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detA =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)

and

perA =
∑
σ∈Sn

a1σ(1) · · · anσ(n),

here A = (aij) ∈ Mn(C), Sn denotes the set of all permutations of

the set {1, 2, . . . , n}. The value sgn(σ) ∈ {−1, 1} is the signum of the

permutation σ.



per is a combinatorial invariant:

per(PAQ) = perA

for all permutation matrices P,Q



Let A ∈Mk,n, k ≤ n. Then

perA =
∑

α∈Λn,n−k

perA(|α),

where Λn,r is the set of all subsets consisting of r distinct elements of the

set {1, . . . , n} and A(|α) is the matrix obtained from A by deleting rows

with numbers from α.
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Derangements problem

In how many ways can a dance be arranged for n married couples, so

that no husband dances with his own wife?



Some applications of permanent

Derangements problem

In how many ways can a dance be arranged for n married couples, so

that no husband dances with his own wife?

Dn = per

(
0 1 ... 1
1 0 . . . ...... . . . . . . 1
1 ... 1 0

)
= per(Jn − In) = n! ·

n∑
k=0

(−1)k

k!



Ménage problem

In how many ways can n married couples be placed at a round table, so

that men and women sit in alternate places and no husband sit on either

side of his wife?



In how many ways can n married couples be placed at a round table, so

that men and women sit in alternate places and no husband sit on either

side of his wife?

Un = per

 0 0 1 ... 1 1
1 0 0 . . . ... ...
1 1 0 . . . 1 1... ... . . . . . . . . . 1
1 1 ... 1 0 0
0 1 1 ... 1 0

 = per(Jn − In − Pn)

Pn is a permutation matrix of (1, 2)(2, 3) · · · (n− 1, n)(n, 1).



In how many ways can n married couples be placed at a round table, so

that men and women sit in alternate places and no husband sit on either

side of his wife?

Sequence number A059375 in on-line encyclopedia of integer sequences

The first terms:

12, 96, 3120, 115200, 5836320, 382072320, 31488549120, . . .



Formulated in 1891 by Édouard Lucas and independently, a few years

earlier, by Peter Guthrie Tait in connection with knot theory

Touchard (1934) derived the formula

Un = 2 · n!

n∑
k=0

(−1)k
2n

2n− k

(
2n− k
k

)
(n− k)!



Latin squares

S is a set, |S| = n usually, S = {1, 2, . . . , n}

A Latin rectangle on S is an r × s matrix A with aij ∈ S, aij 6= ail,

and aij 6= akj.

n× n Latin rectangle is a Latin square.



Latin squares

S is a set, |S| = n usually, S = {1, 2, . . . , n}

A Latin rectangle on S is an r × s matrix A: aij ∈ S, aij 6= ail, and

aij 6= akj.

n× n Latin rectangle is a Latin square.

Problems: 1. To find the number L(n, n) of Latin squares on S

2. To find the number L(r, n) of r × n Latin rectangles on S



Known facts

1. L(1, n) = 1

2. L(2, n) = n! ·Dn

3. L(3, n) = n! ·
bn/2c∑
k=0

CknDn−kDkUn−2k

Λkn is the set of (0,1)-matrices with k 1 in each row and column.

m(k, n) and M(k, n) are lower and upper bounds for permanent on Λkn.

Then

n!Dn

r−1∏
t=2

m(n− t, n) ≤ L(r, n) ≤ n!Dn

r−1∏
t=2

M(n− t, n)
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Applications of permanent:

Counting function for combinatorial problems

DNA identification

Probability

Quantum field theory

Ferro-magnetism

Coding theory

Makes everybody happy



det per

Geometry Oriented volume Combinatorial geometry

Algebra λ1 · · ·λn Bounds

Complexity O(n3) ∼ (n− 1) · (2n − 1)



Ryser’s formula

per(A) =

n−1∑
t=0

(−1)t
∑

X∈Ln−t

n∏
i=1

ri(X)

ri(X) =
t∑

j=1
xij — i-th row sum

Ln−t — the set of all n× (n− t) submatrices of A



IMPORTANT MATRIX CLASSES:

• (0, 1) matrices

• (−1, 1) matrices



Applications of ±1-matrices

Theorem [ Frobenius, 1896]

T : Mn(C)→Mn(C)

— linear, bijective
det(T (A)) = detA ∀A ∈Mn(C)

⇓
∃P,Q ∈ GLn(C), det(PQ) = 1 :

T (A) = PAQ ∀A ∈Mn(C) or T (A) = PAtQ ∀A ∈Mn(C)



Theorem [Marcus, May] Linear transformation T is permanent preserver

iff

T (A) = P1D1AD2P2 ∀A ∈Mn(F), or

T (A) = P1D1A
tD2P2 ∀A ∈Mn(F)

here Di are invertible diagonal matrices, i = 1, 2, per(D1D2) = 1,

Pi are permutation matrices, i = 1, 2



Problem. Under what conditions does there exists a transformation Φ :

Mn(F)→Mm(F) satisfying

perA = det Φ(A)?

Here a transformation Φ on Mn(F) is called a converter.



Are there linear transformations of this type ?



Are there linear transformations of this type ?

Theorem (Marcus, Minc, 1961). There is no bijective linear transfor-

mation Φ : Mn(F) → Mn(F), n > 2 satisfying perA = det Φ(A) ∀

A ∈Mn(F).

Proof: based on linear algebra.



Are there linear transformations of this type ?

Theorem (Marcus, Minc, 1961). There is no bijective linear transfor-

mation Φ : Mn(F) → Mn(F), n > 2 satisfying perA = det Φ(A) ∀

A ∈Mn(F).

Proof: based on linear algebra.

Theorem (J. von zur Gathen, 1987). Let F be infinite, char(F) 6= 2.

There is no bijective affine transformation Φ : Mn(F)→Mn(F), n > 2

satisfying perA = det Φ(A) ∀ A ∈Mn(F).

Proof: based on algebraic geomery.



Polya, 1913 observed:

n = 2:

det

 a b

c d

 = per

 a b

−c d





Problem [Polya, 1913]. Does ∃ a uniform way of affixing ± to the entries

of A = (aij) ∈Mn(F): per(aij) = det(±aij)?

Equivalently: Does ∃ X ∈Mn(±1): perA = det(A ◦X) ∀ A ∈Mn(F) ?

A◦X = (aijxij) is Hadamard (Schur) product ofA = (aij) andX = (xij)

n = 2:

 a b

c d

 7→
 a b

−c d

 =

 a b

c d

 ◦
 1 1

−1 1


Szegö, 1914. n > 2: NO.



Why NOT ?

n = 3: consider J3 =
(

1 1 1
1 1 1
1 1 1

)
.

Then per J3 = 6 but

det


±1 ±1 ±1

±1 ±1 ±1

±1 ±1 ±1

 < 6

since each −1 is in two summands, so all 6 summands can not be positive.



What about SUBSETS of Mn?

Sometimes the conversion is possible:

1.


a b 0

c d e

f g h

 7→


a b 0

−c d e

f −g h


2. A: aij = 0 if j − i ≥ 2 (Hessenberg matrices)

A 7→ Ã = (ãij): ãij =


−aij, if j − i = 1

aij, otherwise



2. Ice cream market

α is a shift parameter of demand curve, for example, taste.

S(p) is the number x of ice creams what a factory would produce for the

price p.

D(p, α) is the demand for the price p and taste α.

Then equilibrium equations for (pα, xα) are S(p) = x = D(p, α) (1).

Let us check that if α increases then so do pα and xα.

(1) ⇔ to the system


S(p)− x = 0

D(p, α)− x = 0



Hence,


∂S
∂p

∂p
∂α −

∂x
∂α = 0

∂D
∂p

∂p
∂α + ∂D

∂α −
∂x
∂α = 0

⇔

 ∂S
∂p −1

∂D
∂p −1


 ∂p

∂α

∂x
∂α

 =

 0

−∂D∂α


Economics ⇒ ∂S

∂p
> 0,

∂D

∂p
< 0,

∂D

∂α
> 0, so + −

− −


 ∂p

∂α

∂x
∂α

 =

 0

−





 + −

− −


 ∂p

∂α

∂x
∂α

 =

 0

−


⇒ always ∃ solution and (Cramer rule)

∂p

∂α
> 0,

∂x

∂α
> 0

Indeed,

∆ =
∣∣ + −
− −

∣∣ = (−) + (−) < 0,

∆1 =
∣∣ 0 −
− −

∣∣ = −(−) · (−) < 0, ∆2 =
∣∣ + 0
− −

∣∣ = (+) · (−) < 0

So, pα, xα are indeed increasing functions!



3. Hadamard matrices

(−1, 1)-matrix with pair-wise orthogonal rows.

• Hadamard matrix has size 1, 2 or 4k

• Hadamard conjecture: ∀ k ∃ a Hadamard matrix of size 4k



Properties of permanents of (0, 1) and (−1, 1) matrices:

• Permanents of (0, 1) matrices can not decrease if 0 is changed by 1

• Permanents of (−1, 1) matrices can decrease if -1 is changed by 1

per
(−1 −1
−1 −1

)
= 2 > 0 = per

(−1 −1
−1 1

)
• Permanents of (−1, 1) matrices do not depend on the number of −1

in a matrix

• Max value n! is attained only on singular matrices



Examples:

J =
(

1 ... 1... . . . ...
1 ... 1

)
. Then per J = n!.

If n is even then maxper = n! if all the entries are (−1) or exactly half

of the entries are (−1), see

(
−1 ... −1... . . . ...
−1 ... −1

)
or

chess-matrix

 1 −1 ... 1 −1
−1 1 ... −1 1... ... . . . ... ...
1 −1 ... 1 −1
−1 1 ... −1 1





Theorem [Kräuter]

• perA ≤ n!

• perA = n! iff A ∼ Jn

∼ is a composition of transposition, row or column permutations, multi-

plication of rows/columns by (−1).

• A 6∼ Jn ⇒ perA ≤ (n− 2)(n− 1)!



In general, it is difficult to compute permanent

Can we estimate it for (−1, 1)-matrices?



In general, it is difficult to compute permanent

Can we estimate it for (−1, 1)-matrices?

n = 6 : per

(
1 1 ... 1
1 1 . . . ...... . . . . . . 1
1 ... 1 1

)
= 6! = 720, per

(
−1 1 ... 1
1 −1 . . . ...... . . . . . . 1
1 ... 1 −1

)
= 112



Problem [Wang, Israel J. Math., 18, 1974]

Let A ∈ Mn(±1) be a nonsingular matrix. Is there a decent upper

bound for | perA|?



Let D(n,k,l) = (dij) ∈Mk,n(±1), 0 ≤ l ≤ k ≤ n,

dij =


−1, i = j and j ∈ {1, . . . , l}

1, otherwise.

If n = k we write D(n,n,l) = D(n,l).

Conjecture [Kräuter, 1985] Let A ∈Mn(±1), n ≥ 5, rkA = r+ 1. Then

| perA| ≤ perD(n,r).

The equality holds iff A ∼ D(n,r),

∼ is transposition ◦ row or column perm. ◦ mult. by (−1).



In particular,

if A is invertible then

perA ≤ per

−1 1 ... 1 1
1 −1 ... 1... . . . 1 ...
1 ... 1 −1 1
1 ... 1 1 1

 .



In particular,

if A is invertible then

perA ≤ per

−1 1 ... 1 1
1 −1 ... 1... . . . 1 ...
1 ... 1 −1 1
1 ... 1 1 1

 .

For example,

per

−1 1 ... 1 1
1 −1 ... 1... . . . 1 ...
1 ... 1 −1 1
1 ... 1 1 −1

 ≤ per

−1 1 ... 1 1
1 −1 ... 1... . . . 1 ...
1 ... 1 −1 1
1 ... 1 1 1





In particular,

if A is invertible then

perA ≤ per

−1 1 ... 1 1
1 −1 ... 1... . . . 1 ...
1 ... 1 −1 1
1 ... 1 1 1

 .

For example,

per

−1 1 ... 1 1
1 −1 ... 1... . . . 1 ...
1 ... 1 −1 1
1 ... 1 1 −1

 ≤ per

−1 1 ... 1 1
1 −1 ... 1... . . . 1 ...
1 ... 1 −1 1
1 ... 1 1 1



if n ≥ 5!



n = 4: Exceptional case



n = 4: Exceptional case

perD(4,3) = per

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 1

)
= 4 < 8 = per

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

)
= perD(4,4)



Some computations



perD(4,0) = per

(
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)
= 24

perD(4,1) = per

(−1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)
= 12

perD(4,2) = per

(−1 1 1 1
1 −1 1 1
1 1 1 1
1 1 1 1

)
= 8

perD(4,3) = per

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 1

)
= 4

perD(4,4) = per

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

)
= 8



Some computations



perD(4,0) = per

(
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)
= 24

perD(4,1) = per

(−1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)
= 12

perD(4,2) = per

(−1 1 1 1
1 −1 1 1
1 1 1 1
1 1 1 1

)
= 8

perD(4,3) = per

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 1

)
= 4

perD(4,4) = per

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

)
= 8

Almost more −1 on diagonal — bigger rank — smaller permanent



n = 4: Exceptional case

perD(4,3) = per

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 1

)
= 4 < 8 = per

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

)
= perD(4,4)

Since perD(3,3) = −2 Laplace expansion of perD(4,3) by the last row

contains summand < 0.

Hence perD(4,3) = 4 < 8 = perD(4,4).





perD(6,6) = per

(
−1 1 ... 1
1 −1 . . . ...... . . . . . . 1
1 ... 1 −1

)
= 112

perD(5,5) = 8

perD(4,4) = 8

perD(3,3) = per

(
−1 1 1
1 −1 1
1 1 −1

)
= −2

perD(2,2) = per
(−1 1

1 −1

)
= 2

If n > 4 6 ∃ summands < 0 in expansion of perD(n,n−1) by the last row.



Extended Conjecture [BG, 2017]

Let A ∈Mn(±1), rkA = r + 1. Then

| perA| ≤ perD(n,r)

∀ n, r except 4× 4 invertible matrices.

The equality holds iff A ∼ D(n,r).

If n = 4 then there is an exception D(4,4) unique up to ∼.



Invertible matrices of small size

• Let A ∈M2(±1) be invertible. Then | perA| = perD(2,1) = 0.

• Let A ∈M3(±1) and rkA = k. Then | perA| = perD(3,k−1) and

A ∼ D(3,k−1) =
(−1 1 1

1 −1 1
1 1 1

)



• Let A ∈ GL4(±1) be s.t. | perA| = maxC∈GL4(±1) | perC| = 8.

Then

A ∼ D(4,4) =

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

)
If for B ∈ GL4(±1) it holds | perB| < 8, then

| perB| ≤ perD(4,3) = per

(
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 1

)
= 4

Hint for the proof:

Lemma 1 Let A ∈M4(±1). Then perA is divisible by 4.



Properties of perD(n,k,l)

Lemma 2 [Kräuter, Seifter] Let n ≥ 5. Then

1. perD(n,n) > 0.

2. perD(n,k) > 0 for any possible value of k.

3. For any 0 < k ≤ n we have perD(n,k−1) > perD(n,k).

Corollary Let n ≥ 5. Then for any l, k such that 0 ≤ l < k ≤ n

perD(n,l) > perD(n,k) and rkD(n,l) < rkD(n,k)



Steps of the proof

1. Case n = 4. D(4,4) is the unique except case

2. Prove | perA| ≤ perD(n,n−1) for A ∈ GLn(±1), n = 5, 6.

3. Let A ∈ GLn(±1), n ≥ 7. Assume Conjecture holds true ∀

matrices of the order m < n. Then | perA| ≤ perD(n,n−1). If

| perA| = perD(n,n−1) then A ∼ D(n,n−1).

4. Let A ∈Mn(±1), rkA = k < n. Assume Conjecture is proved

∀ B ∈Ml(±1), l ≤ k. Then | perA| ≤ perD(n,k−1).

If | perA| = perD(n,k−1), then A ∼ D(n,k−1).



Items 1, 2: “by hands”.

Item 3:

Definition (−1, 1)-matrix A satisfies condition A if the following is true:

� all entries of the first row of A are +1,

� the second row of A contains ≥ 3 entries +1 and ≥ 3 entries −1.



Key Lemma: Let A ∈ GLn(±1), n ≥ 6. Then

A ∼



D(n,n−1) (1)

D(n,n) (2)

P1 =

 1 1 1 1 1 1
1 −1 −1 1 1 1
1 1 −1 −1 1 1
1 1 1 −1 −1 1
1 1 1 1 −1 −1
1 −1 1 1 1 −1

 (3)

P2 =

 1 1 1 1 1 1
−1 −1 1 1 1 1
−1 1 −1 1 1 1
−1 1 1 −1 1 1
1 1 1 −1 −1 1
1 1 1 −1 1 −1

 (4)

X ∈ A (5)

Here perP1 = perP2 = 16. Case (1) is extremal, in the cases (2) – (4)

permanent is not maximal, so inequality holds. Case (5) — induction.



Several identities

For any 1 ≤ k ≤ n

perD(n,k−1) = perD(n,k) + 2 perD(n−1,k−1).

For n ≥ 5

perD(n,n) = (n− 2) perD(n−1,n−1) + (2n− 2) perD(n−2,n−2).

For n ≥ 6 perD(n,n−1) =

= 2 perD(n−2,n−3)+(n2−7n+12) perD(n−2,n−5)+2(n−3) perD(n−2,n−4).



n ≥ 7 then

| perA| ≤
∑

α∈Λn,2

| perA[1, 2|α]| · | perA(1, 2|α)| ≤

(| perA(1, 2|α)| ≤ perD(n−2,n−5))

≤ (1
2n(n− 1)− 3(n− 3)) · 2 · perD(n−2,n−5) =

= (n2 − 7n + 18) perD(n−2,n−5).

Then perD(n,n−1) − | perA| ≥

2 perD(n−2,n−3) + 2(n− 3) perD(n−2,n−4) − 6 perD(n−2,n−5)



perD(n,n−1) − | perA| ≥ (2n3 − 16n2 + 10n + 44) perD(n−4,n−4)+

+(4n3 − 36n2 + 48n + 80) perD(n−5,n−5) = F (n).

f (n) = 2n3 − 16n2 + 10n + 44. Then f ′ = 6n2 − 32n + 10 has the roots

1
3 and 5, f (7) = 16 ⇒ f (n) > 0 ∀ n ≥ 7.

g(n) = 4n3− 36n2 + 48n+ 80. Then g′ = 12n2− 72n+ 48 has the roots

3±
√

5, g(7) = 24 and 3±
√

5 < 7 ⇒ g(n) > 0 ∀ n ≥ 7.

n ≥ 9 ⇒ perD(n−4,n−4) > 0, perD(n−5,n−5) > 0⇒ F (n) > 0 ∀ n ≥ 9.

Also F (8) = 576 > 0, F (7) = 17 > 0 ⇒



perD(n,n−1) − | perA| ≥ F (n) > 0 ∀ n ≥ 7

Since F (n) > 0 the bound is strict and A 6∼ D(n,n−1), which proves the

characterization part



perD(n,n−1) − | perA| ≥ F (n) > 0 ∀ n ≥ 7

Since F (n) > 0 the bound is strict and A 6∼ D(n,n−1), which proves the

characterization part

+ apply majorization.



Theorem [BG, 2017]

Let A ∈Mn(±1), rkA = r + 1. Then

| perA| ≤ perD(n,r).

∀ n, r except 4× 4 invertible matrices.

The equality holds iff A ∼ D(n,r).

If n = 4 then there is an exception D(4,4), unique up to ∼.



THANK YOU


