
Kippenhahn’s conjecture
Determinantal representations

Vector bundles

Indecomposable Matrices Defining Plane
Cubics

Anita Buckley

Department of Mathematics
Faculty of Mathematics and Physics

University of Ljubljana
Slovenia

Linear Algebra Workshop, Ljubljana
12 – 16 June 2017

A. Buckley Indecomposable Matrices Defining Plane Cubics



Kippenhahn’s conjecture
Determinantal representations

Vector bundles

Outline I

1 Kippenhahn’s conjecture
Known results
n = 6 with cubic minimal polynomial

2 Determinantal representations
Weierstrass cubic
Determinantal representations of cubics

3 Vector bundles
Cokernels are vector bundles of rank r
Proof of Kippenhahn’s conjecture for cubics

A. Buckley Indecomposable Matrices Defining Plane Cubics



Kippenhahn’s conjecture
Determinantal representations

Vector bundles

Known results
n = 6 with cubic minimal polynomial

Kippenhahn’s conjecture on Hermitian pencils (1951)
Let H,K be n × n complex Hermitian matrices and
F ∈ C[x , y , z] a homogeneous polynomial such that

det(x H + y K − z Id) = F (x , y , z).

When F (x , y , z) has a repeated factor, then H and K are
simultaneously unitarily similar to direct sums: there exists an
unitary matrix U and matrices Hi ,Ki ∈ Mni (C) for some
1 ≤ ni < n such that

UHU∗ =
[

H1 0
0 H2

]
and UKU∗ =

[
K1 0
0 K2

]
.

By Burnside’s theorem on matrix algebras, this is equivalent to
H and K not generating the whole Mn(C).
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Known results

Shapiro (1982) showed that the conjecture holds for n ≤ 5
and for n = 6 in the case that the minimal polynomial is
cubic.
Waterhouse (1984) presented a pair of 6× 6 matrices that
generate M6(C) such that det(xH + yK − zId) has
repeated linear factors, thus disproving the general form of
Kippenhahn’s conjecture for n = 6.
Li and Spitkovsky (1998) constructed another class of
counterexamples for n = 6.
Laffey (1983) constructed a counterexample for n = 8 with
quartic minimal polynomial.
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The conjecture of Kippenhahn is true for n = 6 with cubic
minimal polynomial.
Let H,K be 6× 6 complex Hermitian matrices and F a
homogeneous polynomial defining a smooth cubic, such that

det(xH + yK − zId) = F (x , y , z)2.

Then H and K are simultaneously unitarily similar to direct
sums. This means that there exists an unitary matrix U and
matrices H1,H2,K1,K2 ∈ M3(C) such that

UHU∗ =
[

H1 0
0 H2

]
and UKU∗ =

[
K1 0
0 K2

]
.
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Weierstrass cubic

Let C be an irreducible curve in CP2 defined by a polynomial
F (x , y , z) of degree 3. Every smooth cubic can be brought by a
change of coordinates x

y
z

 7→ P

 x
y
z

 , for some P ∈ GL3(C)

into a Weierstrass form

F (x , y , z) = yz2 − x(x − y)(x − λy) = 0,

or equivalently

F (x , y , z) = −yz2 + x3 + αxy2 + βy3 = 0,

for some λ 6= 0,1 and α, β ∈ C.
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Determinantal representations of cubics

Consider the following question. For given C find a linear matrix

A(x , y , z) = x Ax + y Ay + z Az

such that
det A(x , y , z) = c F (x , y , z)r ,

where Ax ,Ay ,Az ∈ M3r and 0 6= c ∈ C. Here M3r is the algebra
of all 3r × 3r matrices over C.

We call A determinantal representation of C of order r .

Determinantal representation A is definite if A(x0, y0, z0) is
definite at some point (x0, y0, z0).
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Equivalent determinantal representations

Two determinantal representations A and A′ are equivalent if
there exist X ,Y ∈ GL3r (C) such that

A′ = XAY .

We study:
self-adjoint representations A = A∗ modulo unitary
equivalence Y = X ∗,
skew-symmetric representations A = −At under Y = X t

equivalence.
Obviously, equivalent determinantal representations define the
same curve.
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Cokernels are vector bundles of rank r

Theorem
Consider a linear matrix A = xAx + yAy + zAz with
det A = F (x , y , z)r . When F defines a smooth curve C, the
cokernel of A is a vector bundle of rank r on C.

This follows from Beauville (2000) using arithmetically
Cohen-Macaulay sheaves, or Eisenbud (1980) and Backelin,
Herzog, Sanders (2006) using purely algebraic methods for
matrix factorizations of polynomials.
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The conjecture of Kippenhahn is true for n = 6 with cubic
minimal polynomial.
Let H,K be 6× 6 complex Hermitian matrices and F a
homogeneous polynomial defining a smooth cubic, such that

det(xH + yK − zId) = F (x , y , z)2.

Then H and K are simultaneously unitarily similar to direct
sums. This means that there exists an unitary matrix U and
matrices H1,H2,K1,K2 ∈ M3(C) such that

UHU∗ =
[

H1 0
0 H2

]
and UKU∗ =

[
K1 0
0 K2

]
.
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Connection with real algebraic geometry

Note that F defines a real cubic curve in CP2 and that
zId − xH − yK is a definite determinantal representation of F .

In the terminology of linear matrix inequalities:
F is a real zero polynomial;
point (0,0) lies inside the convex set of points
{(x , y) ∈ R2 : Id − xH − yK ≥ 0} called spectrahedron;
spectrahedron is bounded by the compact part of the
curve.

More constructions of definite determinantal representations of
polynomials are due to Netzer, Thom and Quarez (2012→).

A. Buckley Indecomposable Matrices Defining Plane Cubics



Kippenhahn’s conjecture
Determinantal representations

Vector bundles

Cokernels are vector bundles of rank r
Proof of Kippenhahn’s conjecture for cubics

Every smooth real cubic can be brought into a Weierstrass form
by a real change of coordinates x

y
z

 7→ P

 x
y
z

 , for some P ∈ GL3(R).

In the new coordinates we get

det(xAx+yAy+zAz) =
(
−yz2 + x3 + αxy2 + βy3

)2
, where α, β ∈ R.

Ax ,Ay ,Az are real linear combinations of H,K , Id and
therefore Hermitian;
z Id − x H − y K is definite, so A = x Ax + y Ay + z Az is
also definite.
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The cokernel of A is a rank 2 bundle

When the cokernel is decomposable L1 ⊕ L2, then A is

equivalent to a block matrix
[

A1 0
0 A2

]
, where Li is the

cokernel of Ai .

In other words,

det Ai = −yz2 + x3 + αxy2 + βy3,

and both Ai are determinantal representations of order 1.
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Vinnikov, 1986–1989

Each 3× 3 determinantal representation Ai is unitarily
equivalent to one of the two self-adjoint forms

±

x

 0 0 1
0 1 0
1 0 0

+ z

 0 1 0
1 0 0
0 0 0

+ y

 α+ 3
4 t2

i i si
ti
2

−i si −ti 0
ti
2 0 −1

 ,

where (si , ti) ∈ R2 satisfy −s2
i = t3

i + αti + β.

Moreover, definite self-adjoint determinantal representations of
C are exactly those corresponding to the points (s, t) in the
compact part of C(R).
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Indecomposable vector bundles

Atiyah (1957) classified indecomposable rank r vector bundles
on elliptic curves that correspond to r -torsion points.

Rank 2 vector bundles are the cokernels of

x



0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0


+ z



0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0


+ y



0 1 0 3t2−2t(1+λ)−(1−λ)2

4 0 t−1−λ
2

0 0 0 −t 0
0 t−1−λ

2 0 −1
0 0 0

0 0
0


,

for t satisfying 0 = t(t − 1)(t − λ).
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Indecomposable vector bundles

Remark: i times the above skew-symmetric representation is
self-adjoint.

It is easy to check that these three determinantal
representations are not definite and can thus not provide a
counterexample to Kippenhahn’s conjecture.
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