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Let S be a set of generators of a finite dimensional algebra A
over the field of complex numbers. So A is spanned by the
monomials in elements of S.
Let Li(S) be the span of the monomials of degree at most i .
[We write L0(S) = {I}, if A contains an identity element I.]
We have

L0(S) v L1(S) v ... v Lk (S) v ... (1)

Since dim(A) is finite, we find that dim ( Lk (S)) = dim(Lk+1(S))
= dim(A), for some nonnegative integer k ≤ dim(A), and the
least such k is called the length of S.
The maximum of the lengths of all generating sets of A is called
the length of A.
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The problem of determining the length of the full matrix algebra
Mn appears to have been first posed by Paz (LAMA 15 (1984)
161-170), though the problem of the lengths of generating sets
for Mn consisting of nilpotent matrices is alluded to in Procesi’s
book on polynomial identities.
The inclusion argument outlined above shows that the length of
Mn is, at most, n2 − 1, and Paz improved this bound to n2+2

3 .
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Paz conjectured that the length of Mn is at most 2n − 2.
If proved, this bound would be best possible. It is well-known
that for every prime p, a nonabelian group of order p3 has a
faithful irreducible representation of degree p, and has
generators X ,Y satisfying XY = ωYX , where ω is a primitive
pth root of unity, and it is easy to check that {X ,Y} has length
2p − 2. Olga Markova’s talk contained a detailed analysis of
extensions of this to general n.
Pappacena ( J.Algebra 197 (1997) 535-545) has made a strong
contribution to bounding the lengths of generating sets S for Mn
and proves in particular that the length of S is at most 2n − 2 if
S contains a matrix with n distinct eigenvalues. Also, using a
complicated refinement of Paz’s argument, he obtains an upper
bound of O(n3/2) for the length of Mn.
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One expects that generating sets S of Mn of large length are
hard to find and that if one randomly chooses a generating set
S, one expects that monomials in the elements of S of small
degree will satisfy few linear dependence relations, thus
leading to the length of S being small. This expectation has
been quantified and formally established by Klep and Špenko
(J. Combin. Theory A 143 (2016) 56-65).
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For an odd prime p and positive integer n, let P be a (Hall)
extraspecial p−group of order p2n+1and exponent p.
So the centre Z (P) and commutator subgroup P ′ of P coincide
and have order p. Every non-linear irreducible complex
representation Γ of P is faithful and has degree pn.(Huppert
Endliche Gruppen I,Kap. III,V).
Also, P contains elements x1, ... , x2n such that

P = {xa1
1 ... xa2n

2n zb : 0 ≤ ai ≤ p−1, (1 ≤ i ≤ 2n), 0 ≤ b ≤ p−1},

where Z (P) =< z >. The set S = {Γ(x1), ... , Γ(x2n)}
generates the full matrix algebra Mpn , and its length is at most
2n(p − 1).
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A key argument used by Paz and later Pappacena in obtaining
their upper bounds for the length of Mn is to consider a
monomial m in elements of a generating set S of Mn of degree
k greater than n and examine whether m can be expressed as
a linear combination of monomials in the elements of S of
degree less than k . For example, if m contains a subword of
the form vn for some monomial v in the elements of S of
degree at least one, then one can apply the Cayley-Hamilton
theorem to express vn as a linear combination of powers of v of
lower degree and thus m can be expressed as a linear
combination of monomials of degree less than k .

7 / 35



More generally, if for some s ≥ 1, the quotient space
Ls+1(S)/Ls(S) has dimension t , say, and there are t + 1
distinct subwords of m of degree s + 1, one can use the linear
dependence of these subwords mod Ls(S) to replace one of
them by a linear combination of the others and monomials of
degree less than s + 1. This can be carried out in conjunction
with an ordering, usually lexicographic, on monomials on the
elements of S, and this leads to m being a linear combination of
monomials of length k lower in the ordering and monomials of
degree less than k . These processes are repeated and
eventually shown to imply that for sufficiently large and explicit
k , m can be expressed as a linear combination of monomials of
degree less than k . This argument is in the spirit of Shirshov’s
theorem and is a key ingredient of related work of Friedman,
Gupta and Guralnick (Pacific J. Math.181 (1997) 159-176).
However, the technique requires k to be large and, as
Pappacena points out, it is difficult to get a bound significantly
below O(n3/2) using only this technique.
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Guterman and Markova have developed a powerful variant of
this method.
Instead of considering the inclusion

L0(S) v L1(S) v ... v Lk (S) v ... (1)

for a generating set S of Mn, they choose a particular nonzero
matrix B in Mn, whose expression in terms of monomials in S is
known, and they consider the left ideal MnB (and right ideal
BMn).

If B has rank r , then MnB has dimension rn and the chain of
subspaces of MnB

L0(S)B v L1(S)B v ... v Lk (S)B v ... (1)

stabilizes ; in fact

Lk (S)B = Lk+1(S)B = MnB,

for some k ≤ rn − 1.
In particular, if B has rank one, then Ln−1(S)B = MnB. 9 / 35



If S contains an n × n matrix with n distinct eigenvalues, then
using a similarity, we may assume that S contains a diagonal
matrix D with distinct diagonal entries. But then, for each
integer j with 1 ≤ j ≤ n, there is a polynomial fj(x) of degree at
most n − 1 such that the matrix unit Ejj = fj(D), and taking
B = Ejj in (2) for j = 1, ... n, we immediately deduce that the
length of S is at most 2n − 2, as first proved by Pappacena.
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Similarly, if S contains a nonderogatory nilpotent matrix, one
can assume that S contains the full nilpotent upper triangular
Jordan block J = Jn, then Ln−1(S)Jn−1 = MnJn−1,
Ln−1(S)Jn−2 restricted to column n − 1 is surjective, so that
Ln−1(S)Jn−2 + Ln−1(S)Jn−1 = MnJn−2, similarly, Ln−1(S)Jn−3

restricted to column n − 2 is surjective and
Ln−1(S)Jn−3 + Ln−1(S)Jn−2 + Ln−1(S)Jn−1 = MnJn−1 , and
continuing in this way, one concludes that L2n−2(S) = Mn.
Using the Jordan canonical form, one can extend this argument
to conclude that if S contains a nonderogatory matrix, then
L2n−2(S) = Mn.
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If S = {P,Q} is a generating set for Mn with Q of rank one,
then P is nonderogatory since otherwise the nullspace of Q
would contain an eigenvector of P. Hence S has length at
most 2n − 2. This can also be seen from the fact that any
monomial in P and Q involving two Qs is equal to one involving
at most one Q, since Q has rank one.
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Suppose that S = {A1,A2, ... ,Aq} is a generating set for Mn.
Let x1, x2, ... , xq be distinct commuting indeterminates and
consider the matrix R = x1A1 + x2A2+ ... +xqAq over the
rational function field C(x1, x2,, ... , xq).

If R is nonderogatory, then there are specializations of the xi for
which the corresponding complex matrix is nonderogatory, and
hence S has length at most 2n − 2.
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More generally, one can choose an integer s ≥ 1 and a set of

s
q((qs−1)

q−1 distinct commuting indeterminates yw , w running
through the list of all words of positive degree at most s in q
indeterminates and consider the matrix R =

∑
yww(A1, ...

,Aq), where w(A1, ... ,Aq) is obtained from w by replacing
corresponding indeterminates by A1, ... ,Aq. If R is
nonderogatory over the rational function field C({yw}),then a
specialization R0, say, of R is nonderogatory over the complex
numbers. Then S0 = {A1,A2, ... ,Aq,R0} is a generating set
for Mn containg the nonderogatory matrix R0, so Mn is spanned
by the monomials in S0 of degree at most 2n − 2. Since R0 can
be expressed as a linear combination of monomials of degree
at most s in the matrices A1,A2, ... ,Aq, it follows that S has
length at most (2n − 2)s.
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This leads to the following problem: Given a generating set
S = {A1,A2, ... ,Aq} of Mn, determine the least integer s for
which a linear combination of the monomials in A1, ... ,Aq of
degree at most s is nonderogatory.
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Though the problem seems a natural one, I could not find it
addressed in the literature. One would suspect that the answer
should be O(ln n) and if so, one could deduce that the length
of Mn is O(n ln n).
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It appears to be difficult to find generating sets S of Mn for
which the generic linear combination of the elements is
derogatory. This occurs even in some sets S where the
generators have low degree minimal polynomials.
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The following example appears in my paper (LAMA 6 (1978)
269-305):
Let

A =



0 0 0 0 0 0
0 0 0 0 0 0
1 2 0 −1 0 0
0 0 0 0 0 0
3 4 0 −2 0 0
1 1 0 −1 0 0

 ,B =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 .

Then S = {A,B} generates M6. Here A2 = B3 = 0 and all
monomials AiBj (i ≥ 1, j ≥ 1) are nilpotent. Also
det(xA + yB − zI) = z6. Despite this, A + B is nonderogatory.
The monomial ABAB2is not nilpotent.
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We now consider another special type of generating set for Mn.
We know that if S = {P,Q} generates Mn and P and Q are
idempotents (or more generally have quadratic minimal
polynomials), then n = 2. However, for every positive integer n,
Mn can be generated by three idempotents. We now show that
this can be done under the further restriction that some pair
commutes.
Let Jn be the full nilpotent n × n upper triangular Jordan block
and let P be the n × n matrix with odd numbered rows 1,3, ...
the same as the corresponding rows of In + Jn and all other
rows zero.
Let Q = Jn + In − P and let R = En−11 + En−1n−1 + En2 + Enn, if
n ≥ 4 is even and R = En−11 + En−1n−1 − En1 + Enn if n ≥ 3 is
odd.
Then P,Q,R are idempotents which generate Mn for n ≥ 3 and
RP = PR if n is even, while QR = RQ, if n is odd. In this
example, P + Q is nonderogatory, so S = {P,Q,R} has length
at most 2n − 2.
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For example, for n = 6,

P =



1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0

 , Q=



0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 1

 ,

R =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0
0 1 0 0 0 1

 .
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To see that {P,Q,R} generates M6, observe that if U is a
nonzero invariant subspace of C6, then U must contain an
eigenvector of P + Q, so U must contain the standard unit
vector e1 and therefore also Re1 = e5 and applying powers of
P + Q, we see that U must contain e4,e3,e2 and Re2 = e6, so
U = C6.
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One can also show that the full matrix algebra Mn (n ≥ 3) can
be generated by three idempotents by using

group representation theory as follows:
The symmetric group Sn+1 of degree n + 1 is generated by
α = (1 2) and β = (1 2 ... n + 1), and conjugation of β by

γ = (2 n + 1)(3 n)(4 n − 1) ... (
n
2

+ 1
n
2

+ 2), (n even)

= (2 n + 1)(3 n)(4 n − 1) ... (
n + 1

2
n + 5

2
), (n odd).

yields β−1. Now β = γδ, where γ and also δ = β−1γ are
involutions (that is, their squares equal the identity element).

22 / 35



Let P,Q,R be the permutation matrices corresponding to
α, γ, δ, respectively. Then P,Q,R generate the group of all
(n + 1)× (n + 1) permutation matrices. Each permutation
matrix fixes the ’all ones’ vector and its orthogonal (unitary)
complement U, say, is {P,Q,R}−invariant. The space U is
irreducible under the induced action and thus the restrictions of
P,Q,R to U generate the full matrix algebra Mn. Since
(P + I)/2, (Q + I)/2 and (R + I)/2 are idempotents, it follows
that Mn is generated by three idempotents.
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Note also that Sn+1 is generated by β = (1 2 ... n) and
ε = (1 n + 1).
Now, β can be written as the product γδ of two involutions as
above and, in the construction, γ and ε act on disjoint sets, so
γε = εγ. This yields another proof of the fact that Mn can be
generated by three idempotents, some pair of which commute.
In this and in the previous example, the generic linear
combination of the generating set is nonderogatory.

24 / 35



We now consider a special situation.
Suppose that n = 2t is even and that S is a generating set for
Mn which contains a diagonalizable matrix with characteristic
polynomial the square of its minimal polynomial. Using a
similarity, we may assume that S contains the direct sum

N =

(
D 0
0 D

)
, where D is a t × t real diagonal matrix with

distinct nonzero diagonal entries.

Then, for each integer j with 1 ≤ j ≤ t , Ejj + Et+jt+j is a
polynomial in N of degree at most t and
L2n−1(S)(Ejj + Et+jt+j) = Mn (Ejj + Et+jt+j).
This implies that S has length less than 5n/2 in this case.
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A conjecture of Kippenhahn (1951) stated that if H and K are
n × n Hermitian matrices for which {H,K} generates Mn, then
the matrix xH + yK is nonderogatory over the function field
C(x , y).
In 1983, counterexamples were constructed independently by
Waterhouse and the speaker. Waterhouse’s counterexamples
have a higher power of z dividing det(zI − xH − yK ) than
divides the minimal polynomnial of xH + yK , while the speaker
exhibited such a generating set {H,K} in M8 for which
det(zI − xH − yK ) is the square of the minimal polynomial of
xH + yK .
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Notice that had Kippenhahn’s conjecture been correct, it would
have implied that the length of a generating set {H,K} of Mn
with H and K Hermitian must have length at most 2n − 2, but
whether this bound holds is still not known.
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We now show that counterexamples to Kippenhahn’s
conjecture with the characteristic polynomial of xH + yK the
square of its minimal polynomial are easy to construct for each
even m ≥ 8.
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Let m = 2n ≥ 8 be even and let D be a real diagonal n × n
matrix with distinct nonzero diagonal entries.
Let S be a real symmetric n × n and V = (I − iS)(I + iS)−1,
where i =

√
−1.

So V = V T is unitary.
Let V be the complex conjugate of V , so V−1 = V .
Let VDV = 2X + iQ, where X and Q are real matrices. Then X
is real symmetric and Q is real orthogonal.

Let A =

(
0n X
−X Q

)
. Then A is real skewsymmetric.

Let B =

(
0n In
−In 0n

)
and H = A2 and K = AB + BA. So

H =

(
−X 2 XQ
−QX Q2 − X 2

)
,K =

(
−2X Q
−Q −2X

)
.
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Let J =

(
In iIn
iIn In

)
. Then JJ = 2In and

JK J =

(
−(2X + iQ) 0

0 −(2X − iQ)

)
.

Let W =

(
V 0
0 V

)
. Then W−1 = W and

K1 = (WJ)K (WJ)−1 =

(
−D 0
0 −D

)
.
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Now for distinct commuting indeterminates u, v , consider the
pencil uA + vB. For real specializations of u, v , uA + vB is a
real skewsymmetric matrix so it is diagonalizable with (since B
is nonsingular) paired eigenvalies ±iλ, for various real numbers
λ. Hence the characteristic polynomial det(zI − (u A +vB)2) is
a perfect square in R[u, v , z]. Since
(u A +vB)2 = u2H + uvK − v2I, it follows that det(zI − xH − yK )
is a perfect square in R[x , y , z]. Since K has n distinct
eigenvalues, each with multiplicity two, it follows that
det(zI − xH − yK ) = f (x , y , z)2, where f (x , y , z) is the minimal
polynomial of xH + yK .
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Since H and K are Hermitian, the algebra G generated by
{H,K} is semi-simple.
Hence if G is not M2n, the centralizer of G contains a non-scalar
matrix.
To determine whether G is M2n, it suffices to do this for
(WJ)G(WJ)−1, the algebra generated by K1 and

H1 = (WJ)G(WJ)−1

= (1/4)W
(

Q2 − (2X + iQ)2 (2X + iQ)Q −Q(2X − iQ)
((2X − iQ)Q −Q(2X + iQ) Q2 − (2X − iQ)2

)
W−1

= (1/4)

(
VQ2V − D2 DM −MD
DM −MD VQ2V

)

= (1/4)

(
VQ2V − D2 [D,M]

[D,M] VQ2V

)
,

where M = VQV , and [D,M] = DM −MD.
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Now, since D has distinct diagonal entries, the centralizer of K1
is the algebra of all 2n × 2n matrices of the form

C =

(
C1 C2
C3 C4

)
,

where C1,C2,C3,C4 are n × n diagonal matrices.
So {H1,K1} generates M2n if and only if the only such matrices
C which commute with H1 are the scalar matrices.
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We can choose D and S randomly and test whether the
corresponding {H,K} generates M2n by solving the linear
system H1C = CH1 for C as above, where H,K transform to
H1,K1, as above.
For example, taking n = 4 and

D =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 . S =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 ,

one finds that the corresponding {H,K} do generate M8, while
for the same D and

S =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 ,

they do not.
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For n = 6,

D =



1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6

 , S =



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 1

 ,

the corresponding {H,K} generates M12.
By an earlier result, since H and K are Hermitian and the
characteristic polynomial of the pencil xH + yK is the square of
its minimal polynomial, if S = {H,K} generates M2n, then S
has length less than 5n/2.
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