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University of Ljubljana

Ljubljana, June 12, 2017

Damjana Kokol Bukovšek Linear spaces of symmetric nilpotent matrices



Preliminaries
The Gerstenhaber type result

Maximal spaces of smaller dimension

Questions
Can a nonzero real symmetric matrix be nilpotent?

Can a nonzero complex symmetric matrix be nilpotent?

N =

(
1 i
i −1

)
.

What is the possible rank of a symmetric nilpotent matrix?

What is the maximal possible dimension of a linear space
consisting of symmetric nilpotents?

How does a linear space consisting of symmetric nilpotents
look like?

Can a linear space consisting of symmetric nilpotents be
trianguarizable?

Damjana Kokol Bukovšek Linear spaces of symmetric nilpotent matrices



Preliminaries
The Gerstenhaber type result

Maximal spaces of smaller dimension

Case n = 3
Can a 3×3 symmetric nilpotent matrix have rank 2?

N =

 0 0 1
0 0 i
1 i 0


Every 3×3 symmetric nilpotent matrix of rank 2 is orthogonally
simmilar to N, because of

Lemma
If two symmetric matrices A and B are similar, then they are
orthogonally similar.

A linear space L , spanned by N and N2, consists of nilpotents.

L is a maximal linear space of symmetric nilpotents, and also
an algebra.
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Notation
Denote:
Jk – k ×k Jordan block,
Ik – k ×k identity matrix,
Qk – k ×k matrix with 1’s on the anti-diagonal and 0’s
elsewhere,
Eij – the matrix with 1 at the ij th position and 0’s elsewhere.

Write n = 2k for n even and n = 2k +1 for n odd.

Let

S =
1√
2

(
Qk −Qk i
Ik Ik i

)
for n even and

S =
1√
2

 Qk 0 −Qk i
0
√

2 0
Ik 0 Ik i

 for n odd.
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Persymmetric matrices
SS∗ = In, S is unitary and invertible,
SST = Qn.

We call a matrix persymmetric, if it is symmetric with respect to
the anti-diagonal.

A matrix A is persymmetric if and only if AT = QAQ.

Lemma
The mapping A 7→ S∗AS defines a bijective linear
correspondence from the linear space of all persymmetric
matrices onto the linear space of all symmetric matrices.

Proof: For A persymmetric

(S∗AS)T = ST AT (S∗)T = ST QAQ(S∗)T = S∗AS,

since SST = Q implies S∗ = ST Q and S = Q(S∗)T .
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Persymmetric matrices

There is a natural way of recognizing nilpotent matrices among
the persymmetric ones – the strictly upper triangular
persymmetric matrices are nilpotent.

Corollary
In n×n complex matrices there exists a symmetric nilpotent of
rank n−1.

S∗J3S =

 0 1 0
1 0 i
0 i 0

 .
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Gerstenhaber’s theorem

Theorem (Gerstenhaber, 1958)
If L is a linear space of n×n nilpotent matrices, then
dimL ≤ n(n−1)

2 . If dimL = n(n−1)
2 , then L is simultaneously

similar to the linear space of strictly upper triangular matrices.
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Perorthogonal matrices
A matrix V perorthogonal, if VQV T Q = I or V−1 = QV T Q.

Matrices A and B perorthogonally similar, if there is a
perorthogonal matrix V ∈Mn(C) such that B = VAQV T Q.

If two matrices A and B are perorthogonally similar and A is
persymmetric, then B is persymmetric.

Lemma
If two persymmetric matrices A and B are similar, then they are
perorthogonally similar.

Lemma
Let matrices A and B be persymmetric. Then they are
perorthogonally similar if an only if their respective symmetric
versions S∗AS and S∗BS are orthogonally similar.
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Radjavi’s theorem

Theorem (Radjavi, 1986)
A set N of nilpotent matrices is triangularizable if it has the
property that whenever A and B are in N , there is a
noncommutative polynomial p such that AB+p(A,B)A is in N .

A set of symmetric matrices cannot be triangularizable (i.e.
simultaneously similar to a set upper triangular matrices)
without loosing their symmetricity.

A set of persymmetric matrices is pertriangularizable, if it is
simultaneously perorthogonally similar to a set of upper
triangular matrices.
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Radjavi’s theorem
Theorem
A set N of nilpotent persymmetric matrices is
pertriangularizable if it has the property that whenever A and B
are in N , there is a noncommutative polynomial p such that
AB+p(A,B)A is in N .

Corollary
A set N of nilpotent persymmetric matrices is
pertriangularizable if whenever A and B are in N , there is a
scalar c such that AB−cBA is in N .

Corollary
A set N of nilpotent persymmetric matrices is
pertriangularizable if it is closed under Lie products (i.e.
A,B ∈N implies AB−BA ∈N ).
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Standard basis
Let

Tr = Er ,n+1−r , for r = 1,2, ...k

and
Trs = Ers +QEsr Q = Ers +En+1−s,n+1−r

for r = 1,2, ...,k and s = r +1, ...,n− r .

Let
Nr = S∗Tr S, Nrs = S∗TrsS.

The set of matrices

{Tr | r = 1,2, ...,k}∪{Trs | r = 1,2, ...,k ,s = r +1, ...,n− r}

forms a basis of a vector space of strictly upper triangular
pesymmeric matrices, of dimension

⌊
n2

4

⌋
, which is also an

algebra.
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Standard basis

The set of matrices

{Nr | r = 1,2, ...,k}∪{Nrs | r = 1,2, ...,k ,s = r +1, ...,n− r}

forms a basis of an algebra of nilpotent symmetric matrices of
dimension

⌊
n2

4

⌋
, denoted by N (0).

Theorem
If L is a linear space of n×n symmetric nilpotent matrices,
then dimL 6

⌊
n2

4

⌋
. If dimL =

⌊
n2

4

⌋
, then L is simultaneously

orthogonally similar to N (0).
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Increasing order by 4
Can we have a linear space of symmetric nilpotent matrices
that is maximal in the usual sense (i.e. every strictly greater
space of symmetric matrices contains a non-nilpotent), but has
dimension smaller than

⌊
n2

4

⌋
?

Let the dimension of the underlying space be n+4 for
n = 1,2, . . . and divided into three consecutive blocks of
respective dimensions 2, n, and 2. We fix a linear space L of
persymmetric nilpotent matrices acting on Cn and define a
space L̂ of matrices, acting on Cn+4, by

L̂ =

A;A =

 xE12 xE21 0
yEn1 T xEn1
−2yE12 yE21 xE12

 ,x ,y ∈ C,∈ T ∈L

 .
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5×5 matrices

In the case of 5×5 matrices we have

L̂ =

A;A =


0 x 0 0 0
0 0 x 0 0
y 0 0 x 0
0 −2y 0 0 x
0 0 y 0 0

 ,x ,y ∈ C

 .

Proposition

The space L̂ is a linear space of persymmetric nilpotents.
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Maximality of L̂
Let

X =

 E12 E21 0
0 0 En1
0 0 E12

 , Y =

 0 0 0
En1 0 0
−2E12 E21 0

 ,

and

Z =

 0 0 0
0 J 0
0 0 0

 .

Write any other persymmetric matrix with respect to this block
partition as  D U W

V T QnUT Q2
R Q2V T Qn Q2DT Q2

 . (1)
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Maximality of L̂

Proposition
Suppose T is a linear set of persymmetric nilpotents
containing X, Y , and Z , then any member of T is a linear
combination of X , Y , and a matrix of the form (1) in which all
block entries except T are zero.

Theorem
If the space L is a maximal linear space of symmetric nilpotent
matrices on Cn in the sense that there is no strictly greater
linear space of symmetric nilpotents and if it contains a
nilpotent of rank n−1, then L̂ is a maximal linear space of
symmetric nilpotent matrices on Cn+4 and it contains a
nilpotent of rank n+3.
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Small n

Let L ⊆Mn(C) be a maximal linear space of symmetric
nilpotent matrices.

If n = 2, then dim L = 1.

If n = 3, then dim L = 2.

If n = 5, then there exists L with dim L = 2.

If n = 6, then there exists L with dim L = 3.

Proposition
Let L ⊆M4(C) be a maximal linear space of symmetric
nilpotent matrices. Then it is of dimension 4.
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Case n = 7

Example
The set L7 of matrices of the form

A =



0 x 0 0 0 0 0
0 0 x 0 0 0 0

2z 0 0 x 0 0 0
0 −z 0 0 x 0 0
y 0 −2z 0 0 x 0
0 −2y 0 −z 0 0 x
0 0 y 0 2z 0 0


is a maximal linear space of persymmetric nilpotent matrices of
dimension 3.
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Large n

Example
There exists L8 ⊆M8(C) which is a maximal linear space of
persymmetric nilpotent matrices of dimension 4.

Theorem
For every n > 4 there exists a maximal linear space L of
symmetric nilpotent matrices on Cn such that dim L =

⌊n
2

⌋
.

The space contains a nilpotent of maximal rank.
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Thank you!
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