Matrix Problems in Quantum Information Science

Chi-Kwong Li (Ferguson Professor) College of William and Mary, Virginia, (Affiliate member) Institute for Quantum Computing, Waterloo

• • = • • = •

Basic notation and definitions

• Let M_n be the set of $n \times n$ complex matrix.

イロト イヨト イヨト イヨト 二日

Basic notation and definitions

- Let M_n be the set of $n \times n$ complex matrix.
- Suppose $A \in M_n$ is Hermitian with eigenvalues $a_1 \geq \cdots \geq a_n$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Basic notation and definitions

- Let M_n be the set of $n \times n$ complex matrix.
- Suppose A ∈ M_n is Hermitian with eigenvalues a₁ ≥ · · · ≥ a_n.
 Denote by λ(A) = (a₁,..., a_n) the vector of eigenvalues of A.

イロト イヨト イヨト イヨト 二日

Basic notation and definitions

- Let M_n be the set of $n \times n$ complex matrix.
- Suppose A ∈ M_n is Hermitian with eigenvalues a₁ ≥ · · · ≥ a_n. Denote by λ(A) = (a₁,..., a_n) the vector of eigenvalues of A.
- Let $x, y \in \mathbb{R}^n$. Then x is majorized by y, denoted by $x \prec y$, if

イロト 不得 トイラト イラト・ラ

Basic notation and definitions

- Let M_n be the set of $n \times n$ complex matrix.
- Suppose A ∈ M_n is Hermitian with eigenvalues a₁ ≥ ··· ≥ a_n. Denote by λ(A) = (a₁,..., a_n) the vector of eigenvalues of A.
- Let x, y ∈ ℝⁿ. Then x is majorized by y, denoted by x ≺ y, if
 (1) the sum of the entries of x is the same as that of y, and

Basic notation and definitions

- Let M_n be the set of $n \times n$ complex matrix.
- Suppose A ∈ M_n is Hermitian with eigenvalues a₁ ≥ · · · ≥ a_n. Denote by λ(A) = (a₁,..., a_n) the vector of eigenvalues of A.
- Let x, y ∈ ℝⁿ. Then x is majorized by y, denoted by x ≺ y, if
 (1) the sum of the entries of x is the same as that of y, and
 (2) for k = 1,...,n-1, the sum of the k largest entries of x is not larger than that of y.

Basic notation and definitions

- Let M_n be the set of $n \times n$ complex matrix.
- Suppose A ∈ M_n is Hermitian with eigenvalues a₁ ≥ · · · ≥ a_n.
 Denote by λ(A) = (a₁,...,a_n) the vector of eigenvalues of A.
- Let x, y ∈ ℝⁿ. Then x is majorized by y, denoted by x ≺ y, if
 (1) the sum of the entries of x is the same as that of y, and
 (2) for k = 1,...,n-1, the sum of the k largest entries of x is not larger than that of y.
- A norm on $\|\cdot\|$ on M_n is unitary similarity invariant (USI) if

 $||U^*XU|| = ||X||$ for any $X \in M_n$ and unitary $U \in M_n$.

イロト 不得下 イヨト イヨト 二日

Basic notation and definitions

- Let M_n be the set of $n \times n$ complex matrix.
- Suppose A ∈ M_n is Hermitian with eigenvalues a₁ ≥ · · · ≥ a_n.
 Denote by λ(A) = (a₁,...,a_n) the vector of eigenvalues of A.
- Let x, y ∈ ℝⁿ. Then x is majorized by y, denoted by x ≺ y, if
 (1) the sum of the entries of x is the same as that of y, and
 (2) for k = 1,...,n-1, the sum of the k largest entries of x is not larger than that of y.
- A norm on $\|\cdot\|$ on M_n is unitary similarity invariant (USI) if

 $||U^*XU|| = ||X||$ for any $X \in M_n$ and unitary $U \in M_n$.

Note: The set of USI norms is strictly larger than the set of unitarily invariant norms, i.e., norms $\|\cdot\|$ satisfying $\|UXV\| = \|X\|$ for all $X \in M_n$ and all unitary $U, V \in M_n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへの

Basic notation and definitions

- Let M_n be the set of $n \times n$ complex matrix.
- Suppose A ∈ M_n is Hermitian with eigenvalues a₁ ≥ · · · ≥ a_n.
 Denote by λ(A) = (a₁,...,a_n) the vector of eigenvalues of A.
- Let x, y ∈ ℝⁿ. Then x is majorized by y, denoted by x ≺ y, if
 (1) the sum of the entries of x is the same as that of y, and
 (2) for k = 1,...,n-1, the sum of the k largest entries of x is not larger than that of y.
- A norm on $\|\cdot\|$ on M_n is unitary similarity invariant (USI) if

 $||U^*XU|| = ||X||$ for any $X \in M_n$ and unitary $U \in M_n$.

Note: The set of USI norms is strictly larger than the set of unitarily invariant norms, i.e., norms $\|\cdot\|$ satisfying $\|UXV\| = \|X\|$ for all $X \in M_n$ and all unitary $U, V \in M_n$.

• Let diag
$$(x_1, \ldots, x_n) = \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix}$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへの

Theorem [Weyl, Lidskii, etc.]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

$$(a_1-b_1,\ldots,a_n-b_n)\prec\lambda(A-B)\prec(a_1-b_n,\ldots,a_n-b_1).$$

Theorem [Weyl, Lidskii, etc.]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

$$(a_1-b_1,\ldots,a_n-b_n)\prec\lambda(A-B)\prec(a_1-b_n,\ldots,a_n-b_1).$$

Consequently, for any unitary similarity invariant norm $\|\cdot\|$ on M_n ,

 $\|\text{diag}(a_1 - b_1, \dots, a_n - b_n)\| \le \|A - B\| \le \|\text{diag}(a_1 - b_n, \dots, a_n - b_1)\|.$

Theorem [Weyl, Lidskii, etc.]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

$$(a_1-b_1,\ldots,a_n-b_n)\prec\lambda(A-B)\prec(a_1-b_n,\ldots,a_n-b_1).$$

Consequently, for any unitary similarity invariant norm $\|\cdot\|$ on M_n ,

$$\|\text{diag}(a_1 - b_1, \dots, a_n - b_n)\| \le \|A - B\| \le \|\text{diag}(a_1 - b_n, \dots, a_n - b_1)\|.$$

The unitary similarity orbit of B is the set

$$\mathcal{U}(B) = \{ U^* B U : U \in M_n, \ U^* U = I_n \}.$$

イロト イヨト イヨト イヨト 二日

Theorem [Weyl, Lidskii, etc.]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

$$(a_1-b_1,\ldots,a_n-b_n)\prec\lambda(A-B)\prec(a_1-b_n,\ldots,a_n-b_1).$$

Consequently, for any unitary similarity invariant norm $\|\cdot\|$ on M_n ,

$$\|\text{diag}(a_1 - b_1, \dots, a_n - b_n)\| \le \|A - B\| \le \|\text{diag}(a_1 - b_n, \dots, a_n - b_1)\|.$$

The unitary similarity orbit of B is the set

$$\mathcal{U}(B) = \{ U^* B U : U \in M_n, \ U^* U = I_n \}.$$

The above result implies that

$$\max_{X \in \mathcal{U}(B)} \|A - X\| = \|\text{diag}(a_1 - b_n, \dots, a_n - b_1)\|,$$

and

$$\min_{X \in \mathcal{U}(B)} \|A - X\| = \|\text{diag}(a_1 - b_1, \dots, a_n - b_n)\|.$$

イロト イヨト イヨト イヨト 二日

Finding the distance from A to the convex hull of $\mathcal{U}(B)$ is not so easy.

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

Finding the distance from A to the convex hull of $\mathcal{U}(B)$ is not so easy.

Theorem [Li & Tsing, 1989]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

Suppose $\|\cdot\|$ is a USI norm on M_n .

Finding the distance from A to the convex hull of $\mathcal{U}(B)$ is not so easy.

Theorem [Li & Tsing, 1989]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

Suppose $\|\cdot\|$ is a USI norm on M_n .

 max{||A - X|| : X ∈ Conv(U(B))} = ||diag (a₁ - b_n,..., a_n - b₁)||, which is the same as max_{X∈U(B)} ||A - X||.

Finding the distance from A to the convex hull of $\mathcal{U}(B)$ is not so easy.

Theorem [Li & Tsing, 1989]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

Suppose $\|\cdot\|$ is a USI norm on M_n .

- max{||A X|| : X ∈ Conv(U(B))} = ||diag (a₁ b_n,..., a_n b₁)||, which is the same as max_{X∈U(B)} ||A - X||.
- $\min\{||A X|| : X \in \operatorname{Conv}(\mathcal{U}(B))\} = ||\operatorname{diag}(a_1 d_1, \dots, a_n d_n)||,$

where (d_1,\ldots,d_n) is determined by the following algorithm

Finding the distance from A to the convex hull of $\mathcal{U}(B)$ is not so easy.

Theorem [Li & Tsing, 1989]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

Suppose $\|\cdot\|$ is a USI norm on M_n .

- max{||A X|| : X ∈ Conv(U(B))} = ||diag (a₁ b_n,..., a_n b₁)||, which is the same as max_{X∈U(B)} ||A - X||.
- $\min\{||A X|| : X \in \operatorname{Conv}(\mathcal{U}(B))\} = ||\operatorname{diag}(a_1 d_1, \dots, a_n d_n)||,$

where (d_1, \ldots, d_n) is determined by the following algorithm Step 0. Set $(\Delta_1, \ldots, \Delta_n) = \lambda(A) - \lambda(B)$.

Finding the distance from A to the convex hull of $\mathcal{U}(B)$ is not so easy.

Theorem [Li & Tsing, 1989]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

Suppose $\|\cdot\|$ is a USI norm on M_n .

- max{||A X|| : X ∈ Conv(U(B))} = ||diag (a₁ b_n,..., a_n b₁)||, which is the same as max_{X∈U(B)} ||A - X||.
- $\min\{||A X|| : X \in \operatorname{Conv}(\mathcal{U}(B))\} = ||\operatorname{diag}(a_1 d_1, \dots, a_n d_n)||,$

where (d_1, \ldots, d_n) is determined by the following algorithm Step 0. Set $(\Delta_1, \ldots, \Delta_n) = \lambda(A) - \lambda(B)$.

Step 1. If $\Delta_1 \geq \cdots \geq \Delta_n$, then set $(d_1, \ldots, d_n) = \lambda(A) - (\Delta_1, \ldots, \Delta_n)$ and stop. Else, go to Step 2.

Finding the distance from A to the convex hull of $\mathcal{U}(B)$ is not so easy.

Theorem [Li & Tsing, 1989]

Let $A, B \in M_n$ be Hermitian matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

Suppose $\|\cdot\|$ is a USI norm on M_n .

- max{||A X|| : X ∈ Conv(U(B))} = ||diag (a₁ b_n,..., a_n b₁)||, which is the same as max_{X∈U(B)} ||A - X||.
- $\min\{||A X|| : X \in \operatorname{Conv}(\mathcal{U}(B))\} = ||\operatorname{diag}(a_1 d_1, \dots, a_n d_n)||,$

where (d_1, \ldots, d_n) is determined by the following algorithm Step 0. Set $(\Delta_1, \ldots, \Delta_n) = \lambda(A) - \lambda(B)$.

Step 1. If $\Delta_1 \geq \cdots \geq \Delta_n$, then set $(d_1, \ldots, d_n) = \lambda(A) - (\Delta_1, \ldots, \Delta_n)$ and stop. Else, go to Step 2.

Step 2. Let $2 \leq j < k \leq \ell \leq n$ be such that

$$\Delta_{j-1} \neq \Delta_j = \dots = \Delta_{k-1} < \Delta_k = \dots = \Delta_\ell \neq \Delta_{\ell+1}.$$

Replace each $\Delta_j, \ldots, \Delta_\ell$ by $(\Delta_j + \cdots + \Delta_\ell)/(\ell - j + 1)$, and go to Step 1.

The following two examples illustrate the algorithm in the theorem.

Example 1 Let $A = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $B = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

 $\textbf{Set} \ (\Delta_1, \dots, \Delta_4) = \tfrac{1}{10} \mathrm{diag} \ (4, 3, 3, 0) - \tfrac{1}{10} \mathrm{diag} \ (3, 3, 3, 1) = \tfrac{1}{10} \mathrm{diag} \ (1, 0, 0, -1).$

イロト イヨト イヨト イヨト 二日

The following two examples illustrate the algorithm in the theorem.

Example 1 Let $A = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $B = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set $(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) = \frac{1}{10} \operatorname{diag} (3, 3, 3, 1).$

イロト イヨト イヨト イヨト 二日

The following two examples illustrate the algorithm in the theorem.

Example 1 Let $A = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $B = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) = \frac{1}{10} \operatorname{diag} (3, 3, 3, 1).$$

Example 2 Let $A = \frac{1}{10} \text{diag}(4,3,3,0)$ and $B = \frac{1}{10} \text{diag}(5,2,2,1)$.

Apply Step 0:

Set
$$(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (5, 2, 2, 1) = \frac{1}{10} \operatorname{diag} (-1, 1, 1, -1).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

The following two examples illustrate the algorithm in the theorem.

Example 1 Let
$$A = \frac{1}{10} \text{diag}(4, 3, 3, 0)$$
 and $B = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) = \frac{1}{10} \operatorname{diag} (3, 3, 3, 1).$$

Example 2 Let $A = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $B = \frac{1}{10} \text{diag}(5, 2, 2, 1)$.

Apply Step 0:

Set
$$(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (5, 2, 2, 1) = \frac{1}{10} \operatorname{diag} (-1, 1, 1, -1).$$

Apply Step 2.

Change
$$(\Delta_1, \ldots, \Delta_4)$$
 to $\frac{1}{10}$ diag $(1/3, 1/3, 1/3, -1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

The following two examples illustrate the algorithm in the theorem.

Example 1 Let
$$A = \frac{1}{10} \operatorname{diag}(4,3,3,0)$$
 and $B = \frac{1}{10} \operatorname{diag}(3,3,3,1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) = \frac{1}{10} \operatorname{diag} (3, 3, 3, 1).$$

Example 2 Let $A = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $B = \frac{1}{10} \text{diag}(5, 2, 2, 1)$.

Apply Step 0:

Set
$$(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (5, 2, 2, 1) = \frac{1}{10} \operatorname{diag} (-1, 1, 1, -1).$$

Apply Step 2.

Change $(\Delta_1, \ldots, \Delta_4)$ to $\frac{1}{10} diag (1/3, 1/3, 1/3, -1)$.

Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag}(4, 3, 3, 0) - \frac{1}{10} \operatorname{diag}(1/3, 1/3, 1/3, -1) = \frac{1}{30} \operatorname{diag}(11, 8, 8, 3).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへの

• Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite matrices with trace 1.

・ 回 ト ・ ヨ ト ・ ヨ ト

Э

- Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite matrices with trace 1.
- (Choi, 1975) Quantum operations / channels are represented by trace preserving completely positive maps that admit the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

- Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite matrices with trace 1.
- (Choi, 1975) Quantum operations / channels are represented by trace preserving completely positive maps that admit the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

A basic problem

Suppose a quantum state ρ goes through a quantum channel/operation Φ .

- Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite matrices with trace 1.
- (Choi, 1975) Quantum operations / channels are represented by trace preserving completely positive maps that admit the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

A basic problem

Suppose a quantum state ρ goes through a quantum channel/operation Φ . How close/far away is $\Phi(\rho)$ to another quantum state σ ?

- Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite matrices with trace 1.
- (Choi, 1975) Quantum operations / channels are represented by trace preserving completely positive maps that admit the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

A basic problem

Suppose a quantum state ρ goes through a quantum channel/operation Φ . How close/far away is $\Phi(\rho)$ to another quantum state σ ?

Of course, it depends on the type of quantum operation applied.

イロト イボト イヨト

Base on the classical results on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.

イロト イヨト イヨト イヨト 二日

Base on the classical results on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.

イロト イポト イヨト イヨト

3

Base on the classical results on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.

Theorem Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$. For unitary channels Φ ,

イロト イポト イヨト イヨト

Э

Base on the classical results on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.

Theorem

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues $a_1 > \cdots > a_n$ and $b_1 > \cdots > b_n$.

For unitary channels Φ ,

• $\min \|\sigma - \Phi(\rho)\| = \|\operatorname{diag} (a_1 - b_1, \dots, a_n - b_n)\|$ and occurs at $\Phi(\rho) = V\rho V^*$ with the existence of a unitary $U \in M_n$ satisfying

 $U\sigma U^* = \operatorname{diag}(a_1,\ldots,a_n)$ and $U\Phi(\rho)U^* = \operatorname{diag}(b_1,\ldots,b_n);$

イロト 不得下 イヨト イヨト 二日

Base on the classical results on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.

Theorem

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

For unitary channels Φ ,

• min $\|\sigma - \Phi(\rho)\| = \|\text{diag}(a_1 - b_1, \dots, a_n - b_n)\|$ and occurs at $\Phi(\rho) = V\rho V^*$ with the existence of a unitary $U \in M_n$ satisfying $U\sigma U^* = \text{diag}(a_1, \dots, a_n)$ and $U\Phi(\rho)U^* = \text{diag}(b_1, \dots, b_n)$;

•
$$\max \|\sigma - \Phi(\rho)\| = \|\operatorname{diag} (a_1 - b_n, \dots, a_n - b_1)\|$$
 and occurs at $\Phi(\rho) = V\rho V^*$ with the existence of a unitary U satisfying

 $U\sigma U^* = \operatorname{diag}(a_1,\ldots,a_n)$ and $U\Phi(\rho)U^* = \operatorname{diag}(b_n,\ldots,b_1).$
One may consider using mixed unitary channels of the form

$$\Phi(X) = \sum_{j=1}^{k} p_j U_j X U_j^*,$$

where $p_1, \ldots, p_k > 0$ summing up to 1, and $U_1, \ldots, U_k \in M_n$ are unitary.

(4回) (4日) (日) 日

One may consider using mixed unitary channels of the form

$$\Phi(X) = \sum_{j=1}^{k} p_j U_j X U_j^*,$$

where $p_1, \ldots, p_k > 0$ summing up to 1, and $U_1, \ldots, U_k \in M_n$ are unitary. Note that if Φ is mixed unitary, then $\Phi(I) = I$, i.e., Φ is unital.

(1日) (1日) (日) 日

One may consider using mixed unitary channels of the form

$$\Phi(X) = \sum_{j=1}^{k} p_j U_j X U_j^*,$$

where $p_1, \ldots, p_k > 0$ summing up to 1, and $U_1, \ldots, U_k \in M_n$ are unitary. Note that if Φ is mixed unitary, then $\Phi(I) = I$, i.e., Φ is unital.

One may consider using the unital channels to do the transformation.

(1日) (1日) (日) 日

One may consider using mixed unitary channels of the form

$$\Phi(X) = \sum_{j=1}^{k} p_j U_j X U_j^*,$$

where $p_1, \ldots, p_k > 0$ summing up to 1, and $U_1, \ldots, U_k \in M_n$ are unitary. Note that if Φ is mixed unitary, then $\Phi(I) = I$, i.e., Φ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_n$ be density matrices. The following are equivalent.

One may consider using mixed unitary channels of the form

$$\Phi(X) = \sum_{j=1}^{k} p_j U_j X U_j^*,$$

where $p_1, \ldots, p_k > 0$ summing up to 1, and $U_1, \ldots, U_k \in M_n$ are unitary. Note that if Φ is mixed unitary, then $\Phi(I) = I$, i.e., Φ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_n$ be density matrices. The following are equivalent.

1 There exists a mixed unitary quantum channel Φ such that $\Phi(\rho) = \sigma$.

One may consider using mixed unitary channels of the form

$$\Phi(X) = \sum_{j=1}^{k} p_j U_j X U_j^*,$$

where $p_1, \ldots, p_k > 0$ summing up to 1, and $U_1, \ldots, U_k \in M_n$ are unitary. Note that if Φ is mixed unitary, then $\Phi(I) = I$, i.e., Φ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_n$ be density matrices. The following are equivalent.

- **1** There exists a mixed unitary quantum channel Φ such that $\Phi(\rho) = \sigma$.
- 2 There are unitary matrices $U_1, \ldots, U_n \in M_n$ such that

$$\sigma = \frac{1}{n} \left(U_1 \rho U_1^* + \dots + U_n \rho U_n^* \right).$$

One may consider using mixed unitary channels of the form

$$\Phi(X) = \sum_{j=1}^{k} p_j U_j X U_j^*,$$

where $p_1, \ldots, p_k > 0$ summing up to 1, and $U_1, \ldots, U_k \in M_n$ are unitary. Note that if Φ is mixed unitary, then $\Phi(I) = I$, i.e., Φ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_n$ be density matrices. The following are equivalent.

- **1** There exists a mixed unitary quantum channel Φ such that $\Phi(\rho) = \sigma$.
- 2 There are unitary matrices $U_1, \ldots, U_n \in M_n$ such that

$$\sigma = \frac{1}{n} \left(U_1 \rho U_1^* + \dots + U_n \rho U_n^* \right).$$

3 There exists a unital quantum channel Φ such that $\Phi(\rho) = \sigma$.

One may consider using mixed unitary channels of the form

$$\Phi(X) = \sum_{j=1}^{k} p_j U_j X U_j^*,$$

where $p_1, \ldots, p_k > 0$ summing up to 1, and $U_1, \ldots, U_k \in M_n$ are unitary. Note that if Φ is mixed unitary, then $\Phi(I) = I$, i.e., Φ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let $\rho, \sigma \in M_n$ be density matrices. The following are equivalent.

- **1** There exists a mixed unitary quantum channel Φ such that $\Phi(\rho) = \sigma$.
- 2 There are unitary matrices $U_1, \ldots, U_n \in M_n$ such that

$$\sigma = \frac{1}{n} \left(U_1 \rho U_1^* + \dots + U_n \rho U_n^* \right).$$

- **3** There exists a unital quantum channel Φ such that $\Phi(\rho) = \sigma$.
- $\ \, \bullet \ \, \lambda(\sigma) \prec \lambda(\rho).$

The sum of the k largest eigenvalues of σ is not larger than that of ρ for $k = 1, \ldots, n - 1$.

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Chi-Kwong Li, College of William & Mary Matrix problems in Quantum Information Science

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Let $\|\cdot\|$ be a USI norm, σ,ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Let $\|\cdot\|$ be a USI norm, σ,ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For any unital channel Φ ,

Else, go to Step 2.

Step 2. Let $2 \leq j < k \leq \ell \leq n$ be such that

$$\Delta_{j-1} \neq \Delta_j = \dots = \Delta_{k-1} < \Delta_k = \dots = \Delta_\ell \neq \Delta_{\ell+1}.$$

Replace each $\Delta_j, \ldots, \Delta_\ell$ by $(\Delta_j + \cdots + \Delta_\ell)/(\ell - j + 1)$, and go to Step 1.

The two previous examples illustrating the algorithm in the theorem.

Example 1 Let
$$\sigma = \frac{1}{10} \text{diag}(4, 3, 3, 0)$$
 and $\rho = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

 $\textbf{Set} \ (\Delta_1, \dots, \Delta_4) = \tfrac{1}{10} \mathrm{diag} \ (4, 3, 3, 0) - \tfrac{1}{10} \mathrm{diag} \ (3, 3, 3, 1) = \tfrac{1}{10} \mathrm{diag} \ (1, 0, 0, -1).$

イロト イヨト イヨト イヨト 二日

The two previous examples illustrating the algorithm in the theorem.

Example 1 Let
$$\sigma = \frac{1}{10} \text{diag}(4, 3, 3, 0)$$
 and $\rho = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set $(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) = \frac{1}{10} \operatorname{diag} (3, 3, 3, 1).$

The two previous examples illustrating the algorithm in the theorem.

Example 1 Let
$$\sigma = \frac{1}{10} \text{diag}(4, 3, 3, 0)$$
 and $\rho = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) = \frac{1}{10} \operatorname{diag} (3, 3, 3, 1).$$

Example 2 Let $\sigma = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $\rho = \frac{1}{10} \text{diag}(5, 2, 2, 1)$.

Apply Step 0:

Set
$$(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (5, 2, 2, 1) = \frac{1}{10} \operatorname{diag} (-1, 1, 1, -1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

The two previous examples illustrating the algorithm in the theorem.

Example 1 Let
$$\sigma = \frac{1}{10} \text{diag}(4, 3, 3, 0)$$
 and $\rho = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) = \frac{1}{10} \operatorname{diag} (3, 3, 3, 1).$$

Example 2 Let $\sigma = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $\rho = \frac{1}{10} \text{diag}(5, 2, 2, 1)$.

Apply Step 0:

Set
$$(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (5, 2, 2, 1) = \frac{1}{10} \operatorname{diag} (-1, 1, 1, -1).$$

Apply Step 2.

Change
$$(\Delta_1, \ldots, \Delta_4)$$
 to $\frac{1}{10}$ diag $(1/3, 1/3, 1/3, -1)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The two previous examples illustrating the algorithm in the theorem.

Example 1 Let
$$\sigma = \frac{1}{10} \text{diag}(4, 3, 3, 0)$$
 and $\rho = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) = \frac{1}{10} \operatorname{diag} (3, 3, 3, 1).$$

Example 2 Let $\sigma = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $\rho = \frac{1}{10} \text{diag}(5, 2, 2, 1)$.

Apply Step 0:

Set
$$(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (5, 2, 2, 1) = \frac{1}{10} \operatorname{diag} (-1, 1, 1, -1).$$

Apply Step 2.

Change $(\Delta_1, \ldots, \Delta_4)$ to $\frac{1}{10} diag (1/3, 1/3, 1/3, -1)$.

Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1/3, 1/3, 1/3, -1) = \frac{1}{30} \operatorname{diag} (11, 8, 8, 3).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへの

Assume one can use any quantum channel

$$\Phi(X) = \sum F_j X F_j^*, \quad \sum F_j^* F_j = I_n.$$

Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$

イロト イヨト イヨト イヨト 三日

Assume one can use any quantum channel

$$\Phi(X) = \sum F_j X F_j^*, \quad \sum F_j^* F_j = I_n.$$

Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$

Theorem [Li, Pelejo, Wang, 2016]

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

イロト 人間 トイヨト イヨト

Assume one can use any quantum channel

$$\Phi(X) = \sum F_j X F_j^*, \quad \sum F_j^* F_j = I_n.$$

Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$

Theorem [Li, Pelejo, Wang, 2016]

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For general quantum channels Φ ,

イロト 人間 トイヨト イヨト

Assume one can use any quantum channel

$$\Phi(X) = \sum F_j X F_j^*, \quad \sum F_j^* F_j = I_n.$$

Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$

Theorem [Li, Pelejo, Wang, 2016]

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

For general quantum channels Φ ,

•
$$\min \|\sigma - \Phi(\rho)\| = 0$$
 occurs at $\Phi(\rho) = \sigma$;

イロト イポト イヨト イヨト

Assume one can use any quantum channel

$$\Phi(X) = \sum F_j X F_j^*, \quad \sum F_j^* F_j = I_n.$$

Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$

Theorem [Li, Pelejo, Wang, 2016]

Let $\|\cdot\|$ be a USI norm, σ, ρ are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For general quantum channels Φ ,

- $\min \|\sigma \Phi(\rho)\| = 0$ occurs at $\Phi(\rho) = \sigma$;
- $\max \|\sigma \Phi(\rho)\| = \|\operatorname{diag} (a_1, \dots, a_{n-1}, a_n 1)\|$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

$$U\sigma U^* = \text{diag}(a_1, ..., a_n) \text{ and } U\Phi(\rho)U^* = \text{diag}(0, ..., 0, 1)$$

イロン 不良 とくほど イロン しゅ

Consider the fidelity function $F(A,B) = ||A^{1/2}B^{1/2}||_{tr} = tr\sqrt{A^{1/2}BA^{1/2}}$.

Consider the fidelity function $F(A, B) = ||A^{1/2}B^{1/2}||_{tr} = tr\sqrt{A^{1/2}BA^{1/2}}.$

Theorem [Zhang, Fei, 2014]

Suppose ρ, σ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Consider the fidelity function $F(A,B) = ||A^{1/2}B^{1/2}||_{tr} = tr\sqrt{A^{1/2}BA^{1/2}}$.

Theorem [Zhang, Fei, 2014]

Suppose ρ, σ have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$. For unitary channels Φ ,

イロト イヨト イヨト イヨト 二日

Consider the fidelity function $F(A,B) = ||A^{1/2}B^{1/2}||_{tr} = tr\sqrt{A^{1/2}BA^{1/2}}$.

Theorem [Zhang, Fei, 2014]

Suppose ρ, σ have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$. For unitary channels Φ ,

• $\max F(\sigma, \Phi(\rho)) = F(D_1D_2) = \sum_{j=1}^n \sqrt{a_j b_j}$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

$$D_1 = U\sigma U^* = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}, \quad D_2 = U\Phi(\rho)U^* = \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & & b_n \end{pmatrix};$$

イロト 不得 トイラト イラト・ラ

Consider the fidelity function $F(A, B) = ||A^{1/2}B^{1/2}||_{tr} = tr\sqrt{A^{1/2}BA^{1/2}}.$

Theorem [Zhang, Fei, 2014]

Suppose ρ, σ have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$. For unitary channels Φ ,

• $\max F(\sigma, \Phi(\rho)) = F(D_1D_2) = \sum_{j=1}^n \sqrt{a_j b_j}$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

$$D_1 = U\sigma U^* = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}, \quad D_2 = U\Phi(\rho)U^* = \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & & b_n \end{pmatrix};$$

• $\min F(\sigma, \Phi(\rho)) = F(D_1 \tilde{D}_2) = \sum_{j=1}^n \sqrt{a_j b_{n-j+1}}$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

$$D_1 = U\sigma U^* = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}, \quad \tilde{D}_2 = U\Phi(\rho)U^* = \begin{pmatrix} b_n & & \\ & \ddots & \\ & & b_1 \end{pmatrix}.$$

イロト イポト イヨト イヨト 二日

Consider the fidelity function $F(A,B) = ||A^{1/2}B^{1/2}||_{tr} = tr\sqrt{A^{1/2}BA^{1/2}}$.

Theorem [Zhang, Fei, 2014]

Suppose ρ, σ have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$. For unitary channels Φ ,

• $\max F(\sigma, \Phi(\rho)) = F(D_1D_2) = \sum_{j=1}^n \sqrt{a_j b_j}$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

$$D_1 = U\sigma U^* = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}, \quad D_2 = U\Phi(\rho)U^* = \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & & b_n \end{pmatrix};$$

• $\min F(\sigma, \Phi(\rho)) = F(D_1 \tilde{D}_2) = \sum_{j=1}^n \sqrt{a_j b_{n-j+1}}$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

$$D_1 = U\sigma U^* = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}, \quad \tilde{D}_2 = U\Phi(\rho)U^* = \begin{pmatrix} b_n & & \\ & \ddots & \\ & & b_1 \end{pmatrix}.$$

In [J Li, Pereira, Plosker, 2015], the authors pointed out that the above minimum condition also holds for unital channels / mixed unitary channels,

Consider the fidelity function $F(A,B) = ||A^{1/2}B^{1/2}||_{tr} = tr\sqrt{A^{1/2}BA^{1/2}}$.

Theorem [Zhang, Fei, 2014]

Suppose ρ, σ have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$. For unitary channels Φ ,

• $\max F(\sigma, \Phi(\rho)) = F(D_1D_2) = \sum_{j=1}^n \sqrt{a_j b_j}$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

$$D_1 = U\sigma U^* = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}, \quad D_2 = U\Phi(\rho)U^* = \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & & b_n \end{pmatrix};$$

• $\min F(\sigma, \Phi(\rho)) = F(D_1 \tilde{D}_2) = \sum_{j=1}^n \sqrt{a_j b_{n-j+1}}$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

$$D_1 = U\sigma U^* = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}, \quad \tilde{D}_2 = U\Phi(\rho)U^* = \begin{pmatrix} b_n & & \\ & \ddots & \\ & & b_1 \end{pmatrix}.$$

In [J Li, Pereira, Plosker, 2015], the authors pointed out that the above minimum condition also holds for unital channels / mixed unitary channels,

Suppose σ, ρ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Chi-Kwong Li, College of William & Mary Matrix problems in Quantum Information Science

Suppose σ, ρ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels $\Phi,$

イロト イポト イヨト イヨト

Suppose σ, ρ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , $\max F(\sigma, \Phi(\rho)) = F(D_1D_0)$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

イロト イポト イヨト イヨト

Suppose σ, ρ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , $\max F(\sigma, \Phi(\rho)) = F(D_1D_0)$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

 $D_1 = U\sigma U^* = \operatorname{diag}(a_1, \dots, a_n), \quad D_0 = U\Phi(\rho)U^* = \operatorname{diag}(d_1, \dots, d_n),$

where d_1, \ldots, d_n are determined as follows.

イロト イポト イヨト イヨト

3
Suppose σ, ρ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , $\max F(\sigma, \Phi(\rho)) = F(D_1D_0)$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

 $D_1 = U\sigma U^* = \operatorname{diag}(a_1, \dots, a_n), \quad D_0 = U\Phi(\rho)U^* = \operatorname{diag}(d_1, \dots, d_n),$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 > \cdots > a_r > 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \ldots, a_r), \quad b = (b_1, \ldots, b_r), \quad (d_{r+1}, \ldots, d_n) = (b_{r+1}, \ldots, b_n).$

イロト イポト イヨト イヨト

Suppose σ, ρ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , $\max F(\sigma, \Phi(\rho)) = F(D_1D_0)$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

 $D_1 = U\sigma U^* = \operatorname{diag}(a_1, \dots, a_n), \quad D_0 = U\Phi(\rho)U^* = \operatorname{diag}(d_1, \dots, d_n),$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 > \cdots > a_r > 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \ldots, a_r), \quad b = (b_1, \ldots, b_r), \quad (d_{r+1}, \ldots, d_n) = (b_{r+1}, \ldots, b_n).$

Go to Step 1.

イロト イポト イヨト イヨト

Suppose σ, ρ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , $\max F(\sigma, \Phi(\rho)) = F(D_1D_0)$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

 $D_1 = U\sigma U^* = \operatorname{diag}(a_1, \dots, a_n), \quad D_0 = U\Phi(\rho)U^* = \operatorname{diag}(d_1, \dots, d_n),$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \ldots, a_r), \quad b = (b_1, \ldots, b_r), \quad (d_{r+1}, \ldots, d_n) = (b_{r+1}, \ldots, b_n).$

Go to Step 1.

Step 1. Let $k \in \{1, \ldots, r\}$ be the largest positive integer such that

$$\frac{1}{a_1+\cdots+a_k}(a_1,\ldots,a_k)\prec \frac{1}{b_1+\cdots+b_k}(b_1,\ldots,b_k).$$

イロト イポト イヨト イヨト

Suppose σ, ρ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\sigma, \Phi(\rho)) = F(D_1D_0)$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

 $D_1 = U\sigma U^* = \text{diag}(a_1, ..., a_n), \quad D_0 = U\Phi(\rho)U^* = \text{diag}(d_1, ..., d_n),$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \ldots, a_r), \quad b = (b_1, \ldots, b_r), \quad (d_{r+1}, \ldots, d_n) = (b_{r+1}, \ldots, b_n).$

Go to Step 1.

Step 1. Let $k \in \{1, \ldots, r\}$ be the largest positive integer such that

$$\frac{1}{a_1+\cdots+a_k}(a_1,\ldots,a_k)\prec \frac{1}{b_1+\cdots+b_k}(b_1,\ldots,b_k).$$

Set

$$(d_1, \dots, d_k) = \frac{a_1 + \dots + a_k}{b_1 + \dots + b_k} (a_1, \dots, a_k).$$

イロト イポト イヨト イヨト

Suppose σ, ρ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\sigma, \Phi(\rho)) = F(D_1D_0)$ occurs at $\Phi(\rho)$ with the existence of a unitary U such that

 $D_1 = U\sigma U^* = \text{diag}(a_1, ..., a_n), \quad D_0 = U\Phi(\rho)U^* = \text{diag}(d_1, ..., d_n),$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \ldots, a_r), \quad b = (b_1, \ldots, b_r), \quad (d_{r+1}, \ldots, d_n) = (b_{r+1}, \ldots, b_n).$

Go to Step 1.

Step 1. Let $k \in \{1, \dots, r\}$ be the largest positive integer such that

$$\frac{1}{a_1+\cdots+a_k}(a_1,\ldots,a_k)\prec \frac{1}{b_1+\cdots+b_k}(b_1,\ldots,b_k).$$

Set

$$(d_1, \dots, d_k) = \frac{a_1 + \dots + a_k}{b_1 + \dots + b_k} (a_1, \dots, a_k).$$

If k = r, then exit. Else, replace r, a, b by $r - k, (a_{k+1}, \ldots, a_r), (b_{k+1}, \ldots, b_r)$ and go to Step 1.

イロト 不得下 イヨト イヨト 二日

Examples If $(a_1, ..., a_n) \prec (b_1, ..., b_n)$, then $(d_1, ..., d_n) = (a_1, ..., a_n)$.

Chi-Kwong Li, College of William & Mary Matrix problems in Quantum Information Science

イロト イヨト イヨト イヨト 二日

Examples If
$$(a_1, \ldots, a_n) \prec (b_1, \ldots, b_n)$$
, then $(d_1, \ldots, d_n) = (a_1, \ldots, a_n)$.
If $(b_1, \ldots, b_n) = (1/n, \ldots, 1/n)$, then $(d_1, \ldots, d_n) = (1/n, \ldots, 1/n)$.

Additional results

・ロト ・回ト ・ヨト ・ヨト … ヨ

Examples If $(a_1, \ldots, a_n) \prec (b_1, \ldots, b_n)$, then $(d_1, \ldots, d_n) = (a_1, \ldots, a_n)$. If $(b_1, \ldots, b_n) = (1/n, \ldots, 1/n)$, then $(d_1, \ldots, d_n) = (1/n, \ldots, 1/n)$.

Additional results

• We also considered general quantum channels to maximize the fidelity function.

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Examples If $(a_1, \ldots, a_n) \prec (b_1, \ldots, b_n)$, then $(d_1, \ldots, d_n) = (a_1, \ldots, a_n)$. If $(b_1, \ldots, b_n) = (1/n, \ldots, 1/n)$, then $(d_1, \ldots, d_n) = (1/n, \ldots, 1/n)$.

Additional results

- We also considered general quantum channels to maximize the fidelity function.
- Results are also obtained results for other functions on two density matrices such as the relative entropy:

$$S(A||B) = \operatorname{tr} A(\log_2 A - \log_2 B).$$

イロト 不得 トイラト イラト 二日

イロン 不同 とうほどう ほどう

Э

 For two given families of quantum states {ρ₁,...,ρ_k}, {σ₁,...,σ_k}, and a distance measures d, study the optimal lower and upper bounds of the set

$$\{d((\sigma_1,\ldots,\sigma_k),(\Phi(\rho_1),\ldots,\Phi(\rho_k))):\Phi\in\mathcal{S}\}\$$

for a set ${\mathcal S}$ of quantum channels.

イロト イヨト イヨト イヨト

 For two given families of quantum states {ρ₁,...,ρ_k}, {σ₁,...,σ_k}, and a distance measures d, study the optimal lower and upper bounds of the set

$$\{d((\sigma_1,\ldots,\sigma_k),(\Phi(\rho_1),\ldots,\Phi(\rho_k))):\Phi\in\mathcal{S}\}\$$

for a set ${\mathcal S}$ of quantum channels.

• One may start with the study of $\|\Phi(\rho_1 + i\rho_2) - (\sigma_1 + i\sigma_2)\|$ for a certain norm $\|\cdot\|$ on M_n .

イロト 不得 トイラト イラト 二日

 For two given families of quantum states {ρ₁,...,ρ_k}, {σ₁,...,σ_k}, and a distance measures d, study the optimal lower and upper bounds of the set

$$\{d((\sigma_1,\ldots,\sigma_k),(\Phi(\rho_1),\ldots,\Phi(\rho_k))):\Phi\in\mathcal{S}\}\$$

for a set ${\mathcal S}$ of quantum channels.

- One may start with the study of $\|\Phi(\rho_1 + i\rho_2) (\sigma_1 + i\sigma_2)\|$ for a certain norm $\|\cdot\|$ on M_n .
- For a given $\sigma,$ find minimum (infimum) and maximize (supremum) of the set

$$\{d(\Phi(\rho),\sigma): \rho \in \mathcal{S}, \Phi \in \mathcal{T}\}\$$

for a given set ${\mathcal S}$ of quantum operations and a given set of ${\mathcal S}$ of states.

イロト 不得 トイラト イラト・ラ

 For two given families of quantum states {ρ₁,...,ρ_k}, {σ₁,...,σ_k}, and a distance measures d, study the optimal lower and upper bounds of the set

$$\{d((\sigma_1,\ldots,\sigma_k),(\Phi(\rho_1),\ldots,\Phi(\rho_k))):\Phi\in\mathcal{S}\}\$$

for a set \mathcal{S} of quantum channels.

- One may start with the study of $\|\Phi(\rho_1 + i\rho_2) (\sigma_1 + i\sigma_2)\|$ for a certain norm $\|\cdot\|$ on M_n .
- For a given $\sigma,$ find minimum (infimum) and maximize (supremum) of the set

$$\{d(\Phi(\rho),\sigma): \rho \in \mathcal{S}, \Phi \in \mathcal{T}\}\$$

for a given set ${\mathcal S}$ of quantum operations and a given set of ${\mathcal S}$ of states.

• ... etc. etc.

イロト 不得 トイラト イラト・ラ

Thank you for your attention!

Hope that you are interested in the problems and will solve some or all of them!

• • = • • = •

- C.-K. Li and N.-K. Tsing, Distance to the Convex Hull of the Unitary Orbit with Respect to Unitary Similarity Invariant Norms, Linear and Multilinear Algebra 25 (1989) 93-103.
- C.K. Li, D.C. Pelejo, and K.Z. Wang, Optimal Bounds on Functions of Quantum States under Quantum Channels, Quantum Information and Computation 16 (2016), pp0845-0861.
- C.-K. Li, Y.-T. Poon, Interpolation by Completely Positive Maps, Linear and Multilinear Algebra 59(2011), 1159 1170
- J. Li, R. Pereira, and S. Plosker, Some Geometric Interpretations of Quantum Fidelity, Linear Algebra and its Applications (to be filled out).
- L. Zhang, and S.-M. Fei, Quantum fidelity and relative entropy between unitary orbits, Journal of Physics A: Math. Theor. 47 (2014) 055301.

イロト イボト イヨト