Dimension of commuting varieties

Klemen Šivic

Faculty of Mathematics and Physics University of Ljubljana (Slovenia) klemen.sivic@fmf.uni-lj.si

Let $C_r(\mathfrak{g})$ denote the set of all *r*-tuples of commuting elements of the Lie algebra \mathfrak{g} of a linear algebraic group *G*, and $C_r(\mathcal{N})$ the subset of $C_r(\mathfrak{g})$ consisting of all *r*-tuples of commuting nilpotent elements. Both sets have natural structures of affine varieties. If \mathfrak{g} is reductive, then $C_2(\mathfrak{g})$ is known to be irreducible and of dimension dim \mathfrak{g} + rank \mathfrak{g} , while $C_2(\mathcal{N})$ is equidimensional of dimension dim[*G*, *G*]. On the other hand, for r >2 these varieties are reducible, except for some small ranks of \mathfrak{g} , and very little is known about the irreducible components. We compute the dimension of $C_r(\mathfrak{g})$ and of $C_r(\mathcal{N})$ for sufficiently large *r* if \mathfrak{g} is of type *A* or *C* and the characteristic of the ground field is neither 2 nor 3.

This is a joint work with PAUL D. LEVY (Lancaster University) and NHAM V. NGO (University of Arizona).