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A linear map Φ : Mn(R)→ Mm(R) is called ∗-linear if Φ(XT) = Φ(X)T for each X ∈
Mn(R). A ∗-linear map Φ : Mn(R) → Mm(R) is called positive if it maps positive
semidefinite matrices to positive semidefinite matrices. Note that a ∗-linear map
on the full matrix space is positive if and only if its restriction to the subspace of
symmetric matrices, Φ : Symn → Symm, is positive. For any positive integer k, a
∗-linear map Φ : Mn(R)→ Mm(R) induces a ∗-linear map Φk : Mkn → Mkm defined
by

Φk([Xij]
k
i,j=1) = [Φ(Xij)]

k
i,j=1.

The linear map Φ is called k-positive if Φk is positive. Φ is called completely positive if
it is k-positive for each positive integer k.

The space of linear maps Φ : Symn → Symm is isomorphic to the space of biquadratic
forms in n + m variables via the isomorphism

Φ 7→ pΦ(x, y) = yTΦ(xxT)y.

Additionally, Φ is positive if and only the polynomial pΦ is nonnegative on Rn×Rm,
and Φ is completely positive if and only if pΦ is a sum of squares of bilinear forms.
Investigating the difference between the convex cones of positive and completely
positive maps is therefore the same as investigating the difference between the con-
vex cones of nonnegative and SOS biquadratic forms. The two cones are known to
be equal only if m = 2 or n = 2. However, only few examples of positive maps
that are not completely positive are known, see e.g., [2, 3, 5, 6, 7]. There is also an
algorithm for constructing such maps in [4], but the positive maps obtained from
that algorithm are generically not extremal, i.e., they can be written as a sum of two
positive maps.

The aim of the working group is to consider some of the following problems:

• Construct new types of extremal positive maps. In particular, in dimension 3
the above mentioned examples are all of the form x y z

y w v
z v u

 7→
 a1x + a2w + a3u a4y a5z

a4y a6x + a7w + a8u a9v
a5z a9v a10x + a11w + a12u

 .

We would like to know whether in dimension 3 all extremal positive maps
that are not completely positive are of that form.
• Quarez [6] initiated the study of the number and configuration of real zeros

of nonnegative biquadratic forms with finitely many real zeros. In the case
m = n = 3 the maximum number of real zeros is 10 [1], but the possible con-
figurations are not known. Moreover, the examples in [1] are the only known



nonnegative biquadratic forms with 10 real zeros. Can we construct more ex-
amples? Also, there are no examples of nonnegative biquadratic forms with
many real zeros if m > 3 or n > 3.
• If Φ : Symn → Symm is a positive map, then det Φ(xxT) ≥ 0 for each x ∈ Rn,

i.e., det Φ(xxT) is a nonnegative polynomial. We would like to know if all
nonnegative polynomials are of this form, and if not, what are the obstruc-

tions. In particular, the polynomials det
(

1

(t2−1)
2
3

Φt(xxT)

)
constructed in [1]

converge to the Robinson’s polynomial
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but the maps
(

1

(t2−1)
2
3

Φt

)
do not converge. Can the Robinson’s polyno-

mial still be written as det Φ(xxT) for some positive map Φ? What about
the Motzkin’s polynomial

x4
1x2

2 + x2
1x4

2 + x6
3 − 3x2

1x2
2x2

3?
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