Length realizability problem for pairs of quasi-commuting matrices

Alexander Guterman (Moscow State University)
Olga Markova (Moscow State University)
Volker Mehrmann (Technische Universität Berlin)

The 8th Linear Algebra Workshop (LAW’17)
14 June 2017
Main definitions

Let $\mathbb{F}$ be an arbitrary field and $n > 1$ be a fixed integer. Let $S = \{A_1, \ldots, A_s\}$ be a set of $n \times n$ matrices over $\mathbb{F}$. Let us denote

- $S^0 = \{I_n\}$;
- $S^m = \{A_{i_1} \cdots A_{i_t} | 0 \leq t \leq m\}$, i.e. the set of products of length not greater than $m$ in $A_i$;
- $\mathcal{L}_m(S) = \langle S^m \rangle$;
- $\mathcal{L}(S)$ — the linear span of all products in elements from $S$.

$L_0(S) \subseteq L_1(S) \subseteq \ldots \subseteq L_p(S) = L_{p+1}(S) = \cdots = \mathcal{L}(S)$. 
Main definitions

Let $\mathbb{F}$ be an arbitrary field and $n > 1$ be a fixed integer. Let $S = \{A_1, \ldots, A_s\}$ be a set of $n \times n$ matrices over $\mathbb{F}$. Let us denote

- $S^0 = \{I_n\}$;
- $S^m = \{A_{i_1} \cdots A_{i_t} | 0 \leq t \leq m\}$, i.e. the set of products of length not greater than $m$ in $A_i$;
- $\mathcal{L}_m(S) = \langle S^m \rangle$;
- $\mathcal{L}(S)$ — the linear span of all products in elements from $S$.

$L_0(S) \subseteq L_1(S) \subseteq \ldots \subseteq L_p(S) = L_{p+1}(S) = \cdots = \mathcal{L}(S)$.

Definition

A number $l(S)$ is called the length of the set $S$ provided

$$l(S) = \min \{h \in \mathbb{Z}_+ : \mathcal{L}_h(S) = \mathcal{L}(S)\}.$$
Main definitions

Let $\mathbb{F}$ be an arbitrary field and $n > 1$ be a fixed integer. Let $S = \{A_1, \ldots, A_s\}$ be a set of $n \times n$ matrices over $\mathbb{F}$. Let us denote

- $S^0 = \{I_n\};$
- $S^m = \{A_{i_1} \cdots A_{i_t} | 0 \leq t \leq m\}$, i.e. the set of products of length not greater than $m$ in $A_i$;
- $\mathcal{L}_m(S) = \langle S^m \rangle$;
- $\mathcal{L}(S)$ — the linear span of all products in elements from $S$.

$L_0(S) \subseteq L_1(S) \subseteq \ldots \subseteq L_p(S) = L_{p+1}(S) = \cdots = L(S)$.

Definition

A number $l(S)$ is called the length of the set $S$ provided

$$l(S) = \min\{h \in \mathbb{Z}_+ : \mathcal{L}_h(S) = \mathcal{L}(S)\}.$$
Length is important in case we need to check whether all products in the given matrices share some property or satisfy given equations.

The general problem of evaluating
\[ l(M_n(\mathbb{F})) = \max\{l(S) : \mathcal{L}(S) = M_n(\mathbb{F})\} \]
as a function of \( n \) was posed in [Paz 1984] and has not been solved yet.
Length of the full matrix algebra

Length is important in case we need to check whether all products in the given matrices share some property or satisfy given equations.

The general problem of evaluating \( l(M_n(\mathbb{F})) = \max\{l(S) : \mathcal{L}(S) = M_n(\mathbb{F})\} \) as a function of \( n \) was posed in [Paz 1984] and has not been solved yet.

Since \( \dim \mathcal{L}_i(S) < \dim \mathcal{L}_{i+1}(S) \) unless \( \mathcal{L}_i(S) = \mathcal{L}(S) \), then the trivial upper bound for the length is \( l(S) \leq n^2 - 1 \).
Length is important in case we need to check whether all products in the given matrices share some property or satisfy given equations.

The general problem of evaluating
\[ l(M_n(\mathbb{F})) = \max\{l(S) : \mathcal{L}(S) = M_n(\mathbb{F})\} \]
as a function of \( n \) was posed in [Paz 1984] and has not been solved yet.

Since \( \dim \mathcal{L}_i(S) < \dim \mathcal{L}_{i+1}(S) \) unless \( \mathcal{L}_i(S) = \mathcal{L}(S) \), then the trivial upper bound for the length is \( l(S) \leq n^2 - 1 \).

**Conjecture ([Paz 1984])**

\[ l(S) \leq 2n - 2. \]

It is true for \( n \leq 4 \).
Length is important in case we need to check whether all products in the given matrices share some property or satisfy given equations.

The general problem of evaluating $l(M_n(F)) = \max\{l(S) : \mathcal{L}(S) = M_n(F)\}$ as a function of $n$ was posed in [Paz 1984] and has not been solved yet.

Since $\dim \mathcal{L}_i(S) < \dim \mathcal{L}_{i+1}(S)$ unless $\mathcal{L}_i(S) = \mathcal{L}(S)$, then the trivial upper bound for the length is $l(S) \leq n^2 - 1$.

**Conjecture ([Paz 1984])**

$l(S) \leq 2n - 2$.

It is true for $n \leq 4$. 
Commutative and quasi-commutative sets

For commutative matrix sets we have


If $S$ is a commutative set, then $l(S) \leq n - 1$.

Quasi-commutativity (as a generalization of commutativity):

**Definition**

If $A, B$ in $M_n(\mathbb{F})$ is such a pair that $AB$ and $BA$ is a linearly dependent set we say that $A$ and $B$ quasi-commute.

If the given factor $\omega \in \mathbb{F}$ in quasi-commutativity relation $AB = \omega BA$ is important for us, we say that $A, B$ commute up to a factor $\omega$ (or $\omega$-commute).
For commutative matrix sets we have

**Theorem ([Paz, 1984] for \( \mathbb{C} \), [Guterman, Markova, 2009] for all fields)**

If \( S \) is a commutative set, then \( l(S) \leq n - 1 \).

Quasi-commutativity (as a generalization of commutativity):

**Definition**

If \( A, B \) in \( M_n(\mathbb{F}) \) is such a pair that \( AB \) and \( BA \) is a linearly dependent set we say that \( A \) and \( B \) *quasi-commute*.

If the given factor \( \omega \in \mathbb{F} \) in quasi-commutativity relation \( AB = \omega BA \) is important for us, we say that \( A, B \) *commute up to a factor \( \omega \)* (or *\( \omega \)-commute*).
From now on let $S_q = \{A_1, \ldots, A_s\}$ be a set of $n \times n$ matrices such that any pair of its elements quasi-commute.

**Theorem [Constantine, Darnall 2005]**

\[
l(S_q) \leq 2n - 2 \quad \text{if} \quad \mathcal{L}(S_q) = M_n(\mathbb{F});
\]
\[
l(S_q) \leq 2n - 3 \quad \text{if} \quad \mathcal{L}(S_q) \subseteq M_n(\mathbb{F}).
\]
Further on we consider the case of pairs $S_q = \{A, B\}$ with $AB = \omega BA$ and answer the question what are the possible values of $l(S_q)$ depending on the quasi-commutativity factor $\omega$?

First we present results from

Our aim

Further on we consider the case of pairs $S_q = \{A, B\}$ with $AB = \omega BA$ and answer the question what are the possible values of $l(S_q)$ depending on the quasi-commutativity factor $\omega$? First we present results from

Nilpotent product case

Theorem

Let $S_q = \{A, B\}$, where $A, B \in M_n(\mathbb{F})$ satisfy one of the following conditions:

I) $AB = BA$,

II) $(AB)^n = (BA)^n = 0$ and $AB = \alpha BA$ for some $\alpha \in \mathbb{F} \setminus \{0\}$,

III) $AB = 0$ or $BA = 0$.

Then $l(S_q) \leq n - 1$.

Moreover, for any $k = 1, \ldots, n - 1$ each of these three classes contains a pair of matrices with length $k$.

Example

Fix $a \in \mathbb{F}$. Let $J_n = J_n(0)$, $D_n = \text{diag}\{1, a, \ldots, a^{n-1}\}$. Then $J_n D_n = a D_n J_n$ and $l(\{J_n, D_n\}) = n - 1$, since $J_n^{n-1} = E_{1,n}$, while $(J_n^r D_n^t)_{1,n} = 0$ for $r \leq n - 2$, thus $J_n^{n-1} \notin \mathcal{L}_{n-2}(\{J_n, D_n\})$. 
Theorem

Let $S_q = \{A, B\}$, where $A, B \in M_n(\mathbb{F})$ satisfy one of the following conditions:

I) $AB = BA$,

II) $(AB)^n = (BA)^n = 0$ and $AB = \alpha BA$ for some $\alpha \in \mathbb{F} \setminus \{0\}$,

III) $AB = 0$ or $BA = 0$.

Then $l(S_q) \leq n - 1$.

Moreover, for any $k = 1, \ldots, n - 1$ each of these three classes contains a pair of matrices with length $k$.

Example

Fix $a \in \mathbb{F}$. Let $J_n = J_n(0)$, $D_n = \text{diag}\{1, a, \ldots, a^{n-1}\}$. Then $J_n D_n = a D_n J_n$ and $l(\{J_n, D_n\}) = n - 1$, since $J_n^{n-1} = E_{1,n}$, while $(J_n^r D_n^t)_{1,n} = 0$ for $r \leq n - 2$, thus $J_n^{n-1} \notin \mathcal{L}_{n-2}(\{J_n, D_n\})$. 
Non-nilpotent product case: preliminaries

Observation

If $AB = \omega BA$, $(AB)^n \neq 0$, then equating characteristic polynomials of $AB$ and $BA$, we get $\omega^{n-j} = 1$ whenever the coefficient $c_j$ of $\chi_{AB}(t)$ is non-zero. Therefore, $\omega$ is a root of unity of degree $\leq n$.

Therefore we consider $\varepsilon$-commuting pairs over fields containing required root of unity $\varepsilon$.

By a primitive root of unity $\varepsilon_k \in \mathbb{F}$ of order $k$ we mean a $k$-th root of unity such that $\varepsilon_k^m \neq 1$ whenever $1 \leq m < k$. 

A.E. Guterman, O.V. Markova, V. Mehrmann
Non-nilpotent product case: preliminaries

Observation

If $AB = \omega BA$, $(AB)^n \neq 0$, then equating characteristic polynomials of $AB$ and $BA$, we get $\omega^{n-j} = 1$ whenever the coefficient $c_j$ of $\chi_{AB}(t)$ is non-zero. Therefore, $\omega$ is a root of unity of degree $\leq n$.

Therefore we consider $\varepsilon$-commuting pairs over fields containing the required root of unity $\varepsilon$.

By a primitive root of unity $\varepsilon_k \in \mathbb{F}$ of order $k$ we mean a $k$-th root of unity such that $\varepsilon_k^m \neq 1$ whenever $1 \leq m < k$. 
Theorem [Drazin 1951]

Let $\mathbb{F} = \overline{\mathbb{F}}$ and let $n \in \mathbb{N}$, $n \geq 2$. If matrices $A, B \in M_n(\mathbb{F})$ satisfy $AB = \varepsilon BA$ for some $\varepsilon \in \mathbb{F}$, $\varepsilon \neq 1$ and the matrix $AB$ is not nilpotent, then there exists an integer $0 \leq r \leq n - 2$ and an invertible matrix $P \in M_n(\mathbb{F})$ such that

$$P^{-1}AP = \begin{bmatrix} S & X \\ O & A_r \end{bmatrix}, \quad P^{-1}BP = \begin{bmatrix} T & Y \\ O & B_r \end{bmatrix},$$

(1)

where $\varepsilon$ is necessarily a primitive root of unity of order $k > 1$ dividing $n - r$, $S$ and $T$ are triangular $r \times r$ matrices, $ST$ and $TS$ are both nilpotent.
Drazin’s form for $\varepsilon$-commuting pair

Theorem [Drazin 1951]

\[ A_r = \begin{bmatrix} C & O & \ldots & O \\ O & \varepsilon C & \ldots & O \\ & \ddots & \ddots & \ddots \\ O & O & \ldots & \varepsilon^{k-1} C \end{bmatrix}, \quad B_r = \begin{bmatrix} O & O & \ldots & O & D_1 \\ D_2 & O & \ldots & O & 0 \\ & \ddots & \ddots & \ddots & \ddots \\ O & O & \ldots & D_k & 0 \end{bmatrix}, \]

where $C \in M_{(n-r)/k}(\mathbb{F})$ is a nonsingular matrix, such that $\sigma(C) \cap \varepsilon^j \sigma(C) = \emptyset$ for all $j = 1, \ldots, k-1$, and $D_1, \ldots, D_k \in M_{(n-r)/k}(\mathbb{F})$ are arbitrary nonsingular matrices satisfying the relations $D_i C = C D_i, \; i = 1, 2, \ldots, k$. 

A.E. Guterman, O.V. Markova, V. Mehrmann
For non-nilpotent product pairs our aim can be rephrased as:

**Question**

Replace “?” in the following table with “+” for realizable value, “−” for non-realizable for each possible order of the root of unity $\varepsilon$:

<table>
<thead>
<tr>
<th>$\frac{l(S)}{\text{ord}(\varepsilon)}$</th>
<th>0</th>
<th>1</th>
<th>...</th>
<th>$2n - 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>?</td>
<td>?</td>
<td>...</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n$</td>
<td>?</td>
<td>?</td>
<td>...</td>
<td>?</td>
</tr>
</tbody>
</table>
Even numbers

Any even number in \([2, 2n - 2]\) can be realized as the length of \(\varepsilon\)-commuting pair with its own appropriate root of unity.

Example

\[
C_k = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{bmatrix}, \quad D_k = \begin{bmatrix}
1 & 0 & \ldots & 0 \\
0 & \varepsilon_k & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \varepsilon_{k-1}
\end{bmatrix} \in M_k(\mathbb{F}),
\]

\[
A_{k,n} = C_k \oplus O_{n-k}, \quad B_{k,n} = D_k \oplus O_{n-k} \in M_n(\mathbb{F}),
\]

\(S_k = \{A_{k,n}, B_{k,n}\}\). Then \(A_{k,n}B_{k,n} = \varepsilon_k B_{k,n}A_{k,n}\) and \(l(S_k) = 2k - 2\).
Any even number in $[2, 2n - 2]$ can be realized as the length of $\varepsilon$-commuting pair with its own appropriate root of unity.

**Example**

$$C_k = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ 1 & 0 & 0 & \ldots & 0 \end{bmatrix}, \quad D_k = \begin{bmatrix} 1 & 0 & \ldots & 0 \\ 0 & \varepsilon_k & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \varepsilon_k^{k-1} \end{bmatrix} \in M_k(\mathbb{F}),$$

$$A_{k,n} = C_k \oplus O_{n-k}, \quad B_{k,n} = D_k \oplus O_{n-k} \in M_n(\mathbb{F}),$$

$$S_k = \{A_{k,n}, B_{k,n}\}.$$ Then $A_{k,n}B_{k,n} = \varepsilon_k B_{k,n}A_{k,n}$ and $l(S_k) = 2k - 2.$
Are there realizable odd numbers?

1. The numbers 1 and $2n - 3$ are not realizable (for any root of unity).
2. The number $2n - 5$ is realizable for $n = 4$ with $\omega = -1$ and for $n = 6$ with $\omega = \varepsilon_3$ and is not realizable for $n = 5$ or $n > 6$. 
Are there realizable odd numbers?

1. The numbers 1 and $2n - 3$ are not realizable (for any root of unity).
2. The number $2n - 5$ is realizable for $n = 4$ with $\omega = -1$ and for $n = 6$ with $\omega = \varepsilon_3$ and is not realizable for $n = 5$ or $n > 6$. 
Approaches

**Observation**

Since a set of vectors over $\mathbb{F}$ is linearly dependent if and only if it is linearly dependent over any extension of $\mathbb{F}$, then the length of a set over the algebraic closure of a field is equal to that of the original field. Therefore with no lack of generality in the proofs we may use all results valid in algebraically closed fields.

**Definition**

A matrix $A \in M_n(\mathbb{F})$ is called non-derogatory if $\dim \langle I, A, \ldots, A^{n-1} \rangle = n$, otherwise it is called derogatory.
Observation

Since a set of vectors over $\mathbb{F}$ is linearly dependent if and only if it is linearly dependent over any extension of $\mathbb{F}$, then the length of a set over the algebraic closure of a field is equal to that of the original field. Therefore with no lack of generality in the proofs we may use all results valid in algebraically closed fields.

Definition

A matrix $A \in M_n(\mathbb{F})$ is called non-derogatory if $\dim \langle I, A, \ldots, A^{n-1} \rangle = n$, otherwise it is called derogatory.
**Approaches**

1. For $r \neq 0$, $l(\{A, B\}) \leq r + l(\{A_r, B_r\})$.

2. Why non-derogatory matrix $A_r$ (non-derogatory matrix $C$) is special here: in this case the centralizer of $C$ is $F[C]$, hence each block of $B_r$ is a polynomial in $C$. Unfortunately, doesn’t work in derogatory case.
**Approaches**

1. For $r \neq 0$, $l(\{A, B\}) \leq r + l(\{A_r, B_r\})$.

2. Why non-derogatory matrix $A_r$ (non-derogatory matrix $C$) is special here: in this case the centralizer of $C$ is $\mathbb{F}[C]$, hence each block of $B_r$ is a polynomial in $C$. Unfortunately, doesn’t work in derogatory case.

3. Use of the block structure: the location of (non-)zero blocks of $B_r^i$ and $B_r^j$ is the same iff $i \equiv j \pmod{k}$. 
Approaches

1. For $r \neq 0$, $l(\{A, B\}) \leq r + l(\{A_r, B_r\})$.

2. Why non-derogatory matrix $A_r$ (non-derogatory matrix $C$) is special here: in this case the centralizer of $C$ is $\mathbb{F}[C]$, hence each block of $B_r$ is a polynomial in $C$. Unfortunately, doesn’t work in derogatory case.

3. Use of the block structure: the location of (non-)zero blocks of $B^i_r$ and $B^j_r$ is the same iff $i \equiv j \pmod{k}$.
Bounds for the length

Using these methods we obtained

**Theorem**

Let $k, n \in \mathbb{N}$, $r \in \mathbb{Z}_+$, $n \geq 4$, $r < n$, $1 < k < n$, $k | (n - r)$.
Consider $A, B \in M_n(\mathbb{F})$ satisfying $AB = \varepsilon_k BA$ and $AB$ has an eigenvalue 0 of multiplicity $r$. Then

1. $2k - 2 \leq l(\{A, B\})$;
2. if $A_r$ and/or $B_r$ is non-derogatory, then $l(\{A, B\}) \leq n + k - 2$;
3. for each $k | n$ the value $n + k - 2$ is realizable.

For derogatory case the bound was $l(\{A, B\}) \leq 2(n - k) - r - 2$. 
Realizable values

**Theorem**

For all natural numbers $k, r, r \geq k \geq 2$ and any $n \geq r + k$ there exist matrices $A_n, B_n \in M_n(\mathbb{F})$ such that $A_nB_n = \varepsilon_k B_n A_n$, $(A_nB_n)^n \neq 0$, and $l(\{A_n, B_n\}) = r + k - 1$.

Consequently, for each $l \in \{2k - 2, \ldots, n - 1\}$ there exist matrices $A_l, B_l \in M_n(\mathbb{F})$ such that $(A_lB_l)^n \neq 0$, $A_lB_l = \varepsilon_k B_l A_l$ and $l(\{A_l, B_l\}) = l$.

**Example (Construction for previous Theorem)**

$$A_n = \text{O}_{n-r-k} \oplus J_r(0) \oplus D_k,$$
$$B_n = \text{I}_{n-r-k} \oplus D_r \oplus C_k,$$
where

$$D_t = \text{diag}\{1, \varepsilon_k, \varepsilon_k^2, \ldots, \varepsilon_k^{t-1}\} \in M_t(\mathbb{F})$$
and

$$C_k = E_{1,k} + E_{2,1} + \ldots E_{k,k-1} \in M_k(\mathbb{F}).$$
Main definitions
Lengths of matrix sets
Lengths of quasi-commutative sets

Realizable values

Theorem

For all natural numbers \( k, r, r \geq k \geq 2 \) and any \( n \geq r + k \) there exist matrices \( A_n, B_n \in M_n(\mathbb{F}) \) such that \( A_nB_n = \varepsilon_k B_n A_n \), \( (A_nB_n)^n \neq 0 \), and \( l(\{A_n, B_n\}) = r + k - 1 \).

Consequently, for each \( l \in \{2k - 2, \ldots, n - 1\} \) there exist matrices \( A_l, B_l \in M_n(\mathbb{F}) \) such that \( (A_lB_l)^n \neq 0 \), \( A_lB_l = \varepsilon_k B_l A_l \) and \( l(\{A_l, B_l\}) = l \).

Example (Construction for previous Theorem)

\[
A_n = O_{n-r-k} \oplus J_r(0) \oplus D_k, \\
B_n = I_{n-r-k} \oplus D_r \oplus C_k, \text{ where} \\
D_t = \text{diag}\{1, \varepsilon_k, \varepsilon_k^2, \ldots, \varepsilon_k^{t-1}\} \in M_t(\mathbb{F}) \text{ and} \\
C_k = E_{1,k} + E_{2,1} + \ldots + E_{k,k-1} \in M_k(\mathbb{F}).
\]
New tighter bounds for the length

Using the fact that the spanning set for $\mathcal{L}({A_r, B_r})$ can be chosen by taking a basis of the commutative algebra $\mathcal{L}({A_r, B_r^k})$ and multiplying it by all $B_i^i, i = 0, \ldots, k - 1$ and a more detailed application of results in commutative case we recently obtained a better bound for derogatory case and also improved the non-derogatory result:

**Theorem (2017)**

Let $k, n \in \mathbb{N}, r \in \mathbb{Z}_+, n \geq 4, r < n, 1 < k < n, k|(n − r)$. Consider $A, B \in M_n(\mathbb{F})$ satisfying $AB = \varepsilon_k BA$ and $AB$ has an eigenvalue 0 of multiplicity $r$. If $A_r$ and $B_r$ (defined in (1)) are both derogatory, then $l({A, B}) \leq n − 2$. 

A.E. Guterman, O.V. Markova, V. Mehrmann
New tighter bounds for the length

Using the fact that the spanning set for $\mathcal{L}(\{A_r, B_r\})$ can be chosen by taking a basis of the commutative algebra $\mathcal{L}(\{A_r, B_r^k\})$ and multiplying it by all $B_i$, $i = 0, \ldots, k - 1$ and a more detailed application of results in commutative case we recently obtained a better bound for derogatory case and also improved the non-derogatory result:

**Theorem (2017)**

Let $k, n \in \mathbb{N}$, $r \in \mathbb{Z}_+$, $n \geq 4$, $r < n$, $1 < k < n$, $k | (n - r)$. Consider $A, B \in M_n(\mathbb{F})$ satisfying $AB = \varepsilon_k BA$ and $AB$ has an eigenvalue 0 of multiplicity $r$. If $A_r$ and $B_r$ (defined in (1)) are both derogatory, then $l(\{A, B\}) \leq n - 2$. 

A.E. Guterman, O.V. Markova, V. Mehrmann
Theorem (2017)

Let $k, n \in \mathbb{N}$, $r \in \mathbb{Z}_+$, $n \geq 4$, $r < n$, $1 < k < n$, $k|(n - r)$.
Consider $A, B \in M_n(\mathbb{F})$ satisfying $AB = \varepsilon_k BA$ and $AB$ has an eigenvalue 0 of multiplicity $r$.
If $A_r$ and/or $B_r$ is non-derogatory, then
1. $l(\{A, B\}) \leq n - r + k - 2$ for $0 \leq r \leq k - 1$ and
   $l(\{A, B\}) \leq n - 1$ for $r \geq k$;
2. if $l(\{A, B\}) < n - r + k - 2$, then $l(\{A, B\}) \leq n - 2$. 

A.E. Guterman, O.V. Markova, V. Mehrmann
Realizability table in general form \((n = 12)\)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
</tr>
</tbody>
</table>
THANK YOU!
Main definitions
Lengths of matrix sets
Lengths of quasi-commutative sets

References


