Preliminaries The Gerstenhaber type result Maximal spaces of smaller dimension

Linear spaces of symmetric nilpotent matrices

Damjana Kokol Bukovšek

Joint work with Matjaž Omladič University of Ljubljana Ljubljana, June 12, 2017

Questions

Can a nonzero real symmetric matrix be nilpotent?

Can a nonzero complex symmetric matrix be nilpotent?

$$N = \left(\begin{array}{cc} 1 & i \\ i & -1 \end{array}\right).$$

What is the possible rank of a symmetric nilpotent matrix?

What is the maximal possible dimension of a linear space consisting of symmetric nilpotents?

How does a linear space consisting of symmetric nilpotents look like?

Can a linear space consisting of symmetric nilpotents be trianguarizable?

Case *n* = 3

Can a 3×3 symmetric nilpotent matrix have rank 2?

$$N = \left(\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 0 & i \\ 1 & i & 0 \end{array} \right)$$

Every 3×3 symmetric nilpotent matrix of rank 2 is orthogonally simmilar to *N*, because of

Lemma

If two symmetric matrices A and B are similar, then they are orthogonally similar.

A linear space \mathcal{L} , spanned by *N* and N^2 , consists of nilpotents.

 $\ensuremath{\mathscr{L}}$ is a maximal linear space of symmetric nilpotents, and also an algebra.

Notation

Denote:

 $J_k - k \times k$ Jordan block,

 $I_k - k \times k$ identity matrix,

 $Q_k - k \times k$ matrix with 1's on the anti-diagonal and 0's elsewhere,

 E_{ij} – the matrix with 1 at the *ij*th position and 0's elsewhere.

Write n = 2k for *n* even and n = 2k + 1 for *n* odd.

Let

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} Q_k & -Q_k i \\ I_k & I_k i \end{pmatrix} \text{ for } n \text{ even and}$$
$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} Q_k & 0 & -Q_k i \\ 0 & \sqrt{2} & 0 \\ I_k & 0 & I_k i \end{pmatrix} \text{ for } n \text{ odd.}$$

Persymmetric matrices

- $SS^* = I_n$, S is unitary and invertible,
- $SS^T = Q_n$.

We call a matrix persymmetric, if it is symmetric with respect to the anti-diagonal.

A matrix A is persymmetric if and only if $A^T = QAQ$.

Lemma

The mapping $A \mapsto S^*AS$ defines a bijective linear correspondence from the linear space of all persymmetric matrices onto the linear space of all symmetric matrices.

Proof: For *A* persymmetric

$$(S^*AS)^T = S^TA^T(S^*)^T = S^TQAQ(S^*)^T = S^*AS,$$

since $SS^T = Q$ implies $S^* = S^T Q$ and $S = Q(S^*)^T$.

Persymmetric matrices

There is a natural way of recognizing nilpotent matrices among the persymmetric ones – the strictly upper triangular persymmetric matrices are nilpotent.

Corollary

In $n \times n$ complex matrices there exists a symmetric nilpotent of rank n-1.

$$S^*J_3S = \left(egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & i \ 0 & i & 0 \end{array}
ight).$$

Gerstenhaber's theorem

Theorem (Gerstenhaber, 1958)

If \mathscr{L} is a linear space of $n \times n$ nilpotent matrices, then dim $\mathscr{L} \leq \frac{n(n-1)}{2}$. If dim $\mathscr{L} = \frac{n(n-1)}{2}$, then \mathscr{L} is simultaneously similar to the linear space of strictly upper triangular matrices.

Perorthogonal matrices

A matrix V perorthogonal, if $VQV^TQ = I$ or $V^{-1} = QV^TQ$.

Matrices *A* and *B* perorthogonally similar, if there is a perorthogonal matrix $V \in M_n(\mathbb{C})$ such that $B = VAQV^TQ$.

If two matrices A and B are perorthogonally similar and A is persymmetric, then B is persymmetric.

Lemma

If two persymmetric matrices A and B are similar, then they are perorthogonally similar.

Lemma

Let matrices A and B be persymmetric. Then they are perorthogonally similar if an only if their respective symmetric versions S*AS and S*BS are orthogonally similar.

Radjavi's theorem

Theorem (Radjavi, 1986)

A set \mathcal{N} of nilpotent matrices is triangularizable if it has the property that whenever A and B are in \mathcal{N} , there is a noncommutative polynomial p such that AB + p(A, B)A is in \mathcal{N} .

A set of symmetric matrices cannot be triangularizable (i.e. simultaneously similar to a set upper triangular matrices) without loosing their symmetricity.

A set of persymmetric matrices is pertriangularizable, if it is simultaneously perorthogonally similar to a set of upper triangular matrices.

Radjavi's theorem

Theorem

A set \mathcal{N} of nilpotent persymmetric matrices is pertriangularizable if it has the property that whenever A and B are in \mathcal{N} , there is a noncommutative polynomial p such that AB + p(A, B)A is in \mathcal{N} .

Corollary

A set \mathcal{N} of nilpotent persymmetric matrices is pertriangularizable if whenever A and B are in \mathcal{N} , there is a scalar c such that AB - cBA is in \mathcal{N} .

Corollary

A set \mathcal{N} of nilpotent persymmetric matrices is pertriangularizable if it is closed under Lie products (i.e. $A, B \in \mathcal{N}$ implies $AB - BA \in \mathcal{N}$).

Damjana Kokol Bukovšek

Linear spaces of symmetric nilpotent matrices

Standard basis

Let

$$T_r = E_{r,n+1-r}$$
, for $r = 1, 2, ...k$

and

$$T_{rs} = E_{rs} + QE_{sr}Q = E_{rs} + E_{n+1-s,n+1-r}$$

for r = 1, 2, ..., k and s = r + 1, ..., n - r.

Let

$$N_r = S^* T_r S$$
, $N_{rs} = S^* T_{rs} S$.

The set of matrices

$$\{T_r | r = 1, 2, ..., k\} \cup \{T_{rs} | r = 1, 2, ..., k, s = r+1, ..., n-r\}$$

forms a basis of a vector space of strictly upper triangular pesymmetric matrices, of dimension $\left\lfloor \frac{n^2}{4} \right\rfloor$, which is also an algebra.

Standard basis

The set of matrices

$$\{N_r | r = 1, 2, ..., k\} \cup \{N_{rs} | r = 1, 2, ..., k, s = r + 1, ..., n - r\}$$

forms a basis of an algebra of nilpotent symmetric matrices of dimension $\left|\frac{n^2}{4}\right|$, denoted by $\mathcal{N}^{(0)}$.

Theorem

If \mathscr{L} is a linear space of $n \times n$ symmetric nilpotent matrices, then dim $\mathscr{L} \leq \left\lfloor \frac{n^2}{4} \right\rfloor$. If dim $\mathscr{L} = \left\lfloor \frac{n^2}{4} \right\rfloor$, then \mathscr{L} is simultaneously orthogonally similar to $\mathscr{N}^{(0)}$.

Increasing order by 4

Can we have a linear space of symmetric nilpotent matrices that is maximal in the usual sense (i.e. every strictly greater space of symmetric matrices contains a non-nilpotent), but has dimension smaller than $\left\lfloor \frac{n^2}{4} \right\rfloor$? Let the dimension of the underlying space be n+4 for n = 1, 2, ... and divided into three consecutive blocks of respective dimensions 2, *n*, and 2. We fix a linear space \mathscr{L} of persymmetric nilpotent matrices acting on \mathbb{C}^n and define a space $\widehat{\mathscr{L}}$ of matrices, acting on \mathbb{C}^{n+4} , by

$$\widehat{\mathscr{L}} = \left\{ A; A = \begin{pmatrix} xE_{12} & xE_{21} & 0\\ yE_{n1} & T & xE_{n1}\\ -2yE_{12} & yE_{21} & xE_{12} \end{pmatrix}, x, y \in \mathbb{C}, \in T \in \mathscr{L} \right\}.$$

5×5 matrices

In the case of 5×5 matrices we have

$$\widehat{\mathscr{L}} = \left\{ A; A = \left(\begin{array}{ccccc} 0 & x & 0 & 0 & 0 \\ 0 & 0 & x & 0 & 0 \\ y & 0 & 0 & x & 0 \\ 0 & -2y & 0 & 0 & x \\ 0 & 0 & y & 0 & 0 \end{array} \right), x, y \in \mathbb{C} \right\}.$$

Proposition

The space $\widehat{\mathscr{L}}$ is a linear space of persymmetric nilpotents.

$\underset{\text{Let}}{\text{Maximality of }\widehat{\mathscr{L}}}$

$$X = \begin{pmatrix} E_{12} & E_{21} & 0 \\ 0 & 0 & E_{n1} \\ 0 & 0 & E_{12} \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 & 0 \\ E_{n1} & 0 & 0 \\ -2E_{12} & E_{21} & 0 \end{pmatrix},$$

and

$$Z = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & J & 0 \\ 0 & 0 & 0 \end{array} \right).$$

Write any other persymmetric matrix with respect to this block partition as

$$\begin{pmatrix} D & U & W \\ V & T & Q_n U^T Q_2 \\ R & Q_2 V^T Q_n & Q_2 D^T Q_2 \end{pmatrix}.$$
 (1)

Maximality of $\widehat{\mathscr{L}}$

Proposition

Suppose \mathcal{T} is a linear set of persymmetric nilpotents containing X, Y, and Z, then any member of \mathcal{T} is a linear combination of X, Y, and a matrix of the form (1) in which all block entries except T are zero.

Theorem

If the space \mathscr{L} is a maximal linear space of symmetric nilpotent matrices on \mathbb{C}^n in the sense that there is no strictly greater linear space of symmetric nilpotents and if it contains a nilpotent of rank n-1, then $\widehat{\mathscr{L}}$ is a maximal linear space of symmetric nilpotent matrices on \mathbb{C}^{n+4} and it contains a nilpotent of rank n+3.

Small n

Let $\mathscr{L} \subseteq M_n(\mathbb{C})$ be a maximal linear space of symmetric nilpotent matrices.

If n = 2, then dim $\mathcal{L} = 1$.

If n = 3, then dim $\mathcal{L} = 2$.

If n = 5, then there exists \mathscr{L} with dim $\mathscr{L} = 2$.

If n = 6, then there exists \mathcal{L} with dim $\mathcal{L} = 3$.

Proposition

Let $\mathscr{L} \subseteq M_4(\mathbb{C})$ be a maximal linear space of symmetric nilpotent matrices. Then it is of dimension 4.

Case *n* = 7

Example

The set \mathscr{L}_7 of matrices of the form

$$A = \begin{pmatrix} 0 & x & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & x & 0 & 0 & 0 & 0 \\ 2z & 0 & 0 & x & 0 & 0 & 0 \\ 0 & -z & 0 & 0 & x & 0 & 0 \\ y & 0 & -2z & 0 & 0 & x & 0 \\ 0 & -2y & 0 & -z & 0 & 0 & x \\ 0 & 0 & y & 0 & 2z & 0 & 0 \end{pmatrix}$$

is a maximal linear space of persymmetric nilpotent matrices of dimension 3.

Large n

Example

There exists $\mathscr{L}_8 \subseteq M_8(\mathbb{C})$ which is a maximal linear space of persymmetric nilpotent matrices of dimension 4.

Theorem

For every n > 4 there exists a maximal linear space \mathscr{L} of symmetric nilpotent matrices on \mathbb{C}^n such that dim $\mathscr{L} = \left\lfloor \frac{n}{2} \right\rfloor$. The space contains a nilpotent of maximal rank.

Preliminaries The Gerstenhaber type result Maximal spaces of smaller dimension

Thank you!

Damjana Kokol Bukovšek Linear spaces of symmetric nilpotent matrices