Krauter conjecture on permanents is true!

Alexander Guterman

Moscow State University



Joint work with

Mikhail Budrevich



det A=Y sgn(o)ass() - tu(m)
ce’S,

and

perA= 3 a1, Gng(n),

oeS,),

here A = (a;;) € Mp(C), &5 denotes the set of all permutations of
the set {1,2,...,n}. The value sgn(o) € {—1,1} is the signum of the

permutation o.



per is a combinatorial invariant:

per(PAQ) = per A

for all permutation matrices P, ()



Let A € My, ,,, kK < n. Then

per A = Z per A(|a),
O‘EAn,n—k

where Ay, , is the set of all subsets consisting of r distinct elements of the
set {1,...,n} and A(|a) is the matrix obtained from A by deleting rows

with numbers from o.



Some applications of permanent
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In how many ways can a dance be arranged for n married couples, so

that no husband dances with his own wife?
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that no husband dances with his own wife?

01 ...1 n (_1)k
Dy, = per 10 :per(Jn—[n):n!-Z I

|
1 ... 120 k=0



Ménage problem

In how many ways can n married couples be placed at a round table, so
that men and women sit in alternate places and no husband sit on either

side of his wife?



In how many ways can n married couples be placed at a round table, so

that men and women sit in alternate places and no husband sit on either

side of his wife?

oo 1 .. 1T 1
100 -~ &
Up=mper | 110" 1% = per(Jy, — I, — Pp)
i1..1 00
o1 1 ... 120
Py, is a permutation matrix of (1,2)(2,3)---(n — 1,n)(n, 1).



In how many ways can n married couples be placed at a round table, so
that men and women sit in alternate places and no husband sit on either
side of his wife?

Sequence number A059375 in on-line encyclopedia of integer sequences

The first terms:

12. 96, 3120, 115200, 5336320, 382072320, 31488549120, . . .



Formulated in 1891 by Edouard Lucas and independently, a few years

earlier, by Peter Guthrie Tait in connection with knot theory

Touchard (1934) derived the formula

L n’Z ) on <2nk—k)(n_k)!




Latin squares

S is a set, |S| = n usually, S ={1,2,...,n}
A Latin rectangle on S is an r X s matrix A with a;; € S, a;; # ay,

and a;; # ay;.

n X n Latin rectangle is a Latin square.



Latin squares

S is a set, |S| = n usually, S ={1,2,...,n}

A Latin rectangle on S is an r X s matrix A: a;; € S, a;; # a;, and
Qjj 7 Qfj-

n X n Latin rectangle is a Latin square.

Problems: 1. To find the number L(n,n) of Latin squares on S

2. To find the number L(r,n) of r x n Latin rectangles on S



Known facts

1. L(1,n) =1

2. L(2,n) =n!- Dy

[n/2] "
3. L3,n)=nl- >, CyDy DpUpy oy
k=0

A% is the set of (0,1)-matrices with & 1 in each row and column.

m(k,n) and M (k,n) are lower and upper bounds for permanent on A%

Then

r—1 r—1

n!Dy, H m(n —t,n) < L(r,n) < nlDy, H M(n —t,n)
t=2 t=2
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Applications of permanent:

Counting function for combinatorial problems

DNA identification
Probability

Quantum field theory
Ferro-magnetism
Coding theory

Makes everybody happy



det

per

Geometry |Oriented volume | Combinatorial geometry
Algebra A Ap Bounds
Complexity O(n?) ~(n—1)-(2"—-1)




Ryser’s formula

n—I1 n
per(4) = >_(=1)" > T r(x)
t=0 XeL, ¢1=1

t
ri(X) = Zl r;; — t-th row sum
]:

L,,—t — the set of all n x (n — t) submatrices of A



IMPORTANT MATRIX CLASSES:
e (0,1) matrices

e (—1,1) matrices



Applications of +=1-matrices

Theorem | Frobenius, 1896
T: M,(C)— My,(C)

— linear, bijective

det(T(A)) =det A VA e M,(C)

Y
AP, Q € GLp(C),det(PQ) =1

T(A) = PAQ YA€ M,(C)or T(A) = PA'Q YA e M,(C)



Theorem [Marcus, May]| Linear transformation 7" is permanent preserver
iff

T(A) = PLD1{ADoPy VA € My(F), or

T(A) = PLD1A'DyPy YA € M,(F)
here D; are invertible diagonal matrices, ¢+ = 1,2, per(D1 D) = 1,

P; are permutation matrices, ¢ = 1, 2



Problem. Under what conditions does there exists a transtormation @ :

My (F) — M, (IF) satisfying

per A = det (A)?

Here a transformation & on M,,(IF) is called a converter.



Are there linear transformations of this type 7
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Theorem (Marcus, Minc, 1961). There is no bijective linear transfor-
mation © : My(F) — M,(F),n > 2 satisfying per A = det (A) V
A e My(TF).

Proof: based on linear algebra.



Are there linear transformations of this type 7

Theorem (Marcus, Minc, 1961). There is no bijective linear transfor-
mation ¢ : My(F) — M,(F),n > 2 satisfying per A = det d(A) V
A e My, (F).

Proof: based on linear algebra.

Theorem (J. von zur Gathen, 1987). Let F be infinite, char(F) # 2.
There is no bijective affine transformation ® = My (F) — M, (F),n > 2
satisfying per A = det (A) V A € M, (F).

Proof: based on algebraic geomery.



Polya, 1913 observed:

n = 2:

det

= per




Problem [Polya, 1913]. Does 9 a uniform way of affixing -+ to the entries
of A= (aw) e My (FF): per(aij) = det(:l:aij)?
Equivalently: Does 4 X € My (£1): per A =det(Ao X))V A € My (F) 7

AoX = (a;jw;;) is Hadamard (Schur) product of A = (a;;) and X = (z;;)

/a b\ (a b\ /a b\ (11\

n = 2: — — ®

\c d) \—c d) \c d/ \—1 1)

Szego, 1914. n > 2: NO.




Why NOT 7
n = 3: consider J3 = (H%)
111
Then per J3 = 6 but
(:|:1 +1 :|:1\

det | 41 41 41 | <6

\il +1 il)

since each —1 is in two summands, so all 6 summands can not be positive.



What about SUBSETS of M,,7

Sometimes the conversion is possible:

/a b O\ / a b O\
L'l e d el = d e
\/ 9 h] \ f-9 N}

2. A ajj =0if j —i > 2 (Hessenberg matrices)
‘

B —aij, ifj—i:1
AHA:(CLE]'): CLEjZ{

\ a;j,  otherwise



2. lce cream market

a 1s a shift parameter of demand curve, for example, taste.

S(p) is the number x of ice creams what a factory would produce for the
price p.

D(p, ) is the demand for the price p and taste a.

Then equilibrium equations for (pq, zq) are S(p) = x = D(p, a) (1).

Let us check that if « increases then so do p, and z,.
(

Sp)—z =0
(1) < to the system <

D(p,a) —x =0

\



Hence, pod

or
_8_04_0

Op Oa
0S5

Op

oD

804_8_0420 \%_lp)_l)

Economics = — > 0

(5_5 _1\

0
PN p

oD

,a—p<0,a—&>0,so
[\ (2 (o)

\" 7/

\5) \~)




(+_\ /810\ (O\

da

SACTAAS

= always 4 solution and (Cramer rule)

g—i>0,§—z>0
Indeed.
A=|TZ]=(—)+(-) <0,
A= |2Z]==(=) (=) <0, Ag=]E0 | =(+)- (=) <0

S0, P, Lo are indeed increasing functions!



3. Hadamard matrices
(—1, 1)-matrix with pair-wise orthogonal rows.
e Hadamard matrix has size 1, 2 or 4k

e Hadamard conjecture: V £ 4 a Hadamard matrix of size 4k



Properties of permanents of (0,1) and (—1, 1) matrices:

e Permanents of (0, 1) matrices can not decrease if 0 is changed by 1

e Permanents of (—1, 1) matrices can decrease if -1 is changed by 1

per (2 1) =2>0=per (1 1)

e Permanents of (—1, 1) matrices do not depend on the number of —1
In a matrix

e Max value n! is attained only on singular matrices



Examples:

I ... 1
J = (1 1) Then per J = nl.

[f n is even then maxper = n! if all the entries are (—1) or exactly half

| 1. -1
of the entries are (—1), see ( L ;1> or

chess-matrix



Theorem |Kriuter]
e per A < nl!
eperA=nliff A~ J,
~ 1s a composition of transposition, row or column permutations, multi-

plication of rows/columns by (—1).

e At J,=per A< (n—2)(n—1)!



In general, it is dificult to compute permanent

Can we estimate it for (—1, 1)-matrices?



In general, it is dificult to compute permanent

Can we estimate it for (—1, 1)-matrices?

L1 .1 -1 1 ... 1
n=0: per<}} i) =6'=720, per{ I 71t ) =112
.. 11 i .1 -1



Problem [Wang, Israel J. Math., 18, 1974]
Let A € Mp(£1) be a nonsingular matrix. Is there a decent upper

bound for | per A|?



Let D(n,k,l) — (dw) = Mk’n(il), 0 S [ S k S mn,

/

—1l,i=g7and j € {1,...,[}
dij = X

1, otherwise.

\
If n = k we write D(n,n,l) — D(n,l)'

Conjecture [Krauter, 1985] Let A € My (+1), n > 5,tk A =r+1. Then
| per A| < per Dy, .

The equality holds iff A ~ D<nﬂa>7

~ is transposition o row or column perm. o mult. by (—1).



In particular,

if A is invertible then

per A < per

—1 1

L

— —leee

—_ .

—

— | =

— —eee



In particular,

if A is invertible then

11 .. 11
-1 1
per A < per 1 ;
i1 =11
1111

For example,

1
: |

per | : o1 < per | o1
i

1



In particular,

if A is invertible then

per A < per
For example,
—1 1 1 1
I -1 :
per : o]
I ... 1 —1 1
1 I 1 —1

it n > 5l
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n = 4. Exceptional case

—_



Some computations

i
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Some computations

y

1111

perD(Zm)—per(%%%%)—M
’ 1111

—1111
perD<4’1) :per< % H%) = 12

I 111

131
{perD<4’2)—per< . 11) — 8

1 1 11

—1 1 11
perD<473):per %_11 _11% =4

I 1 11

T
perDyggy=per| | 1 1 | =8
\ 11 1 -1

Almost more —1 on diagonal — bigger rank — smaller permanent



n = 4. Exceptional case

1] 741
perD(4’3>:per % _11 _11% =4 <8=per| 1 7 4 1 :perD(4’4>
I 1 11 I 1 1 —1

Since per D<3 3) = —2 Laplace expansion of per D<473> by the last row
contains summand < 0.

Hence per D<473> =4 < 8 = per D(474>.



( 111
_ 1 —1--. : _
per D(6,6) =per| ., .0 | = 112
1 ... 1 —1

per D<5’5> =8

per D<474> =8

111
er D —per| 1 -1 1 | =-=2
PEEEE3) =P ( 11 —1>

per D99y = per (1 1)) =2
\

If n >4 Asummands < 0 in expansion of per D( > by the last row.

n,n—I1



Extended Conjecture |BG, 2017

Let A€ My(+1), 1k A=r+1. Then
| per A| < per D, .y

V n, r except 4 x 4 invertible matrices.
The equality holds iff A ~ D(n,r).

If n = 4 then there is an exception D(47 4) unique up to ~.



Invertible matrices of small size

o Let A € Mp(+1) be invertible. Then |per A| = per Dig 1) = 0.

o Let A € M3(+1) and tk A = k. Then |per A| = per D3 ;,_1) and

—1 11
A~Dgry= (151



o Let A € GLy(£1) be sit. |per Al = maxgeqy,(+1)|perCl = 8.

T
A~ Diyy) = L1 L

If for B € GL4(+£1) it holds | per B| < 8, then

Then

—_

— 1
| per B < per Dy 3 per( % _%1 1%) =4

Hint for the proof:

Lemma 1 Let A € My(41). Then per A is divisible by 4.



Properties of per D(n,k,l)

Lemma 2 |Krauter, Seifter| Let n > 5. Then

1. per D<n7n> > ().

2. per D<n7 k) > 0 for any possible value of k.

3. For any 0 < k& < n we have per D(n,k—l) > per D(n,@.
Corollary Let n > 5. Then for any [, k such that 0 <[ < k <n

per D(n,l) > per D(n,k) and rk D(n,l) < rk D(n,kz)



Steps of the proof
1. Case n = 4. D<47 4) is the unique except case
2. Prove [ per A| < per Dy, ,,_1) for A € GLyp(£1),n = 5,6.
3. Let A € GLp(£1), n > 7. Assume Conjecture holds true V
matrices of the order m < n. Then |perA| < per D1y 1
| per A| = per Dy, ,_1) then A ~ Dy, 1),
4. Let A € My(£1), rk A =k < n. Assume Conjecture is proved
V' B € M;(£1),l < k. Then |per A| < per D j—1)-

If | per A| = per Dy, j—1), then A~ D j—1).



Items 1, 2: “by hands”.
[tem 3:

Definition (—1, 1)-matrix A satisfies condition 2l if the following is true:
e all entries of the first row of A are +1,

e the second row of A contains > 3 entries +1 and > 3 entries —1.



Key Lemma: Let A € GLy(41), n > 6. Then

D(n,n—l) (1)

D(n,n) (2)
P11 1 1 1
ISR R

Pr=111 172111 | O
A~ 11 1 1 —1-1
-1 1 1 1 -1
I 1 1 1 1 1
RN

B=lZ11 717911 | @
I 1 1T —1-11
I 11 —-11 -1

X e (5)

Here per P = per Py = 16. Case (1) is extremal, in the cases (2) — (4)

permanent is not maximal, so inequality holds. Case (5) — induction.



Several identities
Forany 1 <k <n
per D(n,k—l) = per D(n,k) + 2 per D(n—l,k—l)'

Forn > 5

per Dy, py = (n—2)per Dy, _q 1y + (20— 2) per Dy, 9 o).

For n > 6 per D<

n,n—1)

= 2 per D(n_Qyn_3>+(n2—7n+12) per D(n_27n_5>+2(n—3) per D<n_27n_4).



n > 7 then

lper Al < 32 [per AL, 2[e]] - [ per A(L, 2a)| <
@EAmQ

(I per A(1, 2|)| < per D9 5,—5))

< (gn(n—1) = 3(n = 3)) - 2 per D, 9y 5) =

— (n2 — Tn + 18) per D(n_27R_5).

n,n—1

Then per D ) — | per A| >

2per Dy, _9 3y +2(n —3) per Dy, _o,,_g) — 6per Dy, g 5



per D ) — [per A| > (2n3 — 16n° + 10n + 44) per Dy p—a)t

nn—1
+(4n? — 36n° + 48n + 80) per Dy, 5,5y = F(n).

f(n) =2n° — 16n° + 10n + 44. Then f’ = 6n° — 32n + 10 has the roots
Land 5, f(T) =16 = f(n) > 0¥ n>T7.

g(n) = 4n3 — 36n° + 48n + 80. Then ¢’ = 12n? — 72n + 48 has the roots
345, g(7)=24and3+£V5<T7=gn)>0Yn>T.

n=>9 =nperDy_yp,_g) >0 perDy_s5, 5>0= F(n)>0Vn2>9.

Also FI(8) =576 > 0, F(7) =17 >0 =



n,n—1

per D )= IperAl > F(n) >0V n>T7

Since F'(n) > 0 the bound is strict and A o Dy which proves the

n,n—1)

characterization part



per D )= IperAl > F(n) >0V n>T7

n,n—1

Since F'(n) > 0 the bound is strict and A o Dy which proves the

n,n—1)

characterization part

+ apply majorization.



Theorem [BG, 2017

Let A€ My(+1), 1tk A=r+1. Then
| per A| < per Dy, ).

vV n, r except 4 x 4 invertible matrices.
The equality holds iff A ~ D(n,r).

If n = 4 then there is an exception D(474), unique up to ~.



THANK YOU



