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Projections on Banach spaces

Definition

A projection P : X → X on a Banach space X is a bounded linear
operator such that P2 = P.

I − P is also a projection,

‖P‖ ≥ 1,

PX is a closed subspace of X ,

X = PX + (I − P)X .

Trivial projections: 0 and I .
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Orthogonal projections on Hilbert spaces

Definition

An orthogonal projection P : H → H on a Hilbert space H is a
bounded self-adjoint projection, that is, P2 = P = P∗.

I − P is also an orthogonal projection,

‖P‖ = 1,

PH is a closed subspace of H,

H = PH+ (I − P)H with PH ⊥ (I − P)H,
which is equivalent to ‖x + λy‖ = ‖x − λy‖ for all scalars λ
and all vectors x ∈ PH and y ∈ (I − P)H.
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Non-orthogonal projections on Hilbert spaces

Example

Let H be a two-dimensional Hilbert space, and

P(x , y) =
(

x − y

2
, 0
)
.

Then P is a non-orthogonal projection on H, and

(I − P)(x , y) =
(y

2
, y
)
.
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Generalized orthogonal projections

A bounded linear operator P on a Banach space is a projection if
and only if T = 2P − I is a reflection, that is, T 2 = I .

If P is an orthogonal projection on a Hilbert space then U = 2P − I
is a surjective linear isometry with spectrum σ(U) = {−1, 1}.

Then P and I − P are the eigenprojections of U associated to the
eigenvalues 1 and −1, respectively.
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Generalized orthogonal projections

Definition

A non-trivial projection P on a Banach space X is called a
generalized orthogonal projection if P and I − P are the
eigenprojections of a (surjective) isometry T on X with T 2 = I
associated to its eigenvalues 1 and −1, respectively.

Notice that T = P − (I − P) and P = I+T
2 .
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Generalized orthogonal projections

Two elements x , y in a Banach space X are said to be Roberts
orthogonal if ‖x + λy‖ = ‖x − λy‖ for all scalars λ.

Elements in PX are Roberts orthogonal to elements in (I − P)X if
and only if P is a generalized orthogonal projection.

Dijana Ilǐsević On projections arising from isometries with finite spectrum



Introduction and motivation
Generalized bicircular projections

Generalized bicircular projections on JB*-triples
Generalized n-circular projections

Generalized bicircular projections

Definition

A projection P on a Banach space X is called a generalized
bicircular projection if there is a (surjective) isometry T : X → X
with spectrum σ(T ) = {e2πr i, e2πs i} for some distinct real
numbers r , s such that P and I − P are eigenprojections of T
associated to e2πr i and e2πs i, respectively.

Replacing T with e−2πr iT , we can assume that e2πr i = 1.

Notice that

T = P + e2πs i(I − P) and P =
T − e2πs iI

1− e2πs i
.

When e2πs i = −1 then P = I+T
2 is a generalized orthogonal

projection.
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Dijana Ilǐsević On projections arising from isometries with finite spectrum



Introduction and motivation
Generalized bicircular projections

Generalized bicircular projections on JB*-triples
Generalized n-circular projections

Generalized bicircular projections

A projection P on a Hilbert space is self-adjoint if and only if
e2πtiP is unitary for all t ∈ R.

Notice that

e2πt iP =
∞∑

n=0

(2πt iP)n

n!
= I + P

[ ∞∑
n=1

(2πt i)n

n!

]
= I + P[e2πt i − 1] = e2πt iP + (I − P).

Therefore, P is self-adjoint if and only if P + e−2πti(I − P) is a
surjective isometry for all t ∈ R.
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Hermitian and bicircular projections

Definition

A projection P on a Banach space X is called a hermitian
projection if e2πtiP is a (surjective) isometry for all t ∈ R, and it
is called a bicircular projection if P + e2πti(I − P) is a
(surjective) isometry for all t ∈ R.

Theorem (J. Jamison, LAA, 2007)

A projection on X is a bicircular projection if and only if it is a
hermitian projection.
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Hermitian and generalized bicircular projections

Suppose that T = P + e2πti(I − P) is an isometry for some t ∈ R.
Then T n = P + e2nπti(I − P) is also an isometry for all n ∈ N.
For t ∈ R \Q the set {e2nπti : n ∈ N} is dense in the complex unit
circle.
This implies that P + e2πti(I − P) is an isometry for all t ∈ R.
Thus P is hermitian.
Therefore, the study of generalized bicircular projections emphasis
on those associated to rational angles (P.-K. Lin, JMAA, 2008).
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Projections on Hilbert spaces

In the Hilbert space setting the following notions coincide:

orthogonal projections,

generalized orthogonal projections,

generalized bicircular projections,

hermitian (bicircular) projections.
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Bicontractive projections

Definition

A projection P on a Banach space X is said to be bicontractive if
‖P‖ = ‖I − P‖ = 1.

Example

Every orthogonal projection on a Hilbert space.

Every generalized orthogonal projection P
since P = I+T

2 for some isometry T .

Every generalized bicircular projection
(P.-K. Lin, JMAA, 2008).

In particular, every hermitian (bicircular) projection.
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Hermitian projections and bicontractive projections

Example (L.L. Stachó and B. Zalar, PAMS, 2004)

Let M2(C) be equipped with the spectral norm and let
P : M2(C)→ M2(C) be defined by

P

[
α β
γ δ

]
=

[
α 0
0 δ

]
.

Then P is a bicontractive projection. However, for x =

[
1 1
1 1

]
we have ‖x‖ = 2, but ‖(P + i(I − P))(x)‖ =

√
2.

Hence P + i(I − P) is not an isometry and P is not a hermitian
(bicircular) projection.
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JB*-triples

A JB*-triple is a complex Banach space A together with a
continuous triple product {· · ·} : A×A×A → A such that

(i) {xyz} is linear in x and z and conjugate linear in y ;

(ii) {xyz} = {zyx};
(iii) for any x ∈ A, the operator δ(x) : A → A defined by

δ(x)y = {xxy} is hermitian with nonnegative spectrum;

(iv) δ(x){abc} = {δ(x)a, b, c} − {a, δ(x)b, c}+ {a, b, δ(x)c};
(v) for every x ∈ A, ‖{xxx}‖ = ‖x‖3.
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JB*-triples

Example

complex Hilbert spaces: {xyz} = 1
2 (〈x , y〉z + 〈z , y〉x)

C*-algebras: {xyz} = 1
2 (xy∗z + zy∗x)

For every bicontractive linear projection P : A → A there exists a
(surjective) linear isometry T : A → A such that

P =
I + T

2

(Y. Friedman, B. Russo, Math. Z., 1987).
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Generalized bicircular projections on JB*-triples

Theorem (D. I., LAA, 2010)

Let A be a JB*-triple and let P : A → A be a rank one linear
projection. Then P is bicontractive if and only if P is hermitian
(bicircular).

Theorem (D. I., LAA, 2010)

Let A be a JB*-triple and let P : A → A be a linear projection.
Then P + e2πti(I − P) is an isometry for some t ∈ R if and only if
one of the following holds.

(i) P is hermitian (bicircular).

(ii) e2πti = −1 and P = 1
2 (I + T ) for some linear isometry

T : A → A satisfying T 2 = I .
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Applications to C0(Ω)

Corollary

Let C0(Ω) be the algebra of all continuous complex-valued
functions on a locally compact Hausdorff space Ω, vanishing at
infinity, and let P : C0(Ω)→ C0(Ω) be a linear projection. Then
P + e2πti(I − P) is an isometry for some t ∈ R if and only if one of
the following holds.

(i) P is hermitian (bicircular).

(ii) e2πti = −1 and there exist a homeomorphism ϕ : Ω→ Ω
satisfying ϕ2 = I and a continuous function u : Ω→ C
satisfying |u(ω)| = 1 and u(ϕ(ω)) = u(ω) for every ω ∈ Ω,
such that

P(f )(ω) =
1

2

(
f (ω) + u(ω)f

(
ϕ(ω)

))
, ∀f ∈ C0(Ω), ω ∈ Ω.
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Generalized bicircular projections on JB*-triples

Let A be a JB*-triple. We shall say that a subtriple A1 is
complementary to A2 if ker(A1) = A2 and A = A1 +A2. Here,

ker(A1) := {y ∈ J : {x , y , z} = 0,∀x , z ∈ A1}

is an inner ideal of A. Notice that A1 ∩ ker(A1) = {0}.

Theorem (D.I., C.-N. Liu, N.-C. Wong, Concr. Oper., 2017)

Let P be a generalized bicircular projection on a JB*-triple A.
Then P is a generalized orthogonal projection, and
A = PA+ (I − P)A is a direct sum of JB*-subtriples.
Furthermore, P is hermitian if and only if PA and (I − P)A are
complementary to each other.
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Generalized n-circular projections

Definition

Let P0 be a non-zero projection on a Banach space X , and n ≥ 2.
We call P0 a generalized n-circular projection if there exists a
(surjective) isometry T : X → X with σ(T ) = {1, λ1, . . . , λn−1}
consisting of n distinct modulus one eigenvalues such that P0 is
the eigenprojection of T associated to λ0 = 1.
In this case, there are non-zero projections P1, . . . ,Pn−1 on X such
that

P0⊕P1⊕· · ·⊕Pn−1 = I and T = P0 +λ1P1 + · · ·+λn−1Pn−1.

We also say that P0 is a generalized n-circular projection
associated with (λ1, . . . , λn−1,P1, . . . ,Pn−1).
We call P0 a proper generalized n-circular projection (n ≥ 3) if it
is not a generalized k-circular projection for any integer 1 < k < n.
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Generalized n-circular projections and (bi)contractivity

Lemma (D.I., Contemp. Math., 2017)

Every generalized n-circular projection on a complex Banach space
is a contraction.

Remark

A proper generalized n-circular projection on a JB*-triple is not
bicontractive.
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Generalized n-circular projections on JB*-triples

Theorem (D. I., Contemp. Math., 2017)

Let A be a JB*-triple, and P0 : A → A be a generalized n-circular
projection, n ≥ 2, associated with (λ1, . . . , λn−1,P1, . . . ,Pn−1).
Let λ0 = 1. Then one of the following holds.

(i) There exist i , j , k ∈ {0, 1, . . . , n − 1}, j 6= i , j 6= k, such that
λiλjλk ∈ {λm : m = 0, 1, . . . , n − 1}.

(ii) All P0, P1, . . . , Pn−1 are hermitian (bicircular).

When n = 2: if P is not hermitian then λ2 ∈ {1, λ}, or λ ∈ {1, λ};
hence λ = −1.
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Generalized tricircular projections on JB*-triples

Corollary (D. I., Contemp. Math., 2017)

Let A be a JB*-triple, and P : A → A be a generalized tricircular
projection associated with (λ1, λ2,Q,R). Then one of the
following holds.

(i) λ1λ2 = 1, or λ2
1 = λ2, or λ1 = λ2

2.

(ii) P, Q, R are hermitian (bicircular).

Dijana Ilǐsević On projections arising from isometries with finite spectrum



Introduction and motivation
Generalized bicircular projections

Generalized bicircular projections on JB*-triples
Generalized n-circular projections

Generalized n-circular projections on C0(Ω)

Let Ω be a locally compact Hausdorff space.
Let ϕ : Ω→ Ω be a homeomorphism with period m, i.e., ϕm = idΩ

and ϕk 6= idΩ for k = 1, 2, . . . ,m − 1.
Let u be a continuous unimodular scalar function on Ω such that

u(ω) · · · u(ϕm−1(ω)) = 1, ∀ω ∈ Ω.

Then the surjective isometry T : C0(Ω)→ C0(Ω) defined by

Tf (ω) = u(ω)f (ϕ(ω))

satisfies T m = I .
Therefore, the spectrum σ(T ) = {λ0, λ1, . . . , λn−1} consists of n
distinct mth roots of unity.
Replacing T with λ0T , we can assume that λ0 = 1.
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Generalized n-circular projections on C0(Ω)

This gives rise to a spectral decomposition

I = P0 + P1 + · · ·+ Pn−1,

T = λ0P0 + λ1P1 + · · ·+ λn−1Pn−1.

Here, the spectral projections are defined by

Pi f (w) =
(I + λiT + · · ·+ λi

m−1
T m−1)f (ω)

m

=
1

m

(
f (ω) + λiu(ω)f

(
ϕ(ω)

)
+ . . .

+ λi
m−1

u(ω) . . . u
(
ϕm−2(ω)

)
f
(
ϕm−1(ω)

))
for all f ∈ C0(Ω), ω ∈ Ω, and i = 0, 1, . . . , n − 1.
An mth root λ of unity does not belong to σ(T ) if and only if

I + λT + · · ·+ λ
m−1

T m−1 = 0.
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Generalized n-circular projections on C0(Ω)

Theorem (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a locally compact space. Let T be a surjective isometry
of C0(Ω) with finite spectrum consisting of n points. Assume there
is an eigenprojection of T being a proper n-circular projection, or
Ω is connected. Then all eigenvalues of T are of finite orders.

Definition

We call the generalized n-circular projection P0 periodic (resp.
primitive) if it is an eigenprojection of a periodic surjective
isometry T of period m ≥ n (resp. of period m = n).
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Generalized 4-circular projections on C0(Ω) – an example

Example (D.I., C.-N. Liu, N.-C. Wong)

A = {(x , y , z) ∈ R3 : x , y , z ∈ [0, 1]},
B = {(s,−s, 0) ∈ R3 : s ∈ [−1, 1]}, Ω = A ∪ B.

ϕ(x , y , z) =

{
(y , z , x), if (x , y , z) ∈ A;
(−x ,−y ,−z), if (x , y , z) ∈ B.

The isometry Tf
def
= f ◦ ϕ of period 6 has 4 eigenvalues

λ0 = 1, λ1 = −1, λ2 = β, λ3 = β2, where β = e i 2π
3 .

Hence
T = P0 − P1 + βP2 + β2P3.
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Generalized n-circular projections on C0(Ω) and bicontractivity

Notice that T 3 = I − 2P1, which implies that the eigenprojection
P1 is bicontractive.

Theorem (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space and let T
be an isometry of C0(Ω) that has odd period. Then none of the
eigenprojections of T is bicontractive.
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Generalized n-circular projections on C0(Ω) – the structure theorem

Theorem (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space.
Let ϕ : Ω→ Ω be a homeomorphism and u be a unimodular
continuous scalar function defined on Ω.
Let P0 be a generalized n-circular projection on C0(Ω) associated
to the surjective isometry Tf = u · f ◦ ϕ with the spectral
decomposition

I = P0 + P1 + · · ·+ Pn−1,

T = P0 + λ1P1 + · · ·+ λn−1Pn−1.

Assume all eigenvalues λ0 = 1, λ1, . . . , λn−1 of T have a
(minimum) finite common period m ≥ n.
In particular, all of them are mth roots of unity, and T m = I .
Then the following holds.
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Generalized n-circular projections on C0(Ω) – the structure theorem

Theorem (continuation)

The homeomorphism ϕ has (minimum) period m.

The cardinality k(ω) of the orbit {ω, ϕ(ω), ϕ2(ω), . . .} of each
point ω under ϕ is not greater than n.

m is the least common multiple of k(ω) for all ω in Ω.
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Generalized n-circular projections on C0(Ω) – the structure theorem

Theorem (continuation)

The spectrum σ(T ) of T can be written as a union of the
complete set of k(ω)th roots of the modulus one scalar
αω = u(ω)u(ϕ(ω)) · · · u(ϕk(ω)−1(ω)). More precisely,

σ(T ) =
⋃
ω∈Ω

{λω, λωηω, λωη2
ω, . . . , λωη

k(ω)−1
ω },

where λω and ηω are primitive k(ω)th roots of αω and unity,
respectively. We call the set in the union a complete cycle of
k(ω)th roots of unity shifted by λω.

If u(ω) = 1 on Ω then we can choose all λω = 1, and thus
σ(T ) consists of all k(ω)th roots of unity.

If m is a prime integer, then n = m and σ(T ) consists of the
complete cycle of nth roots of unity.
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Generalized bicircular and tricircular projections on C0(Ω)

Corollary (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space. Then every
generalized bicircular or tricircular projection P0 on C0(Ω) is
primitive. In other words, P0 can only be an eigenprojection of a
surjective isometry T on C0(Ω) with a spectral decomposition

T = P0 − (I − P0) for the bicircular case,

T = P0 + βP1 + β2P2 for the tricircular case,

where β = e i 2π
3 .
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Generalized 4-circular projections on C0(Ω)

Corollary (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space.
Let Tf = u · f ◦ ϕ be a surjective isometry on C0(Ω) with the
spectral decomposition

T = P0 + λ1P1 + λ2P2 + λ3P3.

Then σ(T ) = {1, λ1, λ2, λ3} can only be one of the following:

{1,−1, i ,−i}, {1,−1, β, β2}, {1,−1,−β,−β2},

{1,−β, β, β2}, {1, β, β2,−β2}.

All above cases can happen. Here β = e i 2π
3 .
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Generalized 5-circular projections on C0(Ω)

Corollary (D.I., C.-N. Liu, N.-C. Wong)

Let Ω be a connected locally compact Hausdorff space.
Let Tf = u · f ◦ ϕ be a surjective isometry on C0(Ω) with the
spectral decomposition

T = P0 + λ1P1 + λ2P2 + λ3P3 + λ4P4.

Then σ(T ) = {1, λ1, λ2, λ3, λ4} can only be one of the following:

{1, δ, δ2, δ3, δ4}, {1,−1, β,−β, β2}, {1,−1, β,−β,−β2},

{1,−1, β, β2,−β2}, {1, β,−β, β2,−β2}.

All above cases can happen. Here, β = e i 2π
3 and δ = e i 2π

5 .
If T has constant weight function u, then only the primitive (the
first) case is allowed.
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Non-primitive generalized n-circular projections on C0(Ω)

Theorem (D.I., C.-N. Liu, N.-C. Wong)

There exists a non-primitive generalized n-circular projection on
continuous functions on a connected compact Hausdorff space for
each n ≥ 4.
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