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Theorem

(Arveson 1966) Let U ∈ B(H) be a unitary operator. The
following statements are equivalent:

(i) σ(U) = T;
(ii) for every n ∈ N there exists a unit vector x ∈ H such that
x , Ux , . . . , Unx are orthogonal.
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Theorem

(Hamdan 2013) Let µ be a Rajchman measure.

The following
statements are equivalent:
(i) suppµ = T;
(ii) for every ε > 0 there exists a function f ∈ L1(µ), ‖f‖1 = 1,
f ≥ 0 such that supn |̂f (n)| < ε

Theorem

Let U ∈ B(H) be a unitary operator such that T n → 0 (WOT ).
The following statements are equivalent:
(i) σ(U) = T;
(ii) for every ε > 0 there exists a unit vector x ∈ H such that
supn≥1 |〈Unx , x〉| < ε.
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Definition

Let T1, . . . , Tn ∈ B(H).

The joint numerical range is defined by

W (T1, . . . , Tn) =
{
(〈T1x , x〉, . . . , 〈Tnx , x〉) : x ∈ H, ‖x‖ = 1

}
We write shortly T = (T1, . . . , Tn) ∈ B(H)n. For x , y ∈ H write

〈T x , y〉 = (〈T1x , y〉, . . . , 〈Tnx , y〉) ∈ Cn

Definition

Let T = (T1, . . . , Tn) ∈ B(H)n. The essential numerical range is
defined by

We(T ) =
{
λ ∈ Cn : there exists an orthonomal sequence

(xk ) ⊂ H such that λ = lim
k→∞

〈T xk , xk 〉
}
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If n = 1 then: W (T ) is convex

conv σ(T ) ⊂ W (T )
Int W (T ) ⊂ W (T )
Int conv σ(T ) ⊂ W (T )

If n ≥ 2 then in general W (T1, . . . , Tn) is not convex
We(T1, . . . , Tn) is convex (Li, Poon 2009)
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Theorem

(Wrobel 1988) T = (T1, . . . , Tn) ∈ B(H)n commuting operators
then

conv σ(T1, . . . , Tn) ⊂ W (T1, . . . , Tn)
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Theorem

Let T = (T1, . . . , Tn) ∈ B(H)n.

Then

Int (We(T )) ⊂ W (T ).

Moreover, if µ ∈ Int (We(T )) then for every subspace M ⊂ H of
a finite codimension there exists x ∈ M such that ‖x‖ = 1 and(

〈T1x , x〉, . . . , 〈Tnx , x〉
)

= µ.

Corollary

Let T = (T1, . . . , Tn) ∈ B(H)n. Let µ ∈ Int (We(T )). Then there
exists an infinite-dimensional subspace L ⊂ H such that

PLTjPL = µjPL (j = 1, . . . , n).

Equivalently, Int (We(T )) ⊂ W∞(T ).
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Definition

Let T ∈ B(H)n. Then W∞(T ) is the set of all λ ∈ Cn for which
there exists an infinite-dimensional subspace L ⊂ H such that

PLT PL = λPL

W∞(T ) is always convex
it may be empty
if W∞(T ) = ∅ then the n-tuple T is "degenerated"

Theorem

Let T ∈ B(H)n. Then

(i) We(T ) =
⋃
K∈K(H)n W∞(T +K)

(ii) there exists an n-tuple K of compact operators such that

We(T ) = W∞(T +K)
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Theorem

Let T ∈ B(H)n. Then

Int conv
(
We(T ) ∪ σp(T )

)
⊂ W (T )

Corollary

Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting tuple. Then

Int conv σ(T ) ⊂ W (T )
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Theorem

Let T ∈ B(H) and let λ ∈ Int σ̂(T ).

Then

(λ, λ2, . . . , λn) ∈ Int (We(T , T 2, . . . , T n)).

for all n ∈ N.
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Corollary

Let T ∈ B(H), 0 ∈ Int σ̂(T ).

Then for every n ∈ N there exists a
unit vector x ∈ H such that

x ⊥ Tx , . . . , T nx

Corollary

Let T ∈ B(H), 0 ∈ Int σ̂(T ). Then for every n ∈ N there exists
an infinite-dimensional subspace L ⊂ H such that PLT jPL = 0
for j = 1, . . . , n.
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Theorem

Let T ∈ B(H). The following statements are equivalent.

(i) T ⊂ σπe(T );
(ii) for all ε > 0 and n ∈ N there exists x ∈ H such that

|〈T mx , T jx〉| < ε, 1 ≤ m, j ≤ n − 1, m 6= j ,

and 1
2 ≤ ‖T jx‖ ≤ 2, 0 ≤ j ≤ n − 1;

(iii) for all ε > 0 and all n ∈ N there exists a unit vector x ∈ H
such that

x ⊥ Tx , T 2x , . . . , T n−1x ,

|〈T mx , T jx〉| < ε, 1 ≤ m, j ≤ n − 1, m 6= j ,

1− ε < ‖T jx‖ < 1 + ε, 0 ≤ j ≤ n − 1,

and ‖T nx − x‖ < ε.
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Theorem

Let T ∈ B(H) and let T n → 0 in the weak operator topology.

Suppose that (0, . . . , 0) ∈ We(T , . . . , T n) for all n ∈ N. Then for
every ε > 0 there exists an infinite-dimensional subspace L of
H such that

sup
n≥1

‖PLT nPL‖ ≤ ε and lim
n→∞

‖PLT nPL‖ = 0.
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Corollary

Let T ∈ B(H), and let T n → 0 in the weak operator topology.
Suppose that 0 ∈ Int σ̂(T ).

Then for every ε > 0 there exists an
infinite-dimensional subspace L of Hsuch that

sup
n≥1

‖PLT nPL‖ ≤ ε and lim
n→∞

‖PLT nPL‖ = 0.
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Corollary

Let T be a unitary operator on H such that T n → 0 in the weak
operator topology.

Then the following conditions are equivalent.
(i) σ(T ) = T.
(ii) for every ε > 0 there exists x ∈ H, ‖x‖ = 1, with

sup
n≥1

|〈T nx , x〉| < ε.

(iii) for every ε > 0 there exists an infinite-dimensional
subspace L ⊂ H such that

sup
n≥1

‖PLT nPL‖ ≤ ε and lim
n→∞

‖PLT nPL‖ = 0.
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Theorem

(Bourin 2003) Let T ∈ B(H). Suppose that We(T ) ⊃ D. Then
for every strict contraction C on a separable Hilbert space (i.e.,
‖C‖ < 1)

, there exists a subspace L ⊂ H such that the
compression TL is unitarily equivalent to C.
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Theorem

Let T ∈ B(H), D ⊂ σ̂(T ), let n ∈ N. Then for every strict
contraction C′

there exists a subspace L ⊂ H and C ∈ B(L)
unitarily equivalent to C′ such that

(T j)L = C j

for j = 1, . . . , n.
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Theorem

Let T ∈ B(H), T n → 0 (WOT ), σ(T ) ⊃ T, let ε > 0.

Then for
every strict contraction C′ there exists a subspace L ⊂ H and
C ∈ B(L) unitarily equivalent to C′ such that

sup
j
‖(T j)L − C j‖ < ε

and
lim

j→∞
‖(T j)L − C j‖ = 0
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