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Basic notation and definitions

@ Let M, be the set of n x n complex matrix.

@ Suppose A € M,, is Hermitian with eigenvalues a1 > -+ > a,.
Denote by A(A) = (a1,...,an) the vector of eigenvalues of A.

@ Let z,y € R"™. Then x is majorized by ¥, denoted by = < y, if
(1) the sum of the entries of x is the same as that of y, and
(2) for k=1,...,n — 1, the sum of the k largest entries of z

is not larger than that of y.

@ A norm on || -] on M, is unitary similarity invariant (USI) if

|lU*XU|| = || X|| for any X € M,, and unitary U € M,,.
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Suppose A € M, is Hermitian with eigenvalues a1 > -+ > an.

Denote by A(A) = (a1,...,an) the vector of eigenvalues of A.

Let z,y € R™. Then x is majorized by y, denoted by = < y, if

(1) the sum of the entries of x is the same as that of y, and

(2) for k=1,...,n — 1, the sum of the k largest entries of z
is not larger than that of y.

A norm on || - || on M, is unitary similarity invariant (USI) if

|lU*XU|| = || X|| for any X € M,, and unitary U € M,,.

Note: The set of USI norms is strictly larger than the set of unitarily invariant norms, i.e., norms || - ||

satisfying |[UX V|| = || X || for all X € My, and all unitary U,V € M,,.
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Introduction

Basic notation and definitions

Let M,, be the set of n X n complex matrix.

Suppose A € M, is Hermitian with eigenvalues a1 > -+ > an.
Denote by A(A) = (a1,...,an) the vector of eigenvalues of A.

Let z,y € R™. Then x is majorized by y, denoted by = < y, if

(1) the sum of the entries of x is the same as that of y, and

(2) for k=1,...,n — 1, the sum of the k largest entries of z
is not larger than that of y.

A norm on || - || on M, is unitary similarity invariant (USI) if
|lU*XU|| = || X|| for any X € M,, and unitary U € M,,.
Note: The set of USI norms is strictly larger than the set of unitarily invariant norms, i.e., norms || - ||
satisfying |[UX V|| = || X || for all X € My, and all unitary U,V € M,,.
x1

Let diag (z1,...,7n) =
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A classical result

Theorem [Weyl, Lidskii, etc.]

Let A, B € M,, be Hermitian matrices with eigenvalues a; > --- > a, and

(al—bl,...,an—bn)<)\(A—B)<(a1—bn,...,an—b1).
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Let A, B € M,, be Hermitian matrices with eigenvalues a; > --- > a, and

(al—bl,...,an—bn)<)\(A—B)<(a1—bn,...,an—b1).

Consequently, for any unitary similarity invariant norm || - || on My,

|[diag (a1 — b1,...,an — by)|| < ||A — B|| < ||diag (a1 — b, ..., an — b1)]|-
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Let A, B € M,, be Hermitian matrices with eigenvalues a; > --- > a, and

(al—bl,...,an—bn)<)\(A—B)<(a1—bn,...,an—b1).

Consequently, for any unitary similarity invariant norm || - || on My,

|[diag (a1 — b1,...,an — by)|| < ||A — B|| < ||diag (a1 — b, ..., an — b1)]|-

The unitary similarity orbit of B is the set

UB)={U"BU :U € M,,, U'U = I,}.
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A classical result

Theorem [Weyl, Lidskii, etc.]

Let A, B € M,, be Hermitian matrices with eigenvalues a; > --- > a, and

(al—bl,...,an—bn)<)\(A—B)<(a1—bn,...,an—b1).

Consequently, for any unitary similarity invariant norm || - || on My,

|[diag (a1 — b1,...,an — by)|| < ||A — B|| < ||diag (a1 — b, ..., an — b1)]|-

The unitary similarity orbit of B is the set
UB)={U"BU :U € M,,, U'U =1,}.
The above result implies that

A—X| = |di by an — b))l
x4 - X|| = [disg ( an = b)|

and

in [|A— X| = ||di —biyeeyan — bl
N | = [ldiag (a1 — b1,...,a I
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Convex hull of a unitary similarity orbit

Finding the distance from A to the convex hull of U(B) is not so easy.
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Theorem [Li & Tsing, 1989]

Let A, B € M,, be Hermitian matrices with eigenvalues
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Convex hull of a unitary similarity orbit

Finding the distance from A to the convex hull of U(B) is not so easy.

Theorem [Li & Tsing, 1989]

Let A, B € M,, be Hermitian matrices with eigenvalues
ap >+ 2>apand by > -+ > by.
Suppose || - || is a USI norm on M,,.

@ max{||[A — X|| : X € Conv(U(B))} = ||diag (a1 — bn, ..., an — b1)|

which is the same as max xcy(p) |4 — X|.
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Convex hull of a unitary similarity orbit

Finding the distance from A to the convex hull of U(B) is not so easy.

Theorem [Li & Tsing, 1989]

Let A, B € M,, be Hermitian matrices with eigenvalues
ap >+ 2>apand by > -+ > by.
Suppose || - || is a USI norm on M,,.

@ max{||[A — X|| : X € Conv(U(B))} = ||diag (a1 — bn, ..., an — b1)|

which is the same as max xcy(p) |4 — X|.

@ min{||A — X|| : X € Conv(U(B))} = ||diag (a1 — da,...,an — dy)|

where (di,...,dy) is determined by the following algorithm
Step 0. Set (Aq,..., Ap) = A(A) — X(B).
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Convex hull of a unitary similarity orbit

Finding the distance from A to the convex hull of U(B) is not so easy.

Theorem [Li & Tsing, 1989]

Let A, B € M,, be Hermitian matrices with eigenvalues
ap >+ 2>apand by > -+ > by.
Suppose || - || is a USI norm on M,,.

@ max{||[A — X|| : X € Conv(U(B))} = ||diag (a1 — bn, ..., an — b1)|

which is the same as max xcy(p) |4 — X|.

@ min{||A — X|| : X € Conv(U(B))} = ||diag (a1 — da,...,an — dy)|

where (di,...,dy) is determined by the following algorithm
Step 0. Set (Aq,..., Ap) = A(A) — X(B).
Step 1. If Ay > --- > Ay, thenset (dy, ..., dn) = A(A) — (A1,..., Ay,) and stop.

Else, go to Step 2.
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Convex hull of a unitary similarity orbit

Finding the distance from A to the convex hull of U(B) is not so easy.

Theorem [Li & Tsing, 1989]

Let A, B € M,, be Hermitian matrices with eigenvalues
ap >+ 2>apand by > -+ > by.
Suppose || - || is a USI norm on M,,.

@ max{||[A — X|| : X € Conv(U(B))} = ||diag (a1 — bn, ..., an — b1)|

which is the same as max xcy(p) |4 — X|.

@ min{||A — X|| : X € Conv(U(B))} = ||diag (a1 — da,...,an — dy)|

where (di,...,dy) is determined by the following algorithm
Step 0. Set (Aq,..., Ap) = A(A) — X(B).
Step 1. If Ay > --- > Ay, thenset (dy, ..., dn) = A(A) — (A1,..., Ay,) and stop.

Else, go to Step 2.
Step 2. Let 2 < 5 < k < £ < n be such that

Aj 1 #Dj= o =Dp <Ap=---=0g# 8.

Replace each A, . . ., Apby (Aj 4 -+ Ap)/(£— 3+ 1), and go to Step 1.
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The following two examples illustrate the algorithm in the theorem.

Example 1 Let A = [-diag(4,3,3,0) and B = ;5diag (3,3,3,1).
Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
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The following two examples illustrate the algorithm in the theorem.

Example 1 Let A = [-diag(4,3,3,0) and B = ;5diag (3,3,3,1).

Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
Apply Step 1.

Set (d1,...,ds) = {5diag(4,3,3,0) — f5diag(1,0,0, —1) = $5diag(3,3,3,1).
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The following two examples illustrate the algorithm in the theorem.

Example 1 Let A = [-diag(4,3,3,0) and B = ;5diag (3,3,3,1).

Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
Apply Step 1.

Set (d1,...,ds) = {5diag(4,3,3,0) — f5diag(1,0,0, —1) = $5diag(3,3,3,1).

Example 2 Let A = %diag (4,3,3,0) and B = %diag (5,2,2,1).
Apply Step 0:

Set (A1,...,A4) = {5diag(4,3,3,0) — {5diag(5,2,2,1) = {5diag(—1,1,1, —1).
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The following two examples illustrate the algorithm in the theorem.

Example 1 Let A = [-diag(4,3,3,0) and B = ;5diag (3,3,3,1).

Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
Apply Step 1.

Set (d1,...,ds) = {5diag(4,3,3,0) — f5diag(1,0,0, —1) = $5diag(3,3,3,1).

Example 2 Let A = %diag (4,3,3,0) and B = %diag (5,2,2,1).

Apply Step 0:

Set (A1,...,A4) = {5diag(4,3,3,0) — {5diag(5,2,2,1) = {5diag(—1,1,1, —1).
Apply Step 2.

Change (Ap,...,Ay) to {-diag(1/3,1/3,1/3, —1).
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The following two examples illustrate the algorithm in the theorem.

Example 1 Let A = [-diag(4,3,3,0) and B = ;5diag (3,3,3,1).

Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
Apply Step 1.

Set (d1,...,ds) = {5diag(4,3,3,0) — f5diag(1,0,0, —1) = $5diag(3,3,3,1).

Example 2 Let A = %diag (4,3,3,0) and B = %diag (5,2,2,1).

Apply Step 0:

Set (A1,...,A4) = {5diag(4,3,3,0) — {5diag(5,2,2,1) = {5diag(—1,1,1, —1).
Apply Step 2.

Change (Ap,...,Ay) to {-diag(1/3,1/3,1/3, —1).
Apply Step 1.

Set (dy,...,dq) = 5diag(4,3,3,0) — {5diag(1/3,1/3,1/3, —1) = Z=diag (11,8, 8, 3).
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Connection to quantum information science

@ Mathematically, quantum states are represented by density matrices, i.e.,
positive semidefinite matrices with trace 1.
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@ Mathematically, quantum states are represented by density matrices, i.e.,
positive semidefinite matrices with trace 1.

@ (Choi, 1975) Quantum operations / channels are represented by trace
preserving completely positive maps that admit the operator sum
representation

®(X) =Y FXF; forall X € M,,
j=1

where F, ..., F. € M, satisfy 2;:1 FiFj =1,
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preserving completely positive maps that admit the operator sum
representation

®(X) =Y FXF; forall X € M,,
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where F, ..., F. € M, satisfy 2;:1 FiFj =1,

A basic problem

Suppose a quantum state p goes through a quantum channel/operation ®.
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Connection to quantum information science

@ Mathematically, quantum states are represented by density matrices, i.e.,
positive semidefinite matrices with trace 1.

@ (Choi, 1975) Quantum operations / channels are represented by trace
preserving completely positive maps that admit the operator sum
representation

®(X) =Y FXF; forall X € M,,
j=1

where F, ..., F. € M, satisfy 2;:1 FiFj =1,

A basic problem

Suppose a quantum state p goes through a quantum channel/operation ®.
How close/far away is ®(p) to another quantum state o?

Of course, it depends on the type of quantum operation applied.
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Unitary channels: ®(X) =UXU*

Base on the classical results on ||A — UBU™|| for given Hermitian matrices
A, B € M,, and unitary U € M,,, we have the following.
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Unitary channels: ®(X) =UXU*

Base on the classical results on ||A — UBU™|| for given Hermitian matrices
A, B € M,, and unitary U € M,,, we have the following.

Theorem
Let || - || be a USI norm, o, p are density matrices with eigenvalues
a1 >--->a, and by >--->b,.
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Unitary channels: ®(X) =UXU*

Base on the classical results on ||A — UBU™|| for given Hermitian matrices
A, B € M,, and unitary U € M,,, we have the following.

Theorem
Let || - || be a USI norm, o, p are density matrices with eigenvalues
a1 >--->a, and by >--->b,.

For unitary channels @,
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Unitary channels: ®(X) =UXU*

Base on the classical results on ||A — UBU™|| for given Hermitian matrices
A, B € M,, and unitary U € M,,, we have the following.

Theorem

Let || - || be a USI norm, o, p are density matrices with eigenvalues
a1 >--->a, and by >--->b,.

For unitary channels @,

@ min |l — ®(p)|| = ||diag (a1 — b1, ..., an — bn)|| and occurs at
®(p) = VpV* with the existence of a unitary U € M, satisfying

UoU" = diag (a1,...,a,) and U®(p)U" = diag (b1, ...,bn);
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Unitary channels: ®(X) =UXU*

Base on the classical results on ||A — UBU™|| for given Hermitian matrices
A, B € M,, and unitary U € M,,, we have the following.

Theorem

Let || - || be a USI norm, o, p are density matrices with eigenvalues
a1 >--->a, and by >--->b,.

For unitary channels @,

@ min |l — ®(p)|| = ||diag (a1 — b1, ..., an — bn)|| and occurs at
®(p) = VpV* with the existence of a unitary U € M, satisfying

UoU" = diag (a1,...,a,) and U®(p)U" = diag (b1, ...,bn);

@ max |loc — ®(p)|| = ||diag (a1 — bn,...,an — b1)|| and occurs at
®(p) = VpV* with the existence of a unitary U satisfying

UoU™* = diag (ai1,...,an) and U®(p)U" = diag (bn,...,b1).
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Mixed Unitary and Unital Channels

One may consider using mixed unitary channels of the form
k
®(X) = pU;XU;,
j=1

where p1,...,pr > 0 summing up to 1, and Uy, ..., U € M, are unitary.
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Mixed Unitary and Unital Channels

One may consider using mixed unitary channels of the form
k
®(X) = pU;XU;,
j=1

where p1,...,pr > 0 summing up to 1, and Uy, ..., U € M, are unitary.
Note that if ® is mixed unitary, then ®(I) = I, i.e., @ is unital.
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k
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Mixed Unitary and Unital Channels

One may consider using mixed unitary channels of the form
k
®(X) = pU;XU;,
j=1

where p1,...,pr > 0 summing up to 1, and Uy, ..., U € M, are unitary.
Note that if ® is mixed unitary, then ®(I) = I, i.e., @ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let p,o € M,, be density matrices. The following are equivalent.
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Mixed Unitary and Unital Channels

One may consider using mixed unitary channels of the form
k
®(X) = pU;XU;,
j=1

where p1,...,pr > 0 summing up to 1, and Uy, ..., U € M, are unitary.
Note that if ® is mixed unitary, then ®(I) = I, i.e., @ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let p,o € M,, be density matrices. The following are equivalent.

@ There exists a mixed unitary quantum channel ® such that ®(p) = o.
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Mixed Unitary and Unital Channels

One may consider using mixed unitary channels of the form
k
®(X) = pU;XU;,
j=1

where p1,...,pr > 0 summing up to 1, and Uy, ..., U € M, are unitary.
Note that if ® is mixed unitary, then ®(I) = I, i.e., @ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let p,o € M,, be density matrices. The following are equivalent.
@ There exists a mixed unitary quantum channel ® such that ®(p) = o.
@ There are unitary matrices Us, ...,U, € M, such that
o =L (UpUf +-- -+ UnpUy).
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Mixed Unitary and Unital Channels

One may consider using mixed unitary channels of the form
k
®(X) = pU;XU;,
j=1

where p1,...,pr > 0 summing up to 1, and Uy, ..., U € M, are unitary.
Note that if ® is mixed unitary, then ®(I) = I, i.e., @ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let p,o € M,, be density matrices. The following are equivalent.
@ There exists a mixed unitary quantum channel ® such that ®(p) = o.
@ There are unitary matrices Us, ...,U, € M, such that
o =L (UpUf +-- -+ UnpUy).

© There exists a unital quantum channel ® such that ®(p) = o.
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Mixed Unitary and Unital Channels

One may consider using mixed unitary channels of the form
k
®(X) = pU;XU;,
j=1

where p1,...,pr > 0 summing up to 1, and Uy, ..., U € M, are unitary.
Note that if ® is mixed unitary, then ®(I) = I, i.e., @ is unital.

One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]

Let p,o € M,, be density matrices. The following are equivalent.
@ There exists a mixed unitary quantum channel ® such that ®(p) = o.
@ There are unitary matrices Us, ...,U, € M, such that
o =L (UpUf +-- -+ UnpUy).
© There exists a unital quantum channel ® such that ®(p) = o.

Q Ao) < Alp).

The sum of the k largest eigenvalues of o is not larger than thatof p for k =1,...,n — 1.
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Theorem [Li & Tsing, 1989]

Let || - || be a USI norm, o, p are density matrices with eigenvalues

ay >+ >an and by > -+ > by.
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Theorem [Li & Tsing, 1989]

Let || - || be a USI norm, o, p are density matrices with eigenvalues

ay >+ >an and by > -+ > by.

For any unital channel @,
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Theorem [Li & Tsing, 1989]

Let || - || be a USI norm, o, p are density matrices with eigenvalues
ar >+ 2anand by > - > bn.
For any unital channel @,
o max||o — B(p)|| = [|diag (a1 — ba, ., an — b))
occurs at ®(p) with the existence of a unitary U such that
UoU* = diag(ai1,...,an) and U®(p)U" = diag (bn,...,b1);
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Theorem [Li & Tsing, 1989]

Let || - || be a USI norm, o, p are density matrices with eigenvalues

a1 >--->apand by > --- > by.
For any unital channel @,
o max |l — B(p)|| = |[diag (@1 — bn, . ., an — by)]
occurs at ®(p) with the existence of a unitary U such that
UoU* = diag(ai1,...,an) and U®(p)U" = diag (bn,...,b1);
@ min |l — ®(p)|| = ||diag (a1 — da, ..., an — dn)||
occurs at ®(p) with the existence of a unitary U such that
UoU™ = diag (a1,...,an) and U®P(p)U* = diag(di,...,dn),

where (di,...,dr) is determined by the following algorithm
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Theorem [Li & Tsing, 1989]

Let || - || be a USI norm, o, p are density matrices with eigenvalues

ay >+ >an and by > -+ > by.

For any unital channel @,

o max |l — B(p)|| = |[diag (@1 — bn, . ., an — by)]
occurs at ®(p) with the existence of a unitary U such that
UoU* = diag(ai1,...,an) and U®(p)U" = diag (bn,...,b1);
@ min |l — ®(p)|| = ||diag (a1 — da, ..., an — dn)||
occurs at ®(p) with the existence of a unitary U such that
UoU™ = diag (a1,...,an) and U®P(p)U* = diag(di,...,dn),
where (di,...,dr) is determined by the following algorithm
Step 0. Set (A1, ..., Ap) = Xo) — X(p).
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Theorem [Li & Tsing, 1989]

Let || - || be a USI norm, o, p are density matrices with eigenvalues

ay >+ >an and by > -+ > by.

For any unital channel @,

@ max |loc — ®(p)|| = ||diag (a1 — bn, ..., an — b1)||
occurs at ®(p) with the existence of a unitary U such that
UoU* = diag(ai1,...,an) and U®(p)U" = diag (bn,...,b1);
@ min |l — ®(p)|| = ||diag (a1 — da, ..., an — dn)||
occurs at ®(p) with the existence of a unitary U such that
UoU™ = diag (a1,...,an) and U®P(p)U* = diag(di,...,dn),

where (di,...,dr) is determined by the following algorithm
Step 0. Set (A1, ..., Ap) = Xo) — X(p).
Step 1. If Ay > -+ > Ay, thenset (d1,...,dn) = X(p) — (A1,...,Ay) and stop.

Else, go to Step 2.
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Theorem [Li & Tsing, 1989]

Let || - || be a USI norm, o, p are density matrices with eigenvalues

ay >+ >an and by > -+ > by.

For any unital channel @,

@ max |loc — ®(p)|| = ||diag (a1 — bn, ..., an — b1)||
occurs at ®(p) with the existence of a unitary U such that
UoU* = diag(ai1,...,an) and U®(p)U" = diag (bn,...,b1);
@ min |l — ®(p)|| = ||diag (a1 — da, ..., an — dn)||
occurs at ®(p) with the existence of a unitary U such that
UoU™ = diag (a1,...,an) and U®P(p)U* = diag(di,...,dn),

where (di,...,dr) is determined by the following algorithm
Step 0. Set (A1, ...,An) = A(o) — A(p).
Step 1. If Ay > -+ > Ay, thenset (d1,...,dn) = X(p) — (A1,...,Ay) and stop.

Else, go to Step 2.
Step 2. Let 2 < 5 < k < £ < n be such that

Aj 1 #Dj=- =D <Ap=--=R85#8g;;.

Replace each Aj, ..., Ap by (Aj +--- 4+ Ap)/(£ — j+ 1), and go to Step 1.
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The two previous examples illustrating the algorithm in the theorem.

Example 1 Let o = ;5diag (4,3,3,0) and p = }diag(3,3,3,1).
Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
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The two previous examples illustrating the algorithm in the theorem.

Example 1 Let o = ;5diag (4,3,3,0) and p = }diag(3,3,3,1).

Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
Apply Step 1.

Set (d1,...,ds) = {5diag(4,3,3,0) — f5diag(1,0,0, —1) = $5diag(3,3,3,1).
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The two previous examples illustrating the algorithm in the theorem.

Example 1 Let o = ;5diag (4,3,3,0) and p = }diag(3,3,3,1).

Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
Apply Step 1.

Set (d1,...,ds) = {5diag(4,3,3,0) — f5diag(1,0,0, —1) = $5diag(3,3,3,1).

Example 2 Let 0 = Tlodiag (4,3,3,0) and p = %diag (5,2,2,1).
Apply Step 0:

Set (A1,...,A4) = {5diag(4,3,3,0) — {5diag(5,2,2,1) = {5diag(—1,1,1, —1).
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The two previous examples illustrating the algorithm in the theorem.

Example 1 Let o = ;5diag (4,3,3,0) and p = }diag(3,3,3,1).

Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
Apply Step 1.

Set (d1,...,ds) = {5diag(4,3,3,0) — f5diag(1,0,0, —1) = $5diag(3,3,3,1).

Example 2 Let 0 = Tlodiag (4,3,3,0) and p = %diag (5,2,2,1).

Apply Step 0:

Set (A1,...,A4) = {5diag(4,3,3,0) — {5diag(5,2,2,1) = {5diag(—1,1,1, —1).
Apply Step 2.

Change (Ap,...,Ay) to {-diag(1/3,1/3,1/3, —1).
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The two previous examples illustrating the algorithm in the theorem.

Example 1 Let o = ;5diag (4,3,3,0) and p = }diag(3,3,3,1).

Apply Step 0:

Set (A1,...,Ay) = {5diag(4,3,3,0) — $5diag(3,3,3,1) = {5diag(1,0,0,—1).
Apply Step 1.

Set (d1,...,ds) = {5diag(4,3,3,0) — f5diag(1,0,0, —1) = $5diag(3,3,3,1).

Example 2 Let 0 = Tlodiag (4,3,3,0) and p = %diag (5,2,2,1).

Apply Step 0:

Set (A1,...,A4) = {5diag(4,3,3,0) — {5diag(5,2,2,1) = {5diag(—1,1,1, —1).
Apply Step 2.

Change (Ap,...,Ay) to {-diag(1/3,1/3,1/3, —1).
Apply Step 1.

Set (dy,...,dq) = 5diag(4,3,3,0) — {5diag(1/3,1/3,1/3, —1) = Z=diag (11,8, 8, 3).
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General Quantum Channels

Assume one can use any quantum channel

(X) =Y FXF, Y FF=I.

Fact Let p,o € M,, be density matrices. There is always a quantum channel ¢
such that

®(p) =o.
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General Quantum Channels

Assume one can use any quantum channel

(X) =Y FXF, Y FF=I.

Fact Let p,o € M,, be density matrices. There is always a quantum channel ¢

such that
®(p) =o.

Theorem [Li, Pelejo, Wang, 2016]

Let || - || be a USI norm, o, p are density matrices with eigenvalues

a1 >--->an, and by >--->by.
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General Quantum Channels

Assume one can use any quantum channel

(X) =Y FXF, Y FF=I.

Fact Let p,o € M,, be density matrices. There is always a quantum channel ¢
such that

®(p) =o.

Theorem [Li, Pelejo, Wang, 2016]

Let || - || be a USI norm, o, p are density matrices with eigenvalues
ap >--->an and by >--- > by

For general quantum channels @,
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General Quantum Channels

Assume one can use any quantum channel

(X) =Y FXF, Y FF=I.

Fact Let p,o € M,, be density matrices. There is always a quantum channel ¢
such that

®(p) =o.

Theorem [Li, Pelejo, Wang, 2016]

Let || - || be a USI norm, o, p are density matrices with eigenvalues
ap >--->an and by >--- > by
For general quantum channels @,

@ min|loc — ®(p)|| = 0 occurs at ®(p) = o;
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General Quantum Channels

Assume one can use any quantum channel

(X) =Y FXF, Y FF=I.

Fact Let p,o € M,, be density matrices. There is always a quantum channel ¢
such that

®(p) =o.

Theorem [Li, Pelejo, Wang, 2016]

Let || - || be a USI norm, o, p are density matrices with eigenvalues
ap >--->an and by >--- > by
For general quantum channels @,

@ min|loc — ®(p)|| = 0 occurs at ®(p) = o;

@ max ||oc — ®(p)| = ||diag (a1, - ..,an—1,an — 1)|| occurs at ®(p) with the
existence of a unitary U such that

UoU" = diag(ai1,...,a,) and U®(p)U" = diag(0,...,0,1).
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Additional results

Consider the fidelity function F(A, B) = ||AY2B"Y?||,, = trVA/2BAY/2,
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Additional results

Consider the fidelity function F(A, B) = ||AY2B"Y?||,, = trVA/2BAY/2,

Theorem [Zhang, Fei, 2014]

Suppose p, o have eigenvalues a1 > -+ > a, and by > -+ > by,
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Additional results

Consider the fidelity function F(A, B) = ||AY2B"Y?||,, = trVA/2BAY/2,

Theorem [Zhang, Fei, 2014]

Suppose p, o have eigenvalues a1 > -+ > a, and by > -+ > by,

For unitary channels &,
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Additional results

Consider the fidelity function F(A, B) = ||AY2B"Y?||,, = trVA/2BAY/2,

Theorem [Zhang, Fei, 2014]

Suppose p, o have eigenvalues a1 > -+ > a, and by > -+ > by,

For unitary channels &,

® max F(0, ®(p)) = F(D1D2) =37, \/a;b; occurs at ®(p) with the
existence of a unitary U such that

al b1
Dy =UoU"* = < ) Dy =Ud(p)U* = < >;
an bn
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Additional results

Consider the fidelity function F(A, B) = ||AY2B"Y?||,, = trVA/2BAY/2,

Theorem [Zhang, Fei, 2014]

Suppose p, o have eigenvalues a1 > -+ > a, and by > -+ > by,

For unitary channels &,

® max F(0, ®(p)) = F(D1D2) =37, \/a;b; occurs at ®(p) with the
existence of a unitary U such that

al b1
=UoU* = < ) Dy =Ud(p)U* = < >;
an bn

@ min F(o,®(p)) = F(D1Ds) =D i1 V/ajba—js1 occurs at ®(p) with

the existence of a unitary U such that

al bn
=UoU" = ( ) Dy =UQ(p)U* = < >
An b1
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Additional results

Consider the fidelity function F(A, B) = ||AY2B"Y?||,, = trVA/2BAY/2,

Theorem [Zhang, Fei, 2014]

Suppose p, o have eigenvalues a1 > -+ > a, and by > -+ > by,

For unitary channels &,

® max F(0, ®(p)) = F(D1D2) =37, \/a;b; occurs at ®(p) with the
existence of a unitary U such that

al b1
=UoU* = < ) Dy =Ud(p)U* = < >;
an bn

@ min F(o,®(p)) = F(D1Ds) =D i1 V/ajba—js1 occurs at ®(p) with

the existence of a unitary U such that

al bn
=UoU" = ( ) Dy =UQ(p)U* = < >
An b1

In [J Li, Pereira, Plosker, 2015], the authors pointed out that the above
minimum condition also holds for unital channels / mixed unitary channels,

Chi-Kwong Li, College of William & Mary Matrix problems in Quantum Information Science



Additional results

Consider the fidelity function F(A, B) = ||AY2B"Y?||,, = trVA/2BAY/2,

Theorem [Zhang, Fei, 2014]

Suppose p, o have eigenvalues a1 > -+ > a, and by > -+ > by,

For unitary channels &,

® max F(0, ®(p)) = F(D1D2) =37, \/a;b; occurs at ®(p) with the
existence of a unitary U such that

al b1
=UoU* = < ) Dy =Ud(p)U* = < >;
an bn

@ min F(o,®(p)) = F(D1Ds) =D i1 V/ajba—js1 occurs at ®(p) with

the existence of a unitary U such that

al bn
=UoU" = ( ) Dy =UQ(p)U* = < >
An b1

In [J Li, Pereira, Plosker, 2015], the authors pointed out that the above
minimum condition also holds for unital channels / mixed unitary channels,
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Theorem [Li, Pelejo, Wang, 2016]

Suppose o, p have eigenvalues a1 > --- > apn and by > --- > by,.
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Theorem [Li, Pelejo, Wang, 2016]

Suppose o, p have eigenvalues a1 > --- > apn and by > --- > by,.

For unital channels, mixed unitary channels, or average unitary channels ®,
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Theorem [Li, Pelejo, Wang, 2016]

Suppose o, p have eigenvalues a1 > --- > apn and by > --- > by,.

For unital channels, mixed unitary channels, or average unitary channels ®,
max F'(o, ®(p)) = F(D1Do) occurs at ®(p) with the existence of a unitary U
such that
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Theorem [Li, Pelejo, Wang, 2016]

Suppose o, p have eigenvalues a1 > --- > apn and by > --- > by,.

For unital channels, mixed unitary channels, or average unitary channels ®,
max F'(o, ®(p)) = F(D1Do) occurs at ®(p) with the existence of a unitary U
such that

Dy =UoU™ =diag(a1,...,as), Do=U®(p)U" = diag(di,...,dn),

where di, ..., d, are determined as follows.
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Theorem [Li, Pelejo, Wang, 2016]

Suppose o, p have eigenvalues a1 > --- > apn and by > --- > by,.

For unital channels, mixed unitary channels, or average unitary channels ®,
max F'(o, ®(p)) = F(D1Do) occurs at ®(p) with the existence of a unitary U
such that

Dy =UoU™ =diag(a1,...,as), Do=U®(p)U" = diag(di,...,dn),

where di, ..., d, are determined as follows.
Step 0. Suppose a1 > - -+ > ap >0 =apqy1 = -+ = an. Let
a=(a1,...,ar), b=(b1,...,br), (drg1,...,dn) = (brt1,...,bn).
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Theorem [Li, Pelejo, Wang, 2016]

Suppose o, p have eigenvalues a1 > --- > apn and by > --- > by,.

For unital channels, mixed unitary channels, or average unitary channels ®,
max F'(o, ®(p)) = F(D1Do) occurs at ®(p) with the existence of a unitary U
such that

Dy =UoU™ =diag(a1,...,as), Do=U®(p)U" = diag(di,...,dn),

where di, ..., d, are determined as follows.
Step 0. Suppose a1 > - -+ > ap >0 =apqy1 = -+ = an. Let
a=(ai,...,ar), b=(b1,...,br), (dr41,...,dn) = (brt1,...,bn).
Go to Step 1.
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Theorem [Li, Pelejo, Wang, 2016]

Suppose o, p have eigenvalues a1 > --- > apn and by > --- > by,.

For unital channels, mixed unitary channels, or average unitary channels ®,
max F'(o, ®(p)) = F(D1Do) occurs at ®(p) with the existence of a unitary U
such that

Dy =UoU™ =diag(a1,...,as), Do=U®(p)U" = diag(di,...,dn),

where di, ..., d, are determined as follows.
Step 0. Suppose a1 > - -+ > ap >0 =apqy1 = -+ = an. Let
a=(ai,...,ar), b=(b1,...,br), (dr41,...,dn) = (brt1,...,bn).
Go to Step 1.
Step 1. Let k € {1,...,r} be the largest positive integer such that
— ) < (b1, - by)
—(a1,.--,ap ———————— (b1, -, b))
a1+ +ag by + -+ by
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Theorem [Li, Pelejo, Wang, 2016]

Suppose o, p have eigenvalues a1 > --- > apn and by > --- > by,.

For unital channels, mixed unitary channels, or average unitary channels ®,
max F'(o, ®(p)) = F(D1Do) occurs at ®(p) with the existence of a unitary U
such that

Dy =UoU™ =diag(a1,...,as), Do=U®(p)U" = diag(di,...,dn),

where di, ..., d, are determined as follows.
Step 0. Suppose a1 > - -+ > ap >0 =apqy1 = -+ = an. Let
a=(a1,...,ar), b= (b1,...,br), (dry1,...,dn) = (bry1,...,bn).
Go to Step 1.
Step 1. Let k € {1,...,r} be the largest positive integer such that
— ) < (b1, - by)
—(a1,.--,ap ———————— (b1, -, b))
a1+ +ag by + -+ by
Set o o
a1+ +ag
(d1,...,dg) = —————(a1,...,ag).
by + .-+ by
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Theorem [Li, Pelejo, Wang, 2016]

Suppose o, p have eigenvalues a1 > --- > apn and by > --- > by,.
For unital channels, mixed unitary channels, or average unitary channels ®,
max F'(o, ®(p)) = F(D1Do) occurs at ®(p) with the existence of a unitary U
such that
* . * .
D: =UoU" =diag (a1,...,an), Do=UP(p)U" = diag(di,...,dn),
where di, ..., d, are determined as follows.
Step 0. Suppose a1 > - -+ > ap >0 =apqy1 = -+ = an. Let
a=(ai,...,ar), b=(b1,...,br), (dr41,...,dn) = (brt1,...,bn).
Go to Step 1.
Step 1. Let k € {1,...,r} be the largest positive integer such that
— RS R )
— (a1, ..., af — (b1, ..., bg).
a1+ +ap by + - + by
Set o o
al + - +ayg
(d1,...,dg) = —————(a1,...,ag).
by 4 -+ by
If k = r, then exit. Else, replace , a,b by r — k, (ag41,-.-,ar), (bgg1,-..,br) and go to Step 1.
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Examples If (a1,...,an) < (b1,...,byn), then (di1,...,dn) = (a1,...,an).
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Examples If (a1,...,an) < (b1,...,byn), then (di1,...,dn) = (a1,...,an).
If (b1,...,bn) =(1/n,...,1/n), then (di,...,dn) = (1/n,...,1/n).

Additional results
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Examples If (a1,...,an) < (b1,...,byn), then (di1,...,dn) = (a1,...,an).
If (b1,...,bn) =(1/n,...,1/n), then (di,...,dn) = (1/n,...,1/n).

Additional results

@ We also considered general quantum channels to maximize the fidelity
function.
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Examples If (a1,...,an) < (b1,...,byn), then (di1,...,dn) = (a1,...,an).
If (b1,...,bn) =(1/n,...,1/n), then (di,...,dn) = (1/n,...,1/n).

Additional results

@ We also considered general quantum channels to maximize the fidelity
function.

@ Results are also obtained results for other functions on two density
matrices such as the relative entropy:

S(A||B) = tr A(log, A — log, B).
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Further researc

There are many open problems.
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Further research

There are many open problems.

@ For two given families of quantum states {p1,...,px},{01,...,0%}, and
a distance measures d, study the optimal lower and upper bounds of the

set
{d((o1,...,00), (®(p1),..., D(px))) : € S}

for a set S of quantum channels.
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Further research

There are many open problems.

@ For two given families of quantum states {p1,...,px},{01,...,0%}, and
a distance measures d, study the optimal lower and upper bounds of the
set

{d((01,. 0, (@(p1), .., D(pr))) : D € S}
for a set S of quantum channels.

@ One may start with the study of ||®(p1 + ip2) — (01 + i02)|| for a certain
norm || - || on My.
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Further research

There are many open problems.

@ For two given families of quantum states {p1,...,px},{01,...,0%}, and
a distance measures d, study the optimal lower and upper bounds of the
set

{d((01,. 0, (@(p1), .., D(pr))) : D € S}
for a set S of quantum channels.

@ One may start with the study of ||®(p1 + ip2) — (01 + i02)|| for a certain
norm || - || on My.

@ For a given o, find minimum (infimum) and maximize (supremum) of the

set
{d(®(p),0): pES, BT}

for a given set S of quantum operations and a given set of S of states.
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Further research

There are many open problems.

For two given families of quantum states {p1,...,pr},{0o1,...,0k}, and
a distance measures d, study the optimal lower and upper bounds of the

set
{d((o1,...,00), (®(p1),..., D(px))) : € S}

for a set S of quantum channels.

One may start with the study of ||®(p1 + ip2) — (o1 + i02)]| for a certain
norm || - || on My.

For a given o, find minimum (infimum) and maximize (supremum) of the

set
{d(®(p),0): pES, BT}

for a given set S of quantum operations and a given set of S of states.

etc. etc.

Chi-Kwong Li, College of William & Mary Matrix problems in Quantum Information Science



Thank you for your attention!

Hope that you are interested in the problems

and will solve some or all of them!
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