Indecomposable Matrices Defining Plane Cubics

Anita Buckley

Department of Mathematics Faculty of Mathematics and Physics University of Ljubljana Slovenia

Linear Algebra Workshop, Ljubljana 12 – 16 June 2017

Outline I

Kippenhahn's conjecture

- Known results
- n = 6 with cubic minimal polynomial

2 Determinantal representations

- Weierstrass cubic
- Determinantal representations of cubics

3 Vector bundles

- Cokernels are vector bundles of rank r
- Proof of Kippenhahn's conjecture for cubics

Kippenhahn's conjecture on Hermitian pencils (1951)

Let H, K be $n \times n$ complex Hermitian matrices and $F \in \mathbb{C}[x, y, z]$ a homogeneous polynomial such that

$$\det(x H + y K - z Id) = F(x, y, z).$$

When F(x, y, z) has a repeated factor, then H and K are simultaneously unitarily similar to direct sums: there exists an unitary matrix U and matrices $H_i, K_i \in M_{n_i}(\mathbb{C})$ for some $1 \le n_i < n$ such that

$$UHU^* = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix}$$
 and $UKU^* = \begin{bmatrix} K_1 & 0 \\ 0 & K_2 \end{bmatrix}$.

By Burnside's theorem on matrix algebras, this is equivalent to *H* and *K* not generating the whole $M_n(\mathbb{C})$.

Known results n = 6 with cubic minimal polynomial

Known results

- Shapiro (1982) showed that the conjecture holds for n ≤ 5 and for n = 6 in the case that the minimal polynomial is cubic.
- Waterhouse (1984) presented a pair of 6 × 6 matrices that generate M₆(ℂ) such that det(xH + yK - zld) has repeated linear factors, thus disproving the general form of Kippenhahn's conjecture for n = 6.
- Li and Spitkovsky (1998) constructed another class of counterexamples for n = 6.
- Laffey (1983) constructed a counterexample for n = 8 with quartic minimal polynomial.

Known results n = 6 with cubic minimal polynomial

The conjecture of Kippenhahn is true for n = 6 with cubic minimal polynomial.

Let H, K be 6×6 complex Hermitian matrices and F a homogeneous polynomial defining a smooth cubic, such that

$$\det(xH + yK - zId) = F(x, y, z)^2.$$

Then H and K are simultaneously unitarily similar to direct sums. This means that there exists an unitary matrix U and matrices $H_1, H_2, K_1, K_2 \in M_3(\mathbb{C})$ such that

$$UHU^* = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix}$$
 and $UKU^* = \begin{bmatrix} K_1 & 0 \\ 0 & K_2 \end{bmatrix}$.

Weierstrass cubic

Let *C* be an irreducible curve in \mathbb{CP}^2 defined by a polynomial F(x, y, z) of degree 3. Every smooth cubic can be brought by a change of coordinates

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto P \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \text{ for some } P \in \mathsf{GL}_3(\mathbb{C})$$

into a Weierstrass form

$$F(x,y,z) = yz^2 - x(x-y)(x-\lambda y) = 0,$$

or equivalently

$$F(x, y, z) = -yz^2 + x^3 + \alpha xy^2 + \beta y^3 = 0,$$

for some $\lambda \neq 0, 1$ and $\alpha, \beta \in \mathbb{C}$.

Determinantal representations of cubics

Consider the following question. For given C find a linear matrix

$$A(x, y, z) = x A_x + y A_y + z A_z$$

such that

$$\det A(x,y,z) = c F(x,y,z)^r,$$

where $A_x, A_y, A_z \in M_{3r}$ and $0 \neq c \in \mathbb{C}$. Here M_{3r} is the algebra of all $3r \times 3r$ matrices over \mathbb{C} .

We call A determinantal representation of C of order r.

Determinantal representation A is definite if $A(x_0, y_0, z_0)$ is definite at some point (x_0, y_0, z_0) .

Equivalent determinantal representations

Two determinantal representations *A* and *A'* are equivalent if there exist $X, Y \in GL_{3r}(\mathbb{C})$ such that

A' = XAY.

We study:

- self-adjoint representations A = A* modulo unitary equivalence Y = X*,
- skew-symmetric representations $A = -A^t$ under $Y = X^t$ equivalence.

Obviously, equivalent determinantal representations define the same curve.

Cokernels are vector bundles of rank r Proof of Kippenhahn's conjecture for cubics

Cokernels are vector bundles of rank r

Theorem

Consider a linear matrix $A = xA_x + yA_y + zA_z$ with det $A = F(x, y, z)^r$. When F defines a smooth curve C, the cokernel of A is a vector bundle of rank r on C.

This follows from Beauville (2000) using arithmetically Cohen-Macaulay sheaves, or Eisenbud (1980) and Backelin, Herzog, Sanders (2006) using purely algebraic methods for matrix factorizations of polynomials. The conjecture of Kippenhahn is true for n = 6 with cubic minimal polynomial.

Let H, K be 6×6 complex Hermitian matrices and F a homogeneous polynomial defining a smooth cubic, such that

$$\det(xH + yK - zId) = F(x, y, z)^2.$$

Then H and K are simultaneously unitarily similar to direct sums. This means that there exists an unitary matrix U and matrices $H_1, H_2, K_1, K_2 \in M_3(\mathbb{C})$ such that

$$UHU^* = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix}$$
 and $UKU^* = \begin{bmatrix} K_1 & 0 \\ 0 & K_2 \end{bmatrix}$.

Connection with real algebraic geometry

Note that *F* defines a real cubic curve in \mathbb{CP}^2 and that zId - xH - yK is a definite determinantal representation of *F*.

In the terminology of linear matrix inequalities:

- F is a real zero polynomial;
- point (0,0) lies inside the convex set of points $\{(x, y) \in \mathbb{R}^2 : Id xH yK \ge 0\}$ called spectrahedron;
- spectrahedron is bounded by the compact part of the curve.

More constructions of definite determinantal representations of polynomials are due to Netzer, Thom and Quarez (2012 \rightarrow).

Every smooth real cubic can be brought into a Weierstrass form by a real change of coordinates

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] \mapsto P \left[egin{array}{c} x \ y \ z \end{array}
ight], ext{ for some } P \in \operatorname{GL}_3(\mathbb{R}).$$

In the new coordinates we get

$$det(xA_x+yA_y+zA_z) = \left(-yz^2+x^3+\alpha xy^2+\beta y^3\right)^2, \text{ where } \alpha,\beta \in \mathbb{R}.$$

- A_x, A_y, A_z are real linear combinations of H, K, Id and therefore <u>Hermitian</u>;
- z Id x H y K is definite, so $A = x A_x + y A_y + z A_z$ is also <u>definite</u>.

Cokernels are vector bundles of rank *r* Proof of Kippenhahn's conjecture for cubics

The cokernel of A is a rank 2 bundle

When the cokernel is decomposable $\mathcal{L}_1 \oplus \mathcal{L}_2$, then *A* is equivalent to a block matrix $\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$, where \mathcal{L}_i is the cokernel of A_i .

In other words,

$$\det A_i = -yz^2 + x^3 + \alpha xy^2 + \beta y^3,$$

and both A_i are determinantal representations of order 1.

Cokernels are vector bundles of rank *r* Proof of Kippenhahn's conjecture for cubics

Vinnikov, 1986–1989

Each 3×3 determinantal representation A_i is unitarily equivalent to one of the two self-adjoint forms

$$\pm \left(x \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} + z \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + y \begin{bmatrix} \alpha + \frac{3}{4}t_i^2 & is_i & \frac{t_i}{2} \\ -is_i & -t_i & 0 \\ \frac{t_i}{2} & 0 & -1 \end{bmatrix} \right),$$

where
$$(s_i, t_i) \in \mathbb{R}^2$$
 satisfy $-s_i^2 = t_i^3 + \alpha t_i + \beta$.

Moreover, definite self-adjoint determinantal representations of *C* are exactly those corresponding to the points (s, t) in the compact part of $C(\mathbb{R})$.

Cokernels are vector bundles of rank *r* Proof of Kippenhahn's conjecture for cubics

Indecomposable vector bundles

Atiyah (1957) classified indecomposable rank r vector bundles on elliptic curves that correspond to r-torsion points.

Rank 2 vector bundles are the cokernels of

for *t* satisfying $0 = t(t-1)(t-\lambda)$.

Cokernels are vector bundles of rank *r* Proof of Kippenhahn's conjecture for cubics

Indecomposable vector bundles

Remark: *i* times the above <u>skew-symmetric</u> representation is self-adjoint.

It is easy to check that these three determinantal representations are **not** definite and can thus not provide a counterexample to Kippenhahn's conjecture.

- M. Atiyah. *Vector bundles over an elliptic curve,* Proc. London Math. Soc. (3), **7** (1957), 414–452.
- J. Backelin, J. Herzog, and H. Sanders. *Matrix factorizations of homogeneous polynomials,* Algebra Some Current Trends **1352**, Lecture Notes in Mathematics, Springer (2006),1–33.
- A. Beauville. *Determinantal Hypersurfaces,* Michigan Math. J. **48** (2000), 39–63.
- A Buckley and T. Košir. *Plane Curves as Pfaffians,* Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze (2010).
- R. J. Cook and A. D. Thomas. *Line bundles and homogeneous matrices*, Quart. J. Math. Oxford Ser. (2) 30 (1979), 423–429.

- D. Eisenbud. Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35–64.
- R. Kippenhahn. Über den Wertevorrat einer Matrix, Mathematische Nachrichten Volume 6, 3-4 (1951), 193–228.
- T. J. Laffey A counterexample to kippenhahn's conjecture on hermitian pencils, Lin. Alg. Appl. **51** (1983), 179–182.
- P. Lancaster and L. Rodman. Canonical forms for symmetric / skew-symmetric real matrix pairs under strict equivalence and congruence, Linear Algebra Appl. 406, (2005), 1–76.
- T. Netzer and A. Thom. Polynomials with and without determinantal representations, Linear Algebra Appl. 437 (2012), 1579–1595.

- G. V. Ravindra and Amit Tripathi. *Torsion points and matrices defining elliptic curves,* International Journal of Algebra and Computation Vol 24, **6**, 2014.
- R. Quarez. Symmetric determinantal representation of polynomials, Linear Algebra Appl. 436 (2012), 3642–3660.
- H. Shapiro. A conjecture of Kippenhahn about the characteristic polynomial of a pencil generated by two Hermitian matrices. I and II, Lin. Alg. Appl. 43 (1982), 201–221 and 45 (1982), 97–108.
- V. Vinnikov. *Complete description of determinantal representations of smooth irreducible curves,* Lin. Alg. Appl., **125** (1989), 103–140.
- V. Vinnikov. Self-adjoint determinantal representations of real irreducible cubics, Operator Theory: Advances and Applications 19 (1986) 415–442