that $P_L T^j P_L = 0$ for j = 1, ..., n.

イロト イポト イヨト イヨト 三日

Let $T \in B(H)$. The following statements are equivalent.

Vladimir Müller Circles in the spectrum and numerical ranges

Let $T \in B(H)$. The following statements are equivalent. (i) $\mathbb{T} \subset \sigma_{\pi e}(T)$;

Vladimir Müller Circles in the spectrum and numerical ranges

Let $T \in B(H)$. The following statements are equivalent. (*i*) $\mathbb{T} \subset \sigma_{\pi e}(T)$;

(ii) for all $\varepsilon > 0$ and $n \in \mathbb{N}$ there exists $x \in H$ such that

・ 日 ・ ・ 雪 ・ ・ 国 ・ ・ 日 ・

Let $T \in B(H)$. The following statements are equivalent. (*i*) $\mathbb{T} \subset \sigma_{\pi e}(T)$;

(ii) for all $\varepsilon > 0$ and $n \in \mathbb{N}$ there exists $x \in H$ such that

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

Vladimir Müller Circles in the spectrum and numerical ranges

・ 日 ・ ・ 雪 ・ ・ 国 ・ ・ 日 ・

Let $T \in B(H)$. The following statements are equivalent. (i) $\mathbb{T} \subset \sigma_{\pi e}(T)$;

(ii) for all $\varepsilon > 0$ and $n \in \mathbb{N}$ there exists $x \in H$ such that

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

and $\frac{1}{2} \le ||T^{j}x|| \le 2$, $0 \le j \le n-1$;

ヘロン 人間 とくほ とくほう

Let $T \in B(H)$. The following statements are equivalent. (*i*) $\mathbb{T} \subset \sigma_{\pi e}(T)$;

(ii) for all $\varepsilon > 0$ and $n \in \mathbb{N}$ there exists $x \in H$ such that

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

and $\frac{1}{2} \le ||T^j x|| \le 2$, $0 \le j \le n-1$; (iii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$

・ 日 ・ ・ 雪 ・ ・ 国 ・ ・ 日 ・

Let $T \in B(H)$. The following statements are equivalent. (*i*) $\mathbb{T} \subset \sigma_{\pi e}(T)$;

(ii) for all $\varepsilon > 0$ and $n \in \mathbb{N}$ there exists $x \in H$ such that

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

and $\frac{1}{2} \le ||T^j x|| \le 2$, $0 \le j \le n - 1$; (iii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$\mathbf{x} \perp T\mathbf{x}, T^2\mathbf{x}, \ldots, T^{n-1}\mathbf{x},$$

ヘロン 人間 とくほ とくほう

Let $T \in B(H)$. The following statements are equivalent. (i) $\mathbb{T} \subset \sigma_{\pi e}(T)$;

(ii) for all $\varepsilon > 0$ and $n \in \mathbb{N}$ there exists $x \in H$ such that

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

and $\frac{1}{2} \le ||T^j x|| \le 2$, $0 \le j \le n - 1$; (iii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$\mathbf{x} \perp T\mathbf{x}, T^2\mathbf{x}, \ldots, T^{n-1}\mathbf{x},$$

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

・ 日 ・ ・ 雪 ・ ・ 国 ・ ・ 日 ・

Let $T \in B(H)$. The following statements are equivalent. (i) $\mathbb{T} \subset \sigma_{\pi e}(T)$;

(ii) for all $\varepsilon > 0$ and $n \in \mathbb{N}$ there exists $x \in H$ such that

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

and $\frac{1}{2} \le ||T^j x|| \le 2$, $0 \le j \le n - 1$; (iii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$\mathbf{x} \perp T\mathbf{x}, T^2\mathbf{x}, \ldots, T^{n-1}\mathbf{x},$$

$$\begin{aligned} |\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| &< \varepsilon, \qquad 1 \le m, j \le n - 1, m \ne j, \\ 1 - \varepsilon &< \|T^j \mathbf{x}\| < 1 + \varepsilon, \qquad 0 \le j \le n - 1, \end{aligned}$$

ヘロン 人間 とくほ とくほう

Let $T \in B(H)$. The following statements are equivalent. (i) $\mathbb{T} \subset \sigma_{\pi e}(T)$;

(ii) for all $\varepsilon > 0$ and $n \in \mathbb{N}$ there exists $x \in H$ such that

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

and $\frac{1}{2} \le ||T^j x|| \le 2$, $0 \le j \le n - 1$; (iii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$\mathbf{x} \perp T\mathbf{x}, T^2\mathbf{x}, \ldots, T^{n-1}\mathbf{x},$$

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

$$1 - \varepsilon < \|T^j \mathbf{x}\| < 1 + \varepsilon, \qquad 0 \le j \le n - 1,$$

and $||T^nx - x|| < \varepsilon$.

・ 日 ・ ・ 雪 ・ ・ 国 ・ ・ 日 ・

Let $T \in B(H)$ satisfy $r(T) \le 1$. The following statements are equivalent:

Let $T \in B(H)$ satisfy $r(T) \le 1$. The following statements are equivalent:

(i) $\mathbb{T} \subset \sigma(T)$.

- Let $T \in B(H)$ satisfy $r(T) \le 1$. The following statements are equivalent:
 - (i) $\mathbb{T} \subset \sigma(T)$.
 - (ii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$$

- Let $T \in B(H)$ satisfy $r(T) \le 1$. The following statements are equivalent:
 - (i) $\mathbb{T} \subset \sigma(T)$.
 - (ii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

and $\frac{1}{2} \le ||T^{j}x|| \le 2$, $0 \le j \le n-1$;

- Let $T \in B(H)$ satisfy $r(T) \le 1$. The following statements are equivalent:
 - (i) $\mathbb{T} \subset \sigma(T)$.
- (ii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

 $|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$

and $\frac{1}{2} \le ||T^{j}x|| \le 2$, $0 \le j \le n-1$;

(iii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

- Let $T \in B(H)$ satisfy $r(T) \le 1$. The following statements are equivalent:
 - (i) $\mathbb{T} \subset \sigma(T)$.
 - (ii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$|\langle T^m \mathbf{x}, T^j \mathbf{x} \rangle| < \varepsilon, \qquad 1 \le m, j \le n-1, m \ne j,$$

and $\frac{1}{2} \le ||T^j x|| \le 2$, $0 \le j \le n-1$;

(iii) for all $\varepsilon > 0$ and all $n \in \mathbb{N}$ there exists a unit vector $x \in H$ such that

$$\begin{split} \mathbf{x} \perp \mathbf{T}\mathbf{x}, \mathbf{T}^2 \mathbf{x}, \dots, \mathbf{T}^{n-1} \mathbf{x}, \\ |\langle \mathbf{T}^m \mathbf{x}, \mathbf{T}^j \mathbf{x} \rangle| < \varepsilon, & 1 \le m, j \le n-1, m \ne j, \\ \mathbf{1} - \varepsilon < \|\mathbf{T}^j \mathbf{x}\| < \mathbf{1} + \varepsilon, & 1 \le j \le n-1, \end{split}$$

and $||T^nx - x|| < \varepsilon$.

Let $T \in B(H)$ and let $T^n \rightarrow 0$ in the weak operator topology.

Vladimir Müller Circles in the spectrum and numerical ranges

Let $T \in B(H)$ and let $T^n \to 0$ in the weak operator topology. Suppose that $(0, ..., 0) \in W_e(T, ..., T^n)$ for all $n \in \mathbb{N}$.

Vladimir Müller Circles in the spectrum and numerical ranges

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $T \in B(H)$ and let $T^n \to 0$ in the weak operator topology. Suppose that $(0, ..., 0) \in W_e(T, ..., T^n)$ for all $n \in \mathbb{N}$. Then for every $\varepsilon > 0$ there exists an infinite-dimensional subspace L of H

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $T \in B(H)$ and let $T^n \to 0$ in the weak operator topology. Suppose that $(0, ..., 0) \in W_e(T, ..., T^n)$ for all $n \in \mathbb{N}$. Then for every $\varepsilon > 0$ there exists an infinite-dimensional subspace L of H such that

 $\sup_{n\geq 1} \|P_L T^n P_L\| \leq \varepsilon \quad \text{and} \quad \lim_{n\to\infty} \|P_L T^n P_L\| = 0.$

イロト イポト イヨト イヨト 三日

Let $T \in B(H)$, and let $T^n \to 0$ in the weak operator topology. Suppose that $0 \in \operatorname{Int} \hat{\sigma}(T)$.

Vladimir Müller Circles in the spectrum and numerical ranges

Let $T \in B(H)$, and let $T^n \to 0$ in the weak operator topology. Suppose that $0 \in \operatorname{Int} \hat{\sigma}(T)$. Then for every $\varepsilon > 0$ there exists an infinite-dimensional subspace L of H

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ
Let $T \in B(H)$, and let $T^n \to 0$ in the weak operator topology. Suppose that $0 \in \text{Int } \hat{\sigma}(T)$. Then for every $\varepsilon > 0$ there exists an infinite-dimensional subspace L of Hsuch that

 $\sup_{n\geq 1} \|P_L T^n P_L\| \leq \varepsilon \quad \text{and} \quad \lim_{n\to\infty} \|P_L T^n P_L\| = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let T be a unitary operator on H such that $T^n \rightarrow 0$ in the weak operator topology.

Vladimir Müller Circles in the spectrum and numerical ranges

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Let T be a unitary operator on H such that $T^n \rightarrow 0$ in the weak operator topology. Then the following conditions are equivalent.

ヘロト ヘアト ヘビト ヘビト

Let *T* be a unitary operator on *H* such that $T^n \rightarrow 0$ in the weak operator topology. Then the following conditions are equivalent. (*i*) $\sigma(T) = \mathbb{T}$.

ヘロン 人間 とくほ とくほ とう

Let T be a unitary operator on H such that $T^n \to 0$ in the weak operator topology. Then the following conditions are equivalent. (i) $\sigma(T) = \mathbb{T}$. (ii) for every $\varepsilon > 0$ there exists $x \in H$, ||x|| = 1, with

 $\sup_{n\geq 1} |\langle T^n x, x\rangle| < \varepsilon.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let T be a unitary operator on H such that $T^n \to 0$ in the weak operator topology. Then the following conditions are equivalent. (i) $\sigma(T) = \mathbb{T}$. (ii) for every $\varepsilon > 0$ there exists $x \in H$, ||x|| = 1, with

$$\sup_{n\geq 1} |\langle T^n x, x\rangle| < \varepsilon.$$

(iii) for every $\varepsilon > 0$ there exists an infinite-dimensional subspace $L \subset H$ such that

$$\sup_{n\geq 1} \|P_L T^n P_L\| \leq \varepsilon \quad \text{and} \quad \lim_{n\to\infty} \|P_L T^n P_L\| = 0.$$

ヘロン 人間 とくほ とくほ とう

(Bourin 2003) Let $T \in B(H)$. Suppose that $W_e(T) \supset \mathbb{D}$. Then for every strict contraction C on a separable Hilbert space (i.e., $\|C\| < 1$)

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

(Bourin 2003) Let $T \in B(H)$. Suppose that $W_e(T) \supset \mathbb{D}$. Then for every strict contraction C on a separable Hilbert space (i.e., $\|C\| < 1$), there exists a subspace $L \subset H$ such that the compression T_L is unitarily equivalent to C.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let $T \in B(H)$, $\mathbb{D} \subset \hat{\sigma}(T)$, let $n \in \mathbb{N}$. Then for every strict contraction C'

Vladimir Müller Circles in the spectrum and numerical ranges

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Let $T \in B(H)$, $\mathbb{D} \subset \hat{\sigma}(T)$, let $n \in \mathbb{N}$. Then for every strict contraction C' there exists a subspace $L \subset H$ and $C \in B(L)$ unitarily equivalent to C' such that

$$(T^j)_L = C^j$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let $T \in B(H)$, $\mathbb{D} \subset \hat{\sigma}(T)$, let $n \in \mathbb{N}$. Then for every strict contraction C' there exists a subspace $L \subset H$ and $C \in B(L)$ unitarily equivalent to C' such that

$$(T^j)_L = C^j$$

for j = 1, ..., n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let $T \in B(H)$, $T^n \to 0$ (WOT), $\sigma(T) \supset \mathbb{T}$, let $\varepsilon > 0$.

Vladimir Müller Circles in the spectrum and numerical ranges

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Let $T \in B(H)$, $T^n \to 0$ (WOT), $\sigma(T) \supset \mathbb{T}$, let $\varepsilon > 0$. Then for every strict contraction C' there exists a subspace $L \subset H$ and $C \in B(L)$ unitarily equivalent to C'

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $T \in B(H)$, $T^n \to 0$ (WOT), $\sigma(T) \supset \mathbb{T}$, let $\varepsilon > 0$. Then for every strict contraction C' there exists a subspace $L \subset H$ and $C \in B(L)$ unitarily equivalent to C' such that

$$\sup_{j} \|(\mathit{\mathsf{T}}^{j})_{\mathit{L}} - \mathit{C}^{j}\| < \varepsilon$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $T \in B(H)$, $T^n \to 0$ (WOT), $\sigma(T) \supset \mathbb{T}$, let $\varepsilon > 0$. Then for every strict contraction C' there exists a subspace $L \subset H$ and $C \in B(L)$ unitarily equivalent to C' such that

$$\sup_{j} \|(\mathit{T}^{j})_{\mathit{L}} - \mathit{C}^{j}\| < \varepsilon$$

and

$$\lim_{j\to\infty}\|(T^j)_L-C^j\|=0$$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

THANK YOU FOR YOUR ATTENTION

Vladimir Müller Circles in the spectrum and numerical ranges

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで