On projections arising from isometries with finite spectrum on Banach spaces

Dijana Ilišević

University of Zagreb, Croatia

8th Linear Algebra Workshop Ljubljana, Slovenia, 12–16 June 2017

Connections to Slovenia

- L.L. Stachó, B. Zalar, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004), 21-42.
- L.L. Stachó, B. Zalar, *Bicircular projections and characterization of Hilbert spaces*, Proc. Amer. Math. Soc. 132 (2004), 3019-3025.

Spring Semester 2004 in Maribor, Slovenia:

• M. Fošner, D. Ilišević, *On a class of projections on *-rings*, Comm. Algebra 33 (2005), 3293–3310.

Connections to Slovenia

- L.L. Stachó, B. Zalar, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004), 21-42.
- L.L. Stachó, B. Zalar, *Bicircular projections and* characterization of Hilbert spaces, Proc. Amer. Math. Soc. 132 (2004), 3019-3025.

Spring Semester 2004 in Maribor, Slovenia:

• M. Fošner, D. Ilišević, *On a class of projections on *-rings*, Comm. Algebra 33 (2005), 3293–3310.

Connections to Slovenia

4th Linear Algebra Workshop, Bled, Slovenia, 2005 Pancakes at Plemelj's house

Dijana Ilišević

On projections arising from isometries with finite spectrum

Connections to Slovenia

M. Fošner, D. Ilišević and C. K. Li, *G-invariant norms and bicircular projections*, Linear Algebra Appl. 420 (2007), 596–608.

From Acknowledgements:

This research began at the 2005 Linear Algebra Workshop at Bled. The authors would like to thank the organizer for providing the excellent research environment that stimulate this collaboration.

Projections on Banach spaces

Definition

A **projection** $P: \mathcal{X} \to \mathcal{X}$ on a Banach space \mathcal{X} is a bounded linear operator such that $P^2 = P$.

- I P is also a projection,
- $\|P\| \ge 1$,
- PX is a closed subspace of X,
- $\mathcal{X} = P\mathcal{X} + (I P)\mathcal{X}$.

Trivial projections: 0 and 1.

Orthogonal projections on Hilbert spaces

Definition

An **orthogonal projection** $P: \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is a bounded self-adjoint projection, that is, $P^2 = P = P^*$.

- I P is also an orthogonal projection,
- $\|P\| = 1$,
- PH is a closed subspace of H,
- $\mathcal{H} = P\mathcal{H} + (I P)\mathcal{H}$ with $P\mathcal{H} \perp (I P)\mathcal{H}$, which is equivalent to $||x + \lambda y|| = ||x - \lambda y||$ for all scalars λ and all vectors $x \in P\mathcal{H}$ and $y \in (I - P)\mathcal{H}$.

Non-orthogonal projections on Hilbert spaces

Example

Let \mathcal{H} be a two-dimensional Hilbert space, and

$$P(x,y)=\left(x-\frac{y}{2},0\right).$$

Then P is a non-orthogonal projection on \mathcal{H} , and

$$(I-P)(x,y) = \left(\frac{y}{2},y\right)$$

Generalized orthogonal projections

A bounded linear operator P on a Banach space is a projection if and only if T = 2P - I is a reflection, that is, $T^2 = I$.

If P is an orthogonal projection on a Hilbert space then U = 2P - I is a surjective linear isometry with spectrum $\sigma(U) = \{-1, 1\}$.

Then P and I - P are the eigenprojections of U associated to the eigenvalues 1 and -1, respectively.

Generalized orthogonal projections

A bounded linear operator P on a Banach space is a projection if and only if T = 2P - I is a reflection, that is, $T^2 = I$.

If P is an orthogonal projection on a Hilbert space then U = 2P - I is a surjective linear isometry with spectrum $\sigma(U) = \{-1, 1\}$.

Then P and I - P are the eigenprojections of U associated to the eigenvalues 1 and -1, respectively.

Generalized orthogonal projections

Definition

A non-trivial projection P on a Banach space \mathcal{X} is called a **generalized orthogonal projection** if P and I - P are the eigenprojections of a (surjective) isometry T on \mathcal{X} with $T^2 = I$ associated to its eigenvalues 1 and -1, respectively.

Notice that T = P - (I - P) and $P = \frac{I+T}{2}$.

Generalized orthogonal projections

Two elements x, y in a Banach space \mathcal{X} are said to be **Roberts** orthogonal if $||x + \lambda y|| = ||x - \lambda y||$ for all scalars λ .

Elements in $P\mathcal{X}$ are Roberts orthogonal to elements in $(I - P)\mathcal{X}$ if and only if P is a generalized orthogonal projection.

Generalized bicircular projections

Definition

A projection P on a Banach space \mathcal{X} is called a **generalized bicircular projection** if there is a (surjective) isometry $T: \mathcal{X} \to \mathcal{X}$ with spectrum $\sigma(T) = \{e^{2\pi r \mathbf{i}}, e^{2\pi s \mathbf{i}}\}$ for some distinct real numbers r, s such that P and I - P are eigenprojections of Tassociated to $e^{2\pi r \mathbf{i}}$ and $e^{2\pi s \mathbf{i}}$, respectively.

Replacing T with $e^{-2\pi r \mathbf{i}}T$, we can assume that $e^{2\pi r \mathbf{i}} = 1$. Notice that

$$T = P + e^{2\pi s \mathbf{i}}(I - P)$$
 and $P = rac{T - e^{2\pi s \mathbf{i}}I}{1 - e^{2\pi s \mathbf{i}}}.$

When $e^{2\pi s \mathbf{i}} = -1$ then $P = \frac{I+T}{2}$ is a generalized orthogonal projection.

Generalized bicircular projections

Definition

A projection P on a Banach space \mathcal{X} is called a **generalized bicircular projection** if there is a (surjective) isometry $T: \mathcal{X} \to \mathcal{X}$ with spectrum $\sigma(T) = \{e^{2\pi r \mathbf{i}}, e^{2\pi s \mathbf{i}}\}$ for some distinct real numbers r, s such that P and I - P are eigenprojections of Tassociated to $e^{2\pi r \mathbf{i}}$ and $e^{2\pi s \mathbf{i}}$, respectively.

Replacing T with $e^{-2\pi r \mathbf{i}}T$, we can assume that $e^{2\pi r \mathbf{i}} = 1$. Notice that

$$T=P+e^{2\pi s \mathbf{i}}(I-P) ext{ and } P=rac{T-e^{2\pi s \mathbf{i}}I}{1-e^{2\pi s \mathbf{i}}}.$$

When $e^{2\pi s \mathbf{i}} = -1$ then $P = \frac{l+T}{2}$ is a generalized orthogonal projection.

Generalized bicircular projections

A projection P on a Hilbert space is self-adjoint if and only if $e^{2\pi t \mathbf{i}P}$ is unitary for all $t \in \mathbb{R}$.

Notice that

$$e^{2\pi t \,\mathbf{i}P} = \sum_{n=0}^{\infty} \frac{(2\pi t \,\mathbf{i}P)^n}{n!} = I + P\left[\sum_{n=1}^{\infty} \frac{(2\pi t \,\mathbf{i})^n}{n!}\right]$$
$$= I + P[e^{2\pi t \,\mathbf{i}} - 1] = e^{2\pi t \,\mathbf{i}}P + (I - P).$$

Therefore, *P* is self-adjoint if and only if $P + e^{-2\pi t \mathbf{i}}(I - P)$ is a surjective isometry for all $t \in \mathbb{R}$.

Hermitian and bicircular projections

Definition

A projection P on a Banach space \mathcal{X} is called a **hermitian projection** if $e^{2\pi t \mathbf{i}P}$ is a (surjective) isometry for all $t \in \mathbb{R}$, and it is called a **bicircular projection** if $P + e^{2\pi t \mathbf{i}}(I - P)$ is a (surjective) isometry for all $t \in \mathbb{R}$.

Theorem (J. Jamison, LAA, 2007)

A projection on \mathcal{X} is a bicircular projection if and only if it is a hermitian projection.

Hermitian and bicircular projections

Definition

A projection P on a Banach space \mathcal{X} is called a **hermitian projection** if $e^{2\pi t i P}$ is a (surjective) isometry for all $t \in \mathbb{R}$, and it is called a **bicircular projection** if $P + e^{2\pi t i}(I - P)$ is a (surjective) isometry for all $t \in \mathbb{R}$.

Theorem (J. Jamison, LAA, 2007)

A projection on \mathcal{X} is a bicircular projection if and only if it is a hermitian projection.

Hermitian and generalized bicircular projections

Suppose that $T = P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for some $t \in \mathbb{R}$. Then $T^n = P + e^{2n\pi t \mathbf{i}}(I - P)$ is also an isometry for all $n \in \mathbb{N}$. For $t \in \mathbb{R} \setminus \mathbb{Q}$ the set $\{e^{2n\pi t \mathbf{i}} : n \in \mathbb{N}\}$ is dense in the complex unit circle.

This implies that $P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for all $t \in \mathbb{R}$. Thus P is hermitian.

Hermitian and generalized bicircular projections

Suppose that $T = P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for some $t \in \mathbb{R}$. Then $T^n = P + e^{2n\pi t \mathbf{i}}(I - P)$ is also an isometry for all $n \in \mathbb{N}$. For $t \in \mathbb{R} \setminus \mathbb{Q}$ the set $\{e^{2n\pi t \mathbf{i}} : n \in \mathbb{N}\}$ is dense in the complex unit circle.

This implies that $P+e^{2\pi t \mathbf{i}}(I-P)$ is an isometry for all $t\in\mathbb{R}.$ Thus P is hermitian.

Hermitian and generalized bicircular projections

Suppose that $T = P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for some $t \in \mathbb{R}$. Then $T^n = P + e^{2n\pi t \mathbf{i}}(I - P)$ is also an isometry for all $n \in \mathbb{N}$. For $t \in \mathbb{R} \setminus \mathbb{Q}$ the set $\{e^{2n\pi t \mathbf{i}} : n \in \mathbb{N}\}$ is dense in the complex unit circle.

This implies that $P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for all $t \in \mathbb{R}$. Thus P is hermitian.

Hermitian and generalized bicircular projections

Suppose that $T = P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for some $t \in \mathbb{R}$. Then $T^n = P + e^{2n\pi t \mathbf{i}}(I - P)$ is also an isometry for all $n \in \mathbb{N}$. For $t \in \mathbb{R} \setminus \mathbb{Q}$ the set $\{e^{2n\pi t \mathbf{i}} : n \in \mathbb{N}\}$ is dense in the complex unit circle.

This implies that $P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for all $t \in \mathbb{R}$. Thus P is hermitian.

Projections on Hilbert spaces

In the Hilbert space setting the following notions coincide:

- orthogonal projections,
- generalized orthogonal projections,
- generalized bicircular projections,
- hermitian (bicircular) projections.

Bicontractive projections

Definition

A projection *P* on a Banach space \mathcal{X} is said to be **bicontractive** if ||P|| = ||I - P|| = 1.

- Every orthogonal projection on a Hilbert space.
- Every generalized orthogonal projection P since $P = \frac{I+T}{2}$ for some isometry T.
- Every generalized bicircular projection (P.-K. Lin, JMAA, 2008).
- In particular, every hermitian (bicircular) projection.

Bicontractive projections

Definition

A projection *P* on a Banach space \mathcal{X} is said to be **bicontractive** if ||P|| = ||I - P|| = 1.

- Every orthogonal projection on a Hilbert space.
- Every generalized orthogonal projection P since $P = \frac{I+T}{2}$ for some isometry T.
- Every generalized bicircular projection (P.-K. Lin, JMAA, 2008).
- In particular, every hermitian (bicircular) projection.

Bicontractive projections

Definition

A projection *P* on a Banach space \mathcal{X} is said to be **bicontractive** if ||P|| = ||I - P|| = 1.

- Every orthogonal projection on a Hilbert space.
- Every generalized orthogonal projection P since $P = \frac{I+T}{2}$ for some isometry T.
- Every generalized bicircular projection (P.-K. Lin, JMAA, 2008).
- In particular, every hermitian (bicircular) projection.

Bicontractive projections

Definition

A projection *P* on a Banach space \mathcal{X} is said to be **bicontractive** if ||P|| = ||I - P|| = 1.

- Every orthogonal projection on a Hilbert space.
- Every generalized orthogonal projection P since $P = \frac{l+T}{2}$ for some isometry T.
- Every generalized bicircular projection (P.-K. Lin, JMAA, 2008).
- In particular, every hermitian (bicircular) projection.

Bicontractive projections

Definition

A projection *P* on a Banach space \mathcal{X} is said to be **bicontractive** if ||P|| = ||I - P|| = 1.

- Every orthogonal projection on a Hilbert space.
- Every generalized orthogonal projection P since $P = \frac{I+T}{2}$ for some isometry T.
- Every generalized bicircular projection (P.-K. Lin, JMAA, 2008).
- In particular, every hermitian (bicircular) projection.

Hermitian projections and bicontractive projections

Example (L.L. Stachó and B. Zalar, PAMS, 2004)

Let $M_2(\mathbb{C})$ be equipped with the spectral norm and let $P: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ be defined by

$$P\left[\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right] = \left[\begin{array}{cc} \alpha & 0 \\ 0 & \delta \end{array}\right]$$

Then *P* is a bicontractive projection. However, for $x = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

we have ||x|| = 2, but $||(P + i(I - P))(x)|| = \sqrt{2}$.

Hence $P + \mathbf{i}(I - P)$ is not an isometry and P is not a hermitian (bicircular) projection.

JB*-triples

A JB*-triple is a complex Banach space \mathcal{A} together with a continuous triple product $\{\cdots\}: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ such that (i) $\{xyz\}$ is linear in x and z and conjugate linear in y; (ii) $\{xyz\} = \{zyx\}$; (iii) for any $x \in \mathcal{A}$, the operator $\delta(x): \mathcal{A} \to \mathcal{A}$ defined by $\delta(x)y = \{xxy\}$ is hermitian with nonnegative spectrum; (iv) $\delta(x)\{abc\} = \{\delta(x)a, b, c\} - \{a, \delta(x)b, c\} + \{a, b, \delta(x)c\}$; (v) for every $x \in \mathcal{A}$, $\|\{xxx\}\| = \|x\|^3$.

JB*-triples

Example

• complex Hilbert spaces: $\{xyz\} = \frac{1}{2}(\langle x, y \rangle z + \langle z, y \rangle x)$

• C*-algebras: $\{xyz\} = \frac{1}{2}(xy^*z + zy^*x)$

For every bicontractive linear projection $P \colon \mathcal{A} \to \mathcal{A}$ there exists a (surjective) linear isometry $T \colon \mathcal{A} \to \mathcal{A}$ such that

$$P = \frac{I+T}{2}$$

(Y. Friedman, B. Russo, Math. Z., 1987).

Generalized bicircular projections on JB*-triples

Theorem (D. I., LAA, 2010)

Let \mathcal{A} be a JB*-triple and let $P : \mathcal{A} \to \mathcal{A}$ be a rank one linear projection. Then P is bicontractive if and only if P is hermitian (bicircular).

Theorem (D. I., LAA, 2010)

Let \mathcal{A} be a JB*-triple and let $P : \mathcal{A} \to \mathcal{A}$ be a linear projection. Then $P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for some $t \in \mathbb{R}$ if and only if one of the following holds.

(i) *P* is hermitian (bicircular).

(ii)
$$e^{2\pi t i} = -1$$
 and $P = \frac{1}{2}(I + T)$ for some linear isometry $T: \mathcal{A} \to \mathcal{A}$ satisfying $T^2 = I$.

Generalized bicircular projections on JB*-triples

Theorem (D. I., LAA, 2010)

Let \mathcal{A} be a JB*-triple and let $P : \mathcal{A} \to \mathcal{A}$ be a rank one linear projection. Then P is bicontractive if and only if P is hermitian (bicircular).

Theorem (D. I., LAA, 2010)

Let \mathcal{A} be a JB*-triple and let $P : \mathcal{A} \to \mathcal{A}$ be a linear projection. Then $P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for some $t \in \mathbb{R}$ if and only if one of the following holds.

(ii)
$$e^{2\pi t \mathbf{i}} = -1$$
 and $P = \frac{1}{2}(I + T)$ for some linear isometry $T: \mathcal{A} \to \mathcal{A}$ satisfying $T^2 = I$.

Applications to $C_0(\Omega)$

Corollary

Let $C_0(\Omega)$ be the algebra of all continuous complex-valued functions on a locally compact Hausdorff space Ω , vanishing at infinity, and let $P: C_0(\Omega) \to C_0(\Omega)$ be a linear projection. Then $P + e^{2\pi t \mathbf{i}}(I - P)$ is an isometry for some $t \in \mathbb{R}$ if and only if one of the following holds.

- (i) P is hermitian (bicircular).
- (ii) $e^{2\pi t \mathbf{i}} = -1$ and there exist a homeomorphism $\varphi \colon \Omega \to \Omega$ satisfying $\varphi^2 = I$ and a continuous function $u \colon \Omega \to \mathbb{C}$ satisfying $|u(\omega)| = 1$ and $u(\varphi(\omega)) = \overline{u(\omega)}$ for every $\omega \in \Omega$, such that

$$P(f)(\omega) = rac{1}{2} \Big(f(\omega) + u(\omega) f(\varphi(\omega)) \Big), \quad \forall f \in C_0(\Omega), \, \omega \in \Omega.$$

Generalized bicircular projections on JB*-triples

Let \mathcal{A} be a JB*-triple. We shall say that a subtriple \mathcal{A}_1 is complementary to \mathcal{A}_2 if ker $(\mathcal{A}_1) = \mathcal{A}_2$ and $\mathcal{A} = \mathcal{A}_1 + \mathcal{A}_2$. Here,

$$\mathsf{ker}(\mathcal{A}_1) := \{ y \in \mathcal{J} : \{ x, y, z \} = 0, \forall x, z \in \mathcal{A}_1 \}$$

is an inner ideal of \mathcal{A} . Notice that $\mathcal{A}_1 \cap \ker(\mathcal{A}_1) = \{0\}$.

Theorem (D.I., C.-N. Liu, N.-C. Wong, Concr. Oper., 2017)

Let P be a generalized bicircular projection on a JB*-triple A. Then P is a generalized orthogonal projection, and A = PA + (I - P)A is a direct sum of JB*-subtriples. Furthermore, P is hermitian if and only if PA and (I - P)A are complementary to each other.

Generalized *n*-circular projections

Definition

Let P_0 be a non-zero projection on a Banach space \mathcal{X} , and $n \geq 2$. We call P_0 a **generalized** *n*-circular projection if there exists a (surjective) isometry $T: \mathcal{X} \to \mathcal{X}$ with $\sigma(T) = \{1, \lambda_1, \ldots, \lambda_{n-1}\}$ consisting of *n* distinct modulus one eigenvalues such that P_0 is the eigenprojection of *T* associated to $\lambda_0 = 1$. In this case, there are non-zero projections P_1, \ldots, P_{n-1} on \mathcal{X} such that

 $P_0 \oplus P_1 \oplus \cdots \oplus P_{n-1} = I$ and $T = P_0 + \lambda_1 P_1 + \cdots + \lambda_{n-1} P_{n-1}$.

We also say that P_0 is a generalized *n*-circular projection associated with $(\lambda_1, \ldots, \lambda_{n-1}, P_1, \ldots, P_{n-1})$. We call P_0 a **proper** generalized *n*-circular projection $(n \ge 3)$ if it is not a generalized *k*-circular projection for any integer 1 < k < n.

Generalized *n*-circular projections and (bi)contractivity

Lemma (D.I., Contemp. Math., 2017)

Every generalized n-circular projection on a complex Banach space is a contraction.

Remark

A proper generalized n-circular projection on a JB*-triple is not bicontractive.

Generalized *n*-circular projections and (bi)contractivity

Lemma (D.I., Contemp. Math., 2017)

Every generalized n-circular projection on a complex Banach space is a contraction.

Remark

A proper generalized n-circular projection on a JB*-triple is not bicontractive.

Generalized *n*-circular projections on JB*-triples

Theorem (D. I., Contemp. Math., 2017)

Let \mathcal{A} be a JB^* -triple, and $P_0: \mathcal{A} \to \mathcal{A}$ be a generalized n-circular projection, $n \ge 2$, associated with $(\lambda_1, \ldots, \lambda_{n-1}, P_1, \ldots, P_{n-1})$. Let $\lambda_0 = 1$. Then one of the following holds. (i) There exist $i, j, k \in \{0, 1, \ldots, n-1\}, j \ne i, j \ne k$, such that $\lambda_i \overline{\lambda_j} \lambda_k \in \{\lambda_m : m = 0, 1, \ldots, n-1\}$. (ii) All $P_0, P_1, \ldots, P_{n-1}$ are hermitian (bicircular).

When n = 2: if P is not hermitian then $\lambda^2 \in \{1, \lambda\}$, or $\overline{\lambda} \in \{1, \lambda\}$; hence $\lambda = -1$.

Generalized *n*-circular projections on JB*-triples

Theorem (D. I., Contemp. Math., 2017)

Let \mathcal{A} be a JB^* -triple, and $P_0: \mathcal{A} \to \mathcal{A}$ be a generalized n-circular projection, $n \ge 2$, associated with $(\lambda_1, \ldots, \lambda_{n-1}, P_1, \ldots, P_{n-1})$. Let $\lambda_0 = 1$. Then one of the following holds. (i) There exist $i, j, k \in \{0, 1, \ldots, n-1\}, j \ne i, j \ne k$, such that $\lambda_i \overline{\lambda_j} \lambda_k \in \{\lambda_m : m = 0, 1, \ldots, n-1\}$. (ii) All $P_0, P_1, \ldots, P_{n-1}$ are hermitian (bicircular).

When n = 2: if P is not hermitian then $\lambda^2 \in \{1, \lambda\}$, or $\overline{\lambda} \in \{1, \lambda\}$; hence $\lambda = -1$.

Generalized tricircular projections on JB*-triples

Corollary (D. I., Contemp. Math., 2017)

Let \mathcal{A} be a JB*-triple, and $P: \mathcal{A} \to \mathcal{A}$ be a generalized tricircular projection associated with $(\lambda_1, \lambda_2, Q, R)$. Then one of the following holds.

(i)
$$\lambda_1\lambda_2 = 1$$
, or $\lambda_1^2 = \lambda_2$, or $\lambda_1 = \lambda_2^2$.

(ii) P, Q, R are hermitian (bicircular).

Generalized *n*-circular projections on $C_0(\Omega)$

Let Ω be a locally compact Hausdorff space. Let $\varphi \colon \Omega \to \Omega$ be a homeomorphism with period m, i.e., $\varphi^m = id_\Omega$ and $\varphi^k \neq id_\Omega$ for k = 1, 2, ..., m - 1.

Let u be a continuous unimodular scalar function on Ω such that

$$u(\omega)\cdots u(arphi^{m-1}(\omega))=1, \quad orall \omega\in \Omega.$$

Then the surjective isometry $T: C_0(\Omega) \to C_0(\Omega)$ defined by

$$Tf(\omega) = u(\omega)f(\varphi(\omega))$$

satisfies $T^m = I$.

Therefore, the spectrum $\sigma(T) = \{\lambda_0, \lambda_1, \dots, \lambda_{n-1}\}$ consists of *n* distinct *m*th roots of unity. Replacing *T* with $\overline{\lambda_0}T$, we can assume that $\lambda_0 = 1$.

Generalized *n*-circular projections on $C_0(\Omega)$

This gives rise to a spectral decomposition

$$I = P_0 + P_1 + \dots + P_{n-1},$$

$$T = \lambda_0 P_0 + \lambda_1 P_1 + \dots + \lambda_{n-1} P_{n-1}.$$

Here, the spectral projections are defined by

$$P_{i}f(w) = \frac{(I + \overline{\lambda_{i}}T + \dots + \overline{\lambda_{i}}^{m-1}T^{m-1})f(\omega)}{m}$$
$$= \frac{1}{m} \Big(f(\omega) + \overline{\lambda_{i}}u(\omega)f(\varphi(\omega)) + \dots$$
$$+ \overline{\lambda_{i}}^{m-1}u(\omega) \dots u(\varphi^{m-2}(\omega))f(\varphi^{m-1}(\omega)) \Big)$$

for all $f \in C_0(\Omega)$, $\omega \in \Omega$, and i = 0, 1, ..., n-1. An *m*th root λ of unity does not belong to $\sigma(T)$ if and only if

$$I+\overline{\lambda}T+\cdots+\overline{\lambda}^{m-1}T^{m-1}=0.$$

Generalized *n*-circular projections on $C_0(\Omega)$

Theorem (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a locally compact space. Let T be a surjective isometry of $C_0(\Omega)$ with finite spectrum consisting of n points. Assume there is an eigenprojection of T being a proper n-circular projection, or Ω is connected. Then all eigenvalues of T are of finite orders.

Definition

We call the generalized *n*-circular projection P_0 **periodic** (resp. **primitive**) if it is an eigenprojection of a periodic surjective isometry T of period $m \ge n$ (resp. of period m = n).

Generalized 4-circular projections on $C_0(\Omega)$ – an example

Example (D.I., C.-N. Liu, N.-C. Wong)

$$egin{aligned} &A = \{(x,y,z) \in \mathbb{R}^3 : x,y,z \in [0,1]\}, \ &B = \{(s,-s,0) \in \mathbb{R}^3 : s \in [-1,1]\}, \ &\Omega = A \cup B \end{aligned}$$

$$arphi(x,y,z) = \left\{ egin{array}{ll} (y,z,x), & ext{if } (x,y,z) \in A; \ (-x,-y,-z), & ext{if } (x,y,z) \in B \end{array}
ight.$$

The isometry $Tf \stackrel{def}{=} f \circ \varphi$ of period 6 has 4 eigenvalues

$$\lambda_0=1,\,\,\lambda_1=-1,\,\,\lambda_2=eta,\,\,\lambda_3=eta^2,\qquad$$
 where $eta=e^{{\sf i}rac{2\pi}{3}}.$

Hence

$$T = P_0 - P_1 + \beta P_2 + \beta^2 P_3.$$

Generalized *n*-circular projections on $C_0(\Omega)$ and bicontractivity

Notice that $T^3 = I - 2P_1$, which implies that the eigenprojection P_1 is bicontractive.

Theorem (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space and let T be an isometry of $C_0(\Omega)$ that has odd period. Then none of the eigenprojections of T is bicontractive.

Generalized *n*-circular projections on $C_0(\Omega)$ – the structure theorem

Theorem (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space. Let $\varphi \colon \Omega \to \Omega$ be a homeomorphism and u be a unimodular continuous scalar function defined on Ω . Let P_0 be a generalized n-circular projection on $C_0(\Omega)$ associated to the surjective isometry $Tf = u \cdot f \circ \varphi$ with the spectral decomposition

$$I = P_0 + P_1 + \dots + P_{n-1}, T = P_0 + \lambda_1 P_1 + \dots + \lambda_{n-1} P_{n-1}.$$

Assume all eigenvalues $\lambda_0 = 1, \lambda_1, \dots, \lambda_{n-1}$ of T have a (minimum) finite common period $m \ge n$. In particular, all of them are mth roots of unity, and $T^m = I$. Then the following holds.

Generalized *n*-circular projections on $C_0(\Omega)$ – the structure theorem

Theorem (continuation)

- The homeomorphism φ has (minimum) period m.
- The cardinality k(ω) of the orbit {ω, φ(ω), φ²(ω),...} of each point ω under φ is not greater than n.
- *m* is the least common multiple of $k(\omega)$ for all ω in Ω .

Generalized *n*-circular projections on $C_0(\Omega)$ – the structure theorem

Theorem (continuation)

The spectrum σ(T) of T can be written as a union of the complete set of k(ω)th roots of the modulus one scalar α_ω = u(ω)u(φ(ω)) ··· u(φ^{k(ω)-1}(ω)). More precisely,

$$\sigma(T) = \bigcup_{\omega \in \Omega} \{\lambda_{\omega}, \lambda_{\omega}\eta_{\omega}, \lambda_{\omega}\eta_{\omega}^2, \dots, \lambda_{\omega}\eta_{\omega}^{k(\omega)-1}\}$$

where λ_{ω} and η_{ω} are primitive $k(\omega)$ th roots of α_{ω} and unity, respectively. We call the set in the union a complete cycle of $k(\omega)$ th roots of unity shifted by λ_{ω} .

- If $u(\omega) = 1$ on Ω then we can choose all $\lambda_{\omega} = 1$, and thus $\sigma(T)$ consists of all $k(\omega)$ th roots of unity.
- If m is a prime integer, then n = m and σ(T) consists of the complete cycle of nth roots of unity.

Generalized bicircular and tricircular projections on $C_0(\Omega)$

Corollary (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space. Then every generalized bicircular or tricircular projection P_0 on $C_0(\Omega)$ is primitive. In other words, P_0 can only be an eigenprojection of a surjective isometry T on $C_0(\Omega)$ with a spectral decomposition

 $T = P_0 - (I - P_0)$ for the bicircular case,

 $T = P_0 + \beta P_1 + \beta^2 P_2 \quad \text{for the tricircular case,}$ where $\beta = e^{i\frac{2\pi}{3}}$.

Generalized 4-circular projections on $C_0(\Omega)$

Corollary (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space. Let $Tf = u \cdot f \circ \varphi$ be a surjective isometry on $C_0(\Omega)$ with the spectral decomposition

$$T = P_0 + \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3.$$

Then $\sigma(T) = \{1, \lambda_1, \lambda_2, \lambda_3\}$ can only be one of the following:

$$\{1, -1, i, -i\}, \qquad \{1, -1, \beta, \beta^2\}, \qquad \{1, -1, -\beta, -\beta^2\}, \\ \{1, -\beta, \beta, \beta^2\}, \qquad \{1, \beta, \beta^2, -\beta^2\}.$$

All above cases can happen. Here $\beta = e^{i\frac{2\pi}{3}}$.

Generalized 5-circular projections on $C_0(\Omega)$

Corollary (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space. Let $Tf = u \cdot f \circ \varphi$ be a surjective isometry on $C_0(\Omega)$ with the spectral decomposition

$$T = P_0 + \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3 + \lambda_4 P_4.$$

Then $\sigma(T) = \{1, \lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ can only be one of the following:

$$\{1, \delta, \delta^2, \delta^3, \delta^4\}, \qquad \{1, -1, \beta, -\beta, \beta^2\}, \qquad \{1, -1, \beta, -\beta, -\beta^2\},$$

$$\{1,-1,\beta,\beta^2,-\beta^2\},\qquad \{1,\beta,-\beta,\beta^2,-\beta^2\}.$$

All above cases can happen. Here, $\beta = e^{i\frac{2\pi}{3}}$ and $\delta = e^{i\frac{2\pi}{5}}$. If T has constant weight function u, then only the primitive (the first) case is allowed.

Non-primitive generalized *n*-circular projections on $C_0(\Omega)$

Theorem (D.I., C.-N. Liu, N.-C. Wong)

There exists a non-primitive generalized n-circular projection on continuous functions on a connected compact Hausdorff space for each $n \ge 4$.