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Tensors (hypermatrices)

Consider tensor products of finite-dimensional Euclidean spaces

A scalar (lower case letter), x ∈ R, is a tensor of order zero;

A vector (boldface lower letter), x = (xi) ∈ Rn, is a tensor of order one;

A matrix (capital letter), X = (xij) ∈ Rn1×n2 , is a tensor of order two;

A tensor of order d, X = (xi1i2...id) ∈ Rn1×n2×···×nd .

Some facts

Tensors can be one-to-one represented by multilinear forms. For instance,

A ∈ Rn1×n2×n3 defines a trilinear form F : Rn1 × Rn2 × Rn3 → R

F (x,y,z) =

n1∑
i=1

n2∑
j=1

nd∑
k=1

aijkxiyjzk.

Many matrix problems are easy, while corresponding tensor problems can

be very difficult (Hillar, Lim 2013).
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Multiway (tensor) data problems

Multiway empirical data analysis in psychometrics and chemometrics

High order statistics and independent component analysis

Algebraic properties of tensors

· · · · · ·
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Some tensor basics

Rn1×n2×···×nd is a tensor space of dimensions n1 × n2 × · · · × nd and

order d. Real numbers, vector spaces, and matrix spaces are tensor spaces

of d = 0, d = 1, and d = 2, respectively.

For A,B ∈ Rn1×n2×···×nd , the Frobenius inner product

〈A,B〉 :=
n1∑
i1=1

n2∑
i1=2

· · ·
nd∑
id=1

ai1i2...idbi1i2...id .

The induced Frobenius norm (Hilbert-Schmidt norm)

‖A‖2 :=
√
〈A,A〉,

If d = 1 the Frobenius norm reduces to the Euclidean norm of a vector.

A rank-one tensor T , also called a simple tensor, can be written as outer

products of vectors

T = x1 ⊗ x2 ⊗ · · · ⊗ xd.
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Tensor norms and their complexity

Hölder p-norm (1 ≤ p ≤ ∞)

‖A‖p =

 n1∑
i1=1

n2∑
i1=2

· · ·
nd∑
id=1

|ai1i2...id |
p

1/p

Spectral norm: NP-hard to compute (He, L., Zhang 2010)

‖A‖σ := max
{〈
A,x1 ⊗ x2 ⊗ · · · ⊗ xd

〉
: ‖xk‖2 = 1, 1 ≤ k ≤ d

}
Nuclear norm: NP-hard to compute (Friedland, Lim 2016)

‖A‖∗ := min

{
r∑
i=1

|λi| : A =

r∑
i=1

λix
1
i ⊗ x2

i ⊗ · · · ⊗ xdi , ‖xki ‖2 = 1, r ∈ N

}

The nuclear norm is the dual norm of the spectral norm:

‖T ‖σ = max
‖X‖∗≤1

〈T ,X〉 ‖T ‖∗ = max
‖X‖σ≤1

〈T ,X〉
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A common approach to approximate

Matricization: also matricisation, matricizing, unfolding, or flattening, is the

operation that turns a tensor (a multi-way array) into a matrix (a two-way

array). It can be regarded as a generalization of the concept of vectorization.

Most matrix norms are easy to compute

The matrix spectral norm is the largest singular value of a matrix

The matrix nuclear norm is the sum of all singular values of a matrix

The spectral norm of a matricized tensor is an upper bound of the

spectral norm of the tensor (He, L., Zhang 2010)

‖Mat (T )‖σ ≥ ‖T ‖σ

The nuclear norm of a matricized tensor is a lower bound of the nuclear

norm of the tensor (Hu 2015)

‖Mat (T )‖∗ ≤ ‖T ‖∗
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A new perspective from tensor partitions

Definition (Tensor partition)

A partition {T1, T2, . . . , Tm} is called a tensor partition of a tensor T , if

every Tj (j = 1, 2, . . . ,m) is a subtensor of T ,

every pair of subtensors (Ti, Tj) with i 6= j has no common entry of T ,

and

every entry of T belongs to one of the subtensors in {T1, T2, . . . , Tm}.
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Modal partition

Given a tensor T ∈ Rn1×n2×···×nd , the indices of its mode k can be partitioned

into rk nonempty sets, i.e.,

{1, 2, . . . , nk} = Ik1 ∪ Ik2 ∪ · · · ∪ Ikrk k = 1, 2, . . . , d.

Definition (Modal partition)

The tensor partition {Tj1j2...jd : 1 ≤ jk ≤ rk, k = 1, 2, . . . , d} is called a modal

partition of a tensor T = (ti1i2...id) ∈ Rn1×n2×···×nd , where

Tj1j2...jd :=

(
(ti1i2...id)ik∈Ikjk , i=1,2,...,d

)
.
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Regular partition

Given a tensor T ∈ Rn1×n2×···×nd , a mode-k tensor cut, cuts the tensor T at

mode k into two subtensors T1 and T2, denoted by

T = T1 ∨k T2,

where T1 ∈ Rn1×···×nk−1×`1×nk+1···×nd and T2 ∈ Rn1×···×nk−1×`2×nk+1···×nd

with `1 + `2 = nk.

Definition (Regular partition)

{T } is called the 1-regular partition of a tensor T . For m ∈ N with m ≥ 2, a

partition {T1, T2, . . . , Tm} is called an m-regular partition of a tensor T , if

there exist two tensors A1,A2 and an ` with 1 ≤ ` ≤ m− 1, such that

T = A1 ∨k A2 for some 1 ≤ k ≤ d,

{T1, T2, . . . , T`} is an `-regular partition of A1, and

{T`+1, T`+2, . . . , Tm} is an (m− `)-regular partition of A2.
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Three types of tensor partitions

A modal partition is a special type of regular partition, and a regular

partition is a special type of tensor partition.

For any first order tensor (vector), the three partitions are the same. This

is not true for a second or higher order tensor.

A subtensor Tj in a partition of a tensor T = {T1, T2, . . . , Tm} may not

have the same order of the original tensor T .

T31

T21

T11

T32

T22

T12

A modal partition

T1

T2

T3

T4 T5

A regular partition

T1

T2

T3

T4

T5

An irregular partition
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Bounds of tensor norms by tensor partitions

Theorem

If {T1, T2, . . . , Tm} is a regular partition of a tensor T , then

‖(‖T1‖σ, ‖T2‖σ, . . . , ‖Tm‖σ)‖∞ ≤ ‖T ‖σ ≤ ‖(‖T1‖σ, ‖T2‖σ, . . . , ‖Tm‖σ)‖2 ,

‖(‖T1‖∗, ‖T2‖∗, . . . , ‖Tm‖∗)‖2 ≤ ‖T ‖∗ ≤ ‖(‖T1‖∗, ‖T2‖∗, . . . , ‖Tm‖∗)‖1 ,

where ‖ · ‖p is the Lp norm of a vector for 1 ≤ p ≤ ∞.

T31

T21

T11

T32

T22

T12

A modal partition

T1

T2

T3

T4 T5

A regular partition

T1
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T3
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Behind the main result

Some key observations:

For any regular partition, the tensor T can be cut sequentially by applying

a mode-k tensor cut m− 1 times

The Lp norm of a vector has certain additive property for 1 ≤ p ≤ ∞,

i.e., if x = x1 ∨ x2 ∈ Rn1+n2 with x1 ∈ Rn1 and x2 ∈ Rn2 , then

‖(‖x1‖p, ‖x2‖p)‖p = ‖x‖p

The three-step proof:

If T = A ∨ B, then max{‖A‖σ, ‖B‖σ} ≤ ‖T ‖σ ≤
√
‖A‖σ2 + ‖B‖σ2

If T = A ∨ B, then
√
‖A‖∗2 + ‖B‖∗2 ≤ ‖T ‖∗ ≤ ‖A‖∗ + ‖B‖∗ from a

dual norm point of view

Mathematical induction
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Some consequence of the main result

If T is partitioned entry wisely into
∏d
k=1 nk number of scalars

‖T ‖∞ ≤ ‖T ‖σ ≤ ‖T ‖2 ≤ ‖T ‖∗ ≤ ‖T ‖1

If T is partitioned into mode-k vector fibers, say

{ti ∈ Rnk : i = 1, 2, . . . ,m} where m =
∏

1≤j≤d, j 6=k nj

‖(‖t1‖2, ‖t2‖2, . . . , ‖tm‖2)‖∞≤ ‖T ‖σ

‖T ‖∗≤ ‖(‖t1‖2, ‖t2‖2, . . . , ‖tm‖2)‖1

Any regular partition {T1, T2, . . . , Tm} of a rank-one tensor T satisfies

‖(‖T1‖σ, ‖T2‖σ, . . . , ‖Tm‖σ)‖2 = ‖T ‖σ = ‖T ‖∗ = ‖(‖T1‖∗, ‖T2‖∗, . . . , ‖Tm‖∗)‖2

All the bounds are sharp in general, in the sense that for any given tensor

space and one of the four inequalities, there exists a tensor in that space

such that the inequality becomes an equality.
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Approximating tensor norms

A tensor norm ‖ · ‖θ can be approximated with an approximation bound α ≥ 1,

if there exists a polynomial-time approximation algorithm that computes a

quantity qT for any tensor instance T , such that

qT ≤ ‖T ‖θ ≤ α qT .

An immediate fact of the main result:

Corollary

If {T1, T2, . . . , Tm} is a regular partition of a tensor T and the tensor spectral

norm ‖Tj‖σ (respectively, the tensor nuclear norm ‖Tj‖∗) can be computed in

polynomial-time for all 1 ≤ j ≤ m, then the tensor spectral norm ‖T ‖σ
(respectively, the tensor nuclear norm ‖T ‖∗) can be approximated with an

approximation bound
√
m.
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Approximation bounds by matrix slices

A tensor T ∈ Rn1×n2×···×nd with n1 ≤ n2 ≤ · · · ≤ nd is cut into matrix slices{
Ti1i2...id−2 :=

(
(ti1i2...id)id−1id

)
∈ Rnd−1×nd : 1 ≤ ik ≤ nk, k = 1, 2, . . . , d− 2

}
.

The spectral norm of a tensor T can be approximated by

max
1≤ik≤nk, k=1,2,...,d−2

‖Ti1i2...id−2‖σ

with an approximation bound
√∏d−2

k=1 nk.

The nuclear norm of T can be approximated by n1∑
i1=1

n2∑
i2=1

· · ·
nd−2∑
id−2=1

‖Ti1i2...id−2‖∗
2

1/2

with an approximation bound
√∏d−2

k=1 nk (the best bound so far).

For the case d = 3, both bounds are
√
n1.
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(
(ti1i2...id)id−1id

)
∈ Rnd−1×nd : 1 ≤ ik ≤ nk, k = 1, 2, . . . , d− 2

}
.

The spectral norm of a tensor T can be approximated by

max
1≤ik≤nk, k=1,2,...,d−2

‖Ti1i2...id−2‖σ

with an approximation bound
√∏d−2

k=1 nk.

The nuclear norm of T can be approximated by n1∑
i1=1

n2∑
i2=1

· · ·
nd−2∑
id−2=1

‖Ti1i2...id−2‖∗
2

1/2

with an approximation bound
√∏d−2

k=1 nk (the best bound so far).

For the case d = 3, both bounds are
√
n1.
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An algorithm to approximate the tensor spectral norm

Algorithm

Find a rank-one tensor that approximates the spectral norm of a given tensor

from below, with an approximation bound
√∏d−2

k=1 nk.

Input: A tensor T ∈ Rn1×n2×···×nd with n1 ≤ n2 ≤ · · · ≤ nd

1 Compute

(j1, j2, . . . , jd−2) = arg max
1≤ik≤nk, k=1,2,...,d−2

‖Ti1i2...id−2‖σ

2 Find the left singular vector x and the right singular vector y

corresponding to the largest singular value of the matrix Tj1j2...jd−2

3 Compute X = ej1 ⊗ ej2 ⊗ · · · ⊗ ejd−2 ⊗ x⊗ y where ej is the vector

whose j-th entry is one and other entries are zeros

Output: A rank-one tensor X ∈ Rn1×n2×···×nd with ‖X‖2 = 1
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An algorithm to approximate the tensor nuclear norm

Algorithm

Find a rank-one decomposition of a given tensor that approximates its nuclear

norm from above, with an approximation bound
√∏d−2

k=1 nk.

Input: A tensor T ∈ Rn1×n2×···×nd with n1 ≤ n2 ≤ · · · ≤ nd

1 Compute SVD for the matrix

Ti1i2...id−2 =

nd−1∑
id−1=1

λi1i2...id−1xi1i2...id−1 ⊗ yi1i2...id−1

for all 1 ≤ ik ≤ nk, k = 1, 2, . . . , d− 2. If the rank of any matrix

Ti1i2...id−2 is strictly less than nd−1, add some zero singular values

2 Compute T =
∑n1
i1=1

∑n2
i2=1 · · ·

∑nd−1

id−1=1 λi1i2...id−1ei1 ⊗ ei2 ⊗ · · · ⊗
eid−2 ⊗ xi1i2...id−1 ⊗ yi1i2...id−1

Output: A rank-one decomposition of T
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Can we extend the main result?

Theorem

If {T1, T2, . . . , Tm} is a regular partition of a tensor T , then

‖(‖T1‖σ, ‖T2‖σ, . . . , ‖Tm‖σ)‖∞ ≤ ‖T ‖σ ≤ ‖(‖T1‖σ, ‖T2‖σ, . . . , ‖Tm‖σ)‖2 ,

‖(‖T1‖∗, ‖T2‖∗, . . . , ‖Tm‖∗)‖2 ≤ ‖T ‖∗ ≤ ‖(‖T1‖∗, ‖T2‖∗, . . . , ‖Tm‖∗)‖1 ,

where ‖ · ‖p is the Lp norm of a vector for 1 ≤ p ≤ ∞.

T31

T21

T11

T32

T22

T12

A modal partition

T1

T2

T3

T4 T5

A regular partition

T1

T2

T3

T4

T5

An irregular partition

Questions of interest:

How about other tensor norms?

How about irregular (general) tensor partitions?

How about modal (specified) partitions?
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Bounds on the spectral p-norm and the nuclear p-norm

Spectral p-norm (1 ≤ p ≤ ∞)

‖A‖pσ := max
{〈
A,x1 ⊗ x2 ⊗ · · · ⊗ xd

〉
: ‖xk‖p = 1, 1 ≤ k ≤ d

}

Nuclear p-norm (the dual norm)

‖A‖p∗ := min

{
r∑
i=1

|λi| : A =

r∑
i=1

λix
1
i ⊗ x2

i ⊗ · · · ⊗ xdi , ‖xki ‖p = 1, r ∈ N

}

‖A‖1σ = ‖A‖∞ and ‖A‖∞∗ = ‖A‖1

Theorem

If {T1, T2, . . . , Tm} is a tensor partition of a tensor T , then

‖(‖T1‖pσ , ‖T2‖pσ , . . . , ‖Tm‖pσ )‖∞≤‖T ‖pσ ≤‖(‖T1‖pσ , ‖T2‖pσ . . . , ‖Tm‖pσ )‖q
‖(‖T1‖p∗ , ‖T2‖p∗ , . . . , ‖Tm‖p∗)‖q≤‖T ‖p∗≤‖(‖T1‖p∗ , ‖T2‖p∗ , . . . , ‖Tm‖p∗)‖1

where 1 ≤ p ≤ ∞ and 1
p
+ 1

q
= 1.
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THANK YOU!
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