Indecomposable matrices defining plane cubics

ANITA BUCKLEY

Faculty of Mathematics and Physics University of Ljubljana (Slovenia) anita.buckley@fmf.uni-lj.si

Consider a Weierstrass cubic in \mathbb{CP}^2 defined by the polynomial

$$F(x, y, z) = yz^2 - x(x - y)(x - \lambda y) = 0,$$

for some $\lambda \neq 0, 1$. For given *F* we find all linear matrices

$$A(x, y, z) = x A_x + y A_y + z A_z$$

such that

$$\det A(x, y, z) = c F(x, y, z)^2,$$

where A_x, A_y, A_z are 6×6 matrices over \mathbb{C} and $0 \neq c \in \mathbb{C}$. In other words, we find all (decomposable and indecomposable) 6×6 linear determinantal representations of Weierstrass cubics.

As a corollary we verify the Kippenhahn conjecture for 6×6 matrices.