
Matrix Problems in Quantum Information Science

Chi-Kwong Li
(Ferguson Professor) College of William and Mary, Virginia,

(Affiliate member) Institute for Quantum Computing, Waterloo

Chi-Kwong Li, College of William & Mary Matrix problems in Quantum Information Science



Introduction

Basic notation and definitions
Let Mn be the set of n× n complex matrix.

Suppose A ∈Mn is Hermitian with eigenvalues a1 ≥ · · · ≥ an.
Denote by λ(A) = (a1, . . . , an) the vector of eigenvalues of A.
Let x, y ∈ Rn. Then x is majorized by y, denoted by x ≺ y, if
(1) the sum of the entries of x is the same as that of y, and
(2) for k = 1, . . . , n− 1, the sum of the k largest entries of x
is not larger than that of y.

A norm on ‖ · ‖ on Mn is unitary similarity invariant (USI) if

‖U∗XU‖ = ‖X‖ for any X ∈Mn and unitary U ∈Mn.

Note: The set of USI norms is strictly larger than the set of unitarily invariant norms, i.e., norms ‖ · ‖

satisfying ‖UXV ‖ = ‖X‖ for all X ∈ Mn and all unitary U, V ∈ Mn.

Let diag (x1, . . . , xn) =

x1
. . .

xn

 .
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A classical result

Theorem [Weyl, Lidskii, etc.]
Let A,B ∈Mn be Hermitian matrices with eigenvalues a1 ≥ · · · ≥ an and
b1 ≥ · · · ≥ bn.

(a1 − b1, . . . , an − bn) ≺ λ(A−B) ≺ (a1 − bn, . . . , an − b1).

Consequently, for any unitary similarity invariant norm ‖ · ‖ on Mn,

‖diag (a1 − b1, . . . , an − bn)‖ ≤ ‖A−B‖ ≤ ‖diag (a1 − bn, . . . , an − b1)‖.

The unitary similarity orbit of B is the set

U(B) = {U∗BU : U ∈Mn, U
∗U = In}.

The above result implies that

max
X∈U(B)

‖A−X‖ = ‖diag (a1 − bn, . . . , an − b1)‖,

and
min

X∈U(B)
‖A−X‖ = ‖diag (a1 − b1, . . . , an − bn)‖.
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Convex hull of a unitary similarity orbit
Finding the distance from A to the convex hull of U(B) is not so easy.

Theorem [Li & Tsing, 1989]
Let A,B ∈Mn be Hermitian matrices with eigenvalues

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.
Suppose ‖ · ‖ is a USI norm on Mn.

max{‖A−X‖ : X ∈ Conv(U(B))} = ‖diag (a1 − bn, . . . , an − b1)‖,

which is the same as maxX∈U(B) ‖A−X‖.

min{‖A−X‖ : X ∈ Conv(U(B))} = ‖diag (a1 − d1, . . . , an − dn)‖,

where (d1, . . . , dn) is determined by the following algorithm
Step 0. Set (∆1, . . . ,∆n) = λ(A)− λ(B).

Step 1. If ∆1 ≥ · · · ≥ ∆n, then set (d1, . . . , dn) = λ(A)− (∆1, . . . ,∆n) and stop.
Else, go to Step 2.

Step 2. Let 2 ≤ j < k ≤ ` ≤ n be such that

∆j−1 6= ∆j = · · · = ∆k−1 < ∆k = · · · = ∆` 6= ∆`+1.

Replace each ∆j , . . . ,∆` by (∆j + · · · + ∆`)/(`− j + 1), and go to Step 1.
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Examples

The following two examples illustrate the algorithm in the theorem.

Example 1 Let A = 1
10 diag (4, 3, 3, 0) and B = 1

10 diag (3, 3, 3, 1).
Apply Step 0:

Set (∆1, . . . ,∆4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (3, 3, 3, 1) = 1
10 diag (1, 0, 0,−1).

Apply Step 1.

Set (d1, . . . , d4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (1, 0, 0,−1) = 1
10 diag (3, 3, 3, 1).

Example 2 Let A = 1
10 diag (4, 3, 3, 0) and B = 1

10 diag (5, 2, 2, 1).
Apply Step 0:

Set (∆1, . . . ,∆4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (5, 2, 2, 1) = 1
10 diag (−1, 1, 1,−1).

Apply Step 2.

Change (∆1, . . . ,∆4) to 1
10 diag (1/3, 1/3, 1/3,−1).

Apply Step 1.

Set (d1, . . . , d4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (1/3, 1/3, 1/3,−1) = 1
30 diag (11, 8, 8, 3).
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Connection to quantum information science

Mathematically, quantum states are represented by density matrices, i.e.,
positive semidefinite matrices with trace 1.

(Choi, 1975) Quantum operations / channels are represented by trace
preserving completely positive maps that admit the operator sum
representation

Φ(X) =
r∑
j=1

FjXF
∗
j for all X ∈Mn,

where F1, . . . , Fr ∈Mn satisfy
∑r

j=1 F
∗
j Fj = In.

A basic problem
Suppose a quantum state ρ goes through a quantum channel/operation Φ.
How close/far away is Φ(ρ) to another quantum state σ?

Of course, it depends on the type of quantum operation applied.
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Unitary channels: Φ(X) = UXU ∗

Base on the classical results on ‖A− UBU∗‖ for given Hermitian matrices
A,B ∈Mn and unitary U ∈Mn, we have the following.

Theorem
Let ‖ · ‖ be a USI norm, σ, ρ are density matrices with eigenvalues

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

For unitary channels Φ,
min ‖σ − Φ(ρ)‖ = ‖diag (a1 − b1, . . . , an − bn)‖ and occurs at
Φ(ρ) = V ρV ∗ with the existence of a unitary U ∈Mn satisfying

UσU∗ = diag (a1, . . . , an) and UΦ(ρ)U∗ = diag (b1, . . . , bn);

max ‖σ − Φ(ρ)‖ = ‖diag (a1 − bn, . . . , an − b1)‖ and occurs at
Φ(ρ) = V ρV ∗ with the existence of a unitary U satisfying

UσU∗ = diag (a1, . . . , an) and UΦ(ρ)U∗ = diag (bn, . . . , b1).
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Mixed Unitary and Unital Channels
One may consider using mixed unitary channels of the form

Φ(X) =
k∑
j=1

pjUjXU
∗
j ,

where p1, . . . , pk > 0 summing up to 1, and U1, . . . , Uk ∈Mn are unitary.

Note that if Φ is mixed unitary, then Φ(I) = I, i.e., Φ is unital.
One may consider using the unital channels to do the transformation.

Theorem [Li and Poon, 2011]
Let ρ, σ ∈Mn be density matrices. The following are equivalent.

1 There exists a mixed unitary quantum channel Φ such that Φ(ρ) = σ.

2 There are unitary matrices U1, . . . , Un ∈Mn such that

σ = 1
n

(U1ρU
∗
1 + · · ·+ UnρU

∗
n) .

3 There exists a unital quantum channel Φ such that Φ(ρ) = σ.

4 λ(σ) ≺ λ(ρ).
The sum of the k largest eigenvalues of σ is not larger than that of ρ for k = 1, . . . , n− 1.
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Theorem [Li & Tsing, 1989]
Let ‖ · ‖ be a USI norm, σ, ρ are density matrices with eigenvalues

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

For any unital channel Φ,

max ‖σ − Φ(ρ)‖ = ‖diag (a1 − bn, . . . , an − b1)‖
occurs at Φ(ρ) with the existence of a unitary U such that
UσU∗ = diag (a1, . . . , an) and UΦ(ρ)U∗ = diag (bn, . . . , b1);

min ‖σ − Φ(ρ)‖ = ‖diag (a1 − d1, . . . , an − dn)‖
occurs at Φ(ρ) with the existence of a unitary U such that
UσU∗ = diag (a1, . . . , an) and UΦ(ρ)U∗ = diag (d1, . . . , dn),

where (d1, . . . , dn) is determined by the following algorithm
Step 0. Set (∆1, . . . ,∆n) = λ(σ)− λ(ρ).

Step 1. If ∆1 ≥ · · · ≥ ∆n, then set (d1, . . . , dn) = λ(ρ)− (∆1, . . . ,∆n) and stop.
Else, go to Step 2.

Step 2. Let 2 ≤ j < k ≤ ` ≤ n be such that

∆j−1 6= ∆j = · · · = ∆k−1 < ∆k = · · · = ∆` 6= ∆`+1.

Replace each ∆j , . . . ,∆` by (∆j + · · · + ∆`)/(`− j + 1), and go to Step 1.
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Examples

The two previous examples illustrating the algorithm in the theorem.

Example 1 Let σ = 1
10 diag (4, 3, 3, 0) and ρ = 1

10 diag (3, 3, 3, 1).
Apply Step 0:

Set (∆1, . . . ,∆4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (3, 3, 3, 1) = 1
10 diag (1, 0, 0,−1).

Apply Step 1.

Set (d1, . . . , d4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (1, 0, 0,−1) = 1
10 diag (3, 3, 3, 1).

Example 2 Let σ = 1
10 diag (4, 3, 3, 0) and ρ = 1

10 diag (5, 2, 2, 1).
Apply Step 0:

Set (∆1, . . . ,∆4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (5, 2, 2, 1) = 1
10 diag (−1, 1, 1,−1).

Apply Step 2.

Change (∆1, . . . ,∆4) to 1
10 diag (1/3, 1/3, 1/3,−1).

Apply Step 1.

Set (d1, . . . , d4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (1/3, 1/3, 1/3,−1) = 1
30 diag (11, 8, 8, 3).
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General Quantum Channels

Assume one can use any quantum channel

Φ(X) =
∑

FjXF
∗
j ,

∑
F ∗j Fj = In.

Fact Let ρ, σ ∈Mn be density matrices. There is always a quantum channel Φ
such that

Φ(ρ) = σ.

Theorem [Li, Pelejo, Wang, 2016]
Let ‖ · ‖ be a USI norm, σ, ρ are density matrices with eigenvalues

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

For general quantum channels Φ,

min ‖σ − Φ(ρ)‖ = 0 occurs at Φ(ρ) = σ;
max ‖σ − Φ(ρ)‖ = ‖diag (a1, . . . , an−1, an − 1)‖ occurs at Φ(ρ) with the
existence of a unitary U such that

UσU∗ = diag (a1, . . . , an) and UΦ(ρ)U∗ = diag (0, . . . , 0, 1).
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Additional results
Consider the fidelity function F (A,B) = ‖A1/2B1/2‖tr = tr

√
A1/2BA1/2.

Theorem [Zhang, Fei, 2014]
Suppose ρ, σ have eigenvalues a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.
For unitary channels Φ,

maxF (σ,Φ(ρ)) = F (D1D2) =
∑n

j=1

√
ajbj occurs at Φ(ρ) with the

existence of a unitary U such that

D1 = UσU∗ =

(
a1

. . .
an

)
, D2 = UΦ(ρ)U∗ =

(
b1

. . .
bn

)
;

minF (σ,Φ(ρ)) = F (D1D̃2) =
∑n

j=1

√
ajbn−j+1 occurs at Φ(ρ) with

the existence of a unitary U such that

D1 = UσU∗ =

(
a1

. . .
an

)
, D̃2 = UΦ(ρ)U∗ =

(
bn

. . .
b1

)
.

In [J Li, Pereira, Plosker, 2015], the authors pointed out that the above
minimum condition also holds for unital channels / mixed unitary channels,
and finding the maximum seems difficult.
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the existence of a unitary U such that

D1 = UσU∗ =

(
a1

. . .
an

)
, D̃2 = UΦ(ρ)U∗ =

(
bn

. . .
b1

)
.

In [J Li, Pereira, Plosker, 2015], the authors pointed out that the above
minimum condition also holds for unital channels / mixed unitary channels,
and finding the maximum seems difficult.Chi-Kwong Li, College of William & Mary Matrix problems in Quantum Information Science



Theorem [Li, Pelejo, Wang, 2016]
Suppose σ, ρ have eigenvalues a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

For unital channels, mixed unitary channels, or average unitary channels Φ,
maxF (σ,Φ(ρ)) = F (D1D0) occurs at Φ(ρ) with the existence of a unitary U
such that

D1 = UσU∗ = diag (a1, . . . , an), D0 = UΦ(ρ)U∗ = diag (d1, . . . , dn),

where d1, . . . , dn are determined as follows.
Step 0. Suppose a1 ≥ · · · ≥ ar ≥ 0 = ar+1 = · · · = an. Let

a = (a1, . . . , ar), b = (b1, . . . , br), (dr+1, . . . , dn) = (br+1, . . . , bn).

Go to Step 1.

Step 1. Let k ∈ {1, . . . , r} be the largest positive integer such that

1
a1 + · · · + ak

(a1, . . . , ak) ≺
1

b1 + · · · + bk

(b1, . . . , bk).

Set
(d1, . . . , dk) =

a1 + · · · + ak

b1 + · · · + bk

(a1, . . . , ak).

If k = r, then exit. Else, replace r, a, b by r − k, (ak+1, . . . , ar), (bk+1, . . . , br) and go to Step 1.
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Examples If (a1, . . . , an) ≺ (b1, . . . , bn), then (d1, . . . , dn) = (a1, . . . , an).

If (b1, . . . , bn) = (1/n, . . . , 1/n), then (d1, . . . , dn) = (1/n, . . . , 1/n).

Additional results

We also considered general quantum channels to maximize the fidelity
function.
Results are also obtained results for other functions on two density
matrices such as the relative entropy:

S(A||B) = tr A(log2 A− log2 B).
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Further research

There are many open problems.

For two given families of quantum states {ρ1, . . . , ρk}, {σ1, . . . , σk}, and
a distance measures d, study the optimal lower and upper bounds of the
set

{d((σ1, . . . , σk), (Φ(ρ1), . . . ,Φ(ρk))) : Φ ∈ S}
for a set S of quantum channels.
One may start with the study of ‖Φ(ρ1 + iρ2)− (σ1 + iσ2)‖ for a certain
norm ‖ · ‖ on Mn.
For a given σ, find minimum (infimum) and maximize (supremum) of the
set

{d(Φ(ρ), σ) : ρ ∈ S,Φ ∈ T }
for a given set S of quantum operations and a given set of S of states.
... etc. etc.
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Thank you for your attention!

Hope that you are interested in the problems
and will solve some or all of them!
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