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Circles in the spectrum and numerical ranges

VLADIMIR MÜLLER
Institute of Mathematics

Academy of Sciences of the Czech Republic
muller@math.cas.cz

We prove that a bounded linear Hilbert space operator has the unit circle in its es-
sential approximate point spectrum if and only if it admits an orbit satisfying certain
orthogonality and almost-orthogonality relations.

As consequences, we derive in particular wide generalizations of Arveson’s theorem
as well as show that the weak convergence of operator powers implies the uniform
convergence of their compressions on an infinite-dimensional subspace.

This is a joint work with YURI TOMILOV (Nicolaus Copernicus University and Polish
Academy of Sciences).
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Invited talks

Wiener’s lemma along primes and other subsequences

BÁLINT FARKAS
School of Mathematics and Natural Sciences

University of Wuppertal (Germany)
farkas@math.uni-wuppertal.de

Inspired by ergodic theorems along subsequences, we study the validity of Wiener’s
lemma and extremal behavior of measures µ on the unit circle concerning their
Fourier coefficients µ̂(kn) along subsequences (kn) of N, with focus on arithmetic
subsequences such as polynomials, primes and polynomials of primes. We also dis-
cuss consequences for orbits of operators extending results of J. Goldstein and B.
Nagy. As an application of the general results we shall prove among others the fol-
lowing facts which may seem surprising. Denote by pn the nth prime:

(1) If T is a (linear) contraction on a Hilbert space and x ∈ H \ {0} is such that
|(Tpn x|x)| → ‖x‖2 as n → ∞, then x is an eigenvector of T to a unimodular
eigenvalue.

(2) If T is a power bounded operator on a Banach space E and x ∈ E \ {0} is
such that |〈Tpn x, x′〉| → |〈x, x′〉| as n → ∞ for every x′ ∈ E′, then x is an
eigenvector of T to a unimodular eigenvalue.

(3) If T is a power bounded operator on a Banach space E with Tpn → I in the
weak operator topology, then T = I.

This is a joint work with TANJA EISNER (University of Leipzig).

Krauter conjecture on permanents is true

ALEXANDER E. GUTERMAN
Faculty of Algebra, Department of Mechanics and Mathematics

Lomonosov Moscow State University (Russia)
guterman@list.ru

Permanent function is very useful in algebra and combinatorics. The central role in
these investigations is played by (0, 1) or (−1, 1) matrices, which are important for
the combinatorial applications of permanent. The following problem related to the
permanent of (−1, 1) matrices was posed in 1974.

Problem 1. (Wang, [2, Problem 2].) Let A ∈ Mn(±1) be a nonsingular matrix. Is there
a decent upper bound for |per (A)|?
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Kräuter in the paper [1] formulated the following conjecture which provides a possi-
ble upper bound for the values of the permanent function for matrices from Mn(±1)
via the rank function.

Conjecture 1. (Kräuter, [1, Conjecture 5.2], 1985.) Let n ≥ 5, A ∈ Mn(±1) and
rk (A) = r + 1 for some r, 0 ≤ r ≤ n − 1. Then |per (A)| ≤ per (D(n, r)), where
D(n, r) = (dij) ∈ Mn(±1) is defined by dij = −1 if i = j and j ∈ {1, . . . , r}, dij = 1 oth-
erwise. The equality holds iff the matrix A can be obtained from D(n, r) by the transposition,
row or column permutations and multiplications of rows or columns by −1.

We show that this conjecture is true.

This is a joint work with MIKHAIL BUDREVICH (Lomonosov Moscow State Univer-
sity).

REFERENCES

[1] A.R. Kräuter, Recent results on permanents of (+1, -1)-matrices, Forschungszentrum Graz Berichte,
249, 1985, 243–254.

[2] E.T.H. Wang, On permanents of (+1, -1)-matrices, Israel J. Math., 18, 1974, 353–361.

On projections arising from isometries with finite spectrum on Banach
spaces

DIJANA ILIŠEVIĆ
Department of Mathematics, Faculty of Science

University of Zagreb (Croatia)
ilisevic@math.hr

If P is an orthogonal projection on a Hilbert space, then it can be written in the form
P = I+T

2 for an isometry (a unitary operator) T satisfying T2 = I. When looking for
a suitable generalization of orthogonal projections in the Banach space setting, the
main task is to get rid of the involution in defining an orthogonal projection. One
way is to consider Banach space projections that can be written as the average of
the identity with an isometric reflection. If T is an isometric reflection then σ(T) =
{1,−1}, and for P = I+T

2 we have T = P − (I − P). More generally, if T is an
isometry such that σ(T) = {1, λ} with λ 6= 1, then there exists a projection P such
that T = P + λ(I − P); in this case P is called a generalized bicircular projection.
One can also consider generalized n-circular projections that arise from isometries
with n distinct eigenvalues. In this talk we shall describe the structure of generalized
n-circular projections on some important complex Banach spaces, mostly in the case
n = 2, but also a few for n ≥ 3.
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On the lengths of some generating sets of matrix algebras

THOMAS J. LAFFEY
School of Mathematics and Statistics
University College Dublin (Ireland)

thomas.laffey@ucd.ie

Suppose that S is a set of generators of the full algebraA of n× n complex matrices.
The least integer k for which the monomials in the elements of S of degree at most
k span A is called the length of S .A conjecture of Paz (LAMA 15 (1984) 161-170)
states that the length of S is at most 2n− 2. If true, the conjecture is best possible,
since examples are known where the bound 2n− 2 is achieved.

In this talk, we will consider a number of generating sets, mostly consisting of ma-
trices with quadratic or cubic minimal polynomials, which one might expect to have
large length, and verify Paz’s conjecture for them. We will also discuss approaches
to proving weaker versions of the conjecture.

This work is based on a collaboration with HELENA ŠMIGOC (University College
Dublin) and ALEXANDER GUTERMAN and OLGA MARKOVA (Moscow State Uni-
versity).

Matrix problems in quantum information science

CHI-KWONG LI
Department of Mathematics

College of William and Mary
ckli@math.wm.edu

We will discuss some recent matrix results and problems on matrix inequalities, spe-
cial matrices, matrix transformations, arising in quantum information science.

Vector states on operator semigroups

LAURENT W. MARCOUX
Department of Pure Mathematics
University of Waterloo (Canada)

LWMarcoux@uwaterloo.ca

Let S be a multiplicative semigroup of bounded linear operators on a complex Hil-
bert spaceH, and let Ω be the range of a vector state on S so that Ω = {〈Sξ, ξ〉 : S ∈
S} for some fixed unit vector ξ ∈ H. We study the structure of sets of cardinality
two coming from irreducible semigroups S . This leads us to sufficient conditions for
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reducibility and, in some cases, for the existence of common fixed points for S . This
is made possible by a thorough investigation of the structure of maximal families F
of unit vectors in H with the property that there exists a fixed constant ρ ∈ C for
which 〈x, y〉 = ρ for all distinct pairs x and y in F .

This is joint work with HEYDAR RADJAVI (University of Waterloo) and BAMDAD
YAHAGHI (Golestan Unversity).

Distributing trace

MITJA MASTNAK
Department of Mathematics and Computing Science

Saint Mary’s University (Canada)
mmastnak@cs.smu.ca

It is well known that, up to (unitary) similarity, the trace of a matrix can be aribitrar-
ily distributed along its diagonal. In joint work in progress with G. MACDONALD
(University of Prince Edward Island), L. MARCOUX (University of Waterloo), M.
OMLADIČ (University of Ljubljana), and H. RADJAVI (University of Waterloo) we
study the problem for collections of matrices. We obtain, among other things, a
complete classification of ∗-subalgebras of n-by-n matrices that are unitarily similar
to a subalgebra of the subspace of matrices whose diagonal part is scalar (i.e., all
diagional entries are equal).

Simultaneous versions of Perron-Frobenius and Wielandt results

HEYDAR RADJAVI
Department of Pure Mathematics
University of Waterloo (Canada)

hradjavi@uwaterloo.ca

The classical theorem of Perron and Frobenius shows how much insight can be
gained into the structure of an operator if it is assumed positive – or, the entries
of its matrix in a suitable basis are all nonnegative. That of Wielandt gives a suffi-
cient condition for ”positivization” of certain operators on a complex linear space,
i.e., a basis change to turn them to positive operators. These elegant results have
attracted many authors and inspired extensions, to infinite dimensions on the one
hand, and to simultaneous situations on the other:

(a) What structural information can be obtained for semigroups of positive op-
erators?

(b) Under what conditions can we positivize a semigroup of operators simulta-
neously?

Some of the most recent simultaneous versions will be discussed.
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Sylvester equation in triangular operator algebras

AHMED SOUROUR
Department of Mathematics and Statistics

University of Victoria (Canada)
sourour@uvic.ca

The talk will discuss the spectrum of the operator X 7→ AX + XB in triangular
operator algebras.

An equivalence result in the symmetric nonnegative inverse eigenvalue
problem

HELENA ŠMIGOC
School of Mathematics and Statistics
University College Dublin (Ireland)

helena.smigoc@ucd.ie

We say that a list of real numbers is ”symmetrically realisable” if it is the spectrum
of some (entrywise) nonnegative symmetric matrix. The Symmetric Nonnegative
Inverse Eigenvalue Problem (SNIEP) is the problem of characterising all symmetri-
cally realisable lists.

We present a recursive method for constructing symmetrically realisable lists. The
properties of the realisable family we obtain allow us to make several novel connec-
tions between a number of sufficient conditions developed over forty years, starting
with the work of Fiedler in 1974. We show that essentially all previously known
sufficient conditions are either contained in or equivalent to the family we are intro-
ducing.

This is a joint work with RICHARD ELLARD (University College Dublin).
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Unbounded convergences in vector and Banach lattices

VLADIMIR TROITSKY
Department of Mathematical and Statistical Sciences

University of Alberta (Canada)
troitsky@ualberta.ca

Let τ be a mode of convergence of nets in a vector lattice X. We define its “un-
bounded” counterpart as follows: xα

uτ−→ x if |xα − x| ∧ u τ−→ x for every u ≥ 0.
In my talk, I will present an overview of recent results by various authors on un-
bounded order (uo) convergence on vector lattices and unbounded norm (un) con-
vergence on Banach lattices. For sequences in most function spaces, these conver-
gences agree with convergence almost everywhere and with convergence in mea-
sure, respectively. Hence, one can think of uo and un convergences as generaliza-
tions of convergences everywhere and in measure, respectively. This allows one to
extend various facts of measure theory and Lp-spaces to the much broader setting of
function spaces and Banach lattices.

While uo convergence is not topological, un convergence is. We will discuss prop-
erties of un topology. In particular, un topology is metrizable iff the space has a
quasi-interior point. I will also discuss extending un topology to the universal com-
pletion of the space.
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Contributed talks

Indecomposable matrices defining plane cubics

ANITA BUCKLEY
Faculty of Mathematics and Physics

University of Ljubljana (Slovenia)
anita.buckley@fmf.uni-lj.si

Consider a Weierstrass cubic in CP2 defined by the polynomial

F(x, y, z) = yz2 − x(x− y)(x− λy) = 0,

for some λ 6= 0, 1. For given F we find all linear matrices

A(x, y, z) = x Ax + y Ay + z Az

such that
det A(x, y, z) = c F(x, y, z)2,

where Ax, Ay, Az are 6× 6 matrices over C and 0 6= c ∈ C. In other words, we find
all (decomposable and indecomposable) 6× 6 linear determinantal representations
of Weierstrass cubics.

As a corollary we verify the Kippenhahn conjecture for 6× 6 matrices.

Extremal non-convertible fully indecomposable (0, 1)-matrices

MIKHAIL BUDREVICH
Faculty of Algebra, Department of Mechanics and Mathematics

Lomonosov Moscow State University (Russia)
budrevich@yandex.ru

Permanent is a function which is similar to determinant by its definition but consid-
erably different by its properties. Permanent of (0, 1)-matrices has an important role
as a computing function in combinatorics. In this work we restrict our attention to
the permanent function on (0, 1)-matrices only.

In [1] it was proved that any fully indecomposable not convertible (0, 1)-matrix A
of order n has at least 2n + 3 positive entries. In this talk we present the description
of all such matrices with the minimal possible number of non-zero entries in matrix
terms and in graph terms.

Structure of fully indecomposable non-convertible (0, 1)-matrix with 2n + 3 positive
elements is similar to sparse circulant matrices. Using this fact we compute per-
manent of all such matrices and show that these matrices give a series of examples
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of non-convertible matrices which satisfy the conditions: a matrix can not be repre-
sented in upper block triangular form and a matrix has minimal possible permanent.

This is a joint work with GREGOR DOLINAR (University of Ljubljana), ALEXANDER

E. GUTERMAN (Lomonosov Moscow State University) and BOJAN KUZMA (Univer-
sity of Ljubljana).

REFERENCES

[1] M. Budrevich, G. Dolinar, A.E. Guterman, B. Kuzma, Lower bounds for Pólya’s problem on permanent,
nternational Journal of Algebra and Computation, 26 (6), 2016, 161–170.

Some open questions about Kronecker quotients

YORICK HARDY
School of Mathematics

University of the Witwatersrand (South Africa)
yorick.hardy@wits.ac.za

This talk will review results on the existence of different types of Kronecker quo-
tients, and consider some open questions regarding uniform Kronecker quotients.

Consider the vector space Mm,n of m × n matrices over some field F and the Kro-
necker product A⊗ B ∈ Mms,nt of matrices A ∈ Mm,n and B ∈ Ms,t.

We may define a quotient operation � : Mms,nt ×Ms,t → Mm,n. A Kronecker
quotient � obeys (A ⊗ B) � B = A for all matrices A and B 6= 0. In particular, a
uniform Kronecker quotient � is linear in its left argument and obeys

(A⊗ B)� C = (B� C)A

when B and C have the same size (so that B� C ∈ F).

For each uniform Kronecker quotient, there exists Q : Ms,t → Ms,t such that, for
M ∈ Mms,nt,

M� B = tr2((Im ⊗Q(B))T M)

where Im is the m×m identity matrix and the partial trace tr2 is taken over the t× t
matrices inMm,n ⊗Mt,t. This is known as a partial Frobenius product.
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Linear spaces of symmetric nilpotent matrices

DAMJANA KOKOL BUKOVŠEK
Faculty of Economics

University of Ljubljana (Slovenia)
damjana.kokol.bukovsek@ef.uni-lj.si

In 1958 Gerstenhaber showed that if L is a subspace of the vector space of the square
matrices of order n over some field F, consisting of nilpotent matrices, and the field
F is sufficiently large, then the maximal dimension of L is n(n−1)

2 , and if this dimen-
sion is attained, then the space L is triangularizable. Linear spaces of symmetric
matrices seem to be first studied by Meshulam in 1989 in view of the bound of their
rank. Although it seems unnatural to ask when a linear space of symmetric matrices
is made of nilpotents and when it is triangular, we find a way to do so by going to an
equivalent notion for symmetric matrices, i.e. persymmetric matrices. We develop
a theory that enables us to prove extensions of some beautiful classical triangulariz-
ability results to the case of symmetric matrices. Not only the Gerstenhaber’s result,
but also Engel, Jacobson and Radjavi theorems can be extended. We also study max-
imal linear spaces of symmetric nilpotents of smaller dimension.

This is a joint work with MATJAŽ OMLADIČ (Institute of mathematics, physics and
mechanics, Ljubljana).

Bounds on tensor norms via tensor partitions

ZHENING LI
Department of Mathematics

University of Portsmouth (UK)
zhening.li@port.ac.uk

The spectral norm and the nuclear norm of a matrix are evidently important in many
branches of mathematics as well as in various practical applications. They are easy
to compute from the singular value decompositions. In recent years, due to the surge
of research on studying various tensor problems and multilinear algebra, the use of
tensor spectral norm and tensor nuclear norm are widely seen, in particular in tensor
decompositions and tensor completions. However, these tensor norms are NP-hard
to compute in general. In this work, we study tensor norms from a new perspective.
We introduce several concepts of tensor partitions, generalizing the concept of block
tensor in the literature. Neat bounds on the spectral norm and the nuclear norm of
a tensor based on arbitrary partitions are established. Specifically, given any tensor
T that is partitioned into a set of subtensors {T1, T2, . . . , Tm}, its spectral norm ‖T ‖σ

and its nuclear norm ‖T ‖∗ can be bounded as follows:

‖(‖T1‖σ, ‖T2‖σ, . . . , ‖Tm‖σ)‖∞ ≤ ‖T ‖σ ≤ ‖(‖T1‖σ, ‖T2‖σ, . . . , ‖Tm‖σ)‖2

‖(‖T1‖∗, ‖T2‖∗, . . . , ‖Tm‖∗)‖2 ≤ ‖T ‖∗ ≤ ‖(‖T1‖∗, ‖T2‖∗, . . . , ‖Tm‖∗)‖1 ,
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where ‖ · ‖p stands for the Lp-norm of a vector for 1 ≤ p ≤ ∞. These intuitive
bounds are tight in general and can be extended to the tensor spectral p-norm and
nuclear p-norm for any 1 ≤ p ≤ ∞. We also study the relation of the norm of a
tensor, the norms of matrix unfoldings of the tensor, and bounds via the norms of
matrix slices of the tensor. Various bounds of the tensor norms in the literature are
implied by our results.

Length realizability problem for pairs of quasi-commuting matrices

OLGA V. MARKOVA
Faculty of Algebra, Department of Mechanics and Mathematics

Lomonosov Moscow State University (Russia)
ov markova@mail.ru

Following [1, 2], we define the length of a finite system of generators S of a given finite-
dimensional algebra A over a field as the smallest number k such that products in S
of length not greater than k generate A as a vector space. For the generating sets of
the full matrix algebra Mn(F) the problem of computing the length as a function of
n is studied since 1984 and is still an open problem. However, there exist some good
bounds for the lengths of matrix sets satisfying some additional conditions. In this
talk we discuss the length evaluation problem for quasi-commuting pairs of matrices
(we say that A, B in Mn(F) quasi-commute if AB and BA are linearly dependent).

First we single out two special classes: (I) commuting pairs and (II) quasi-commuta-
tive, non-commuting pairs with a nilpotent product. We show that in each of these
cases l(S) ≤ n− 1 and, moreover, for any l = 1, . . . , n− 1, each of these two classes
contains a pair of matrices with length l.

If a quasi-commuting pair S = {A, B} ⊂ Mn(F) does not belong to the class (I)∪(II),
then AB = εBA where the commutativity factor ε is a primitive k-th root of unity
for some k ≤ n. We will show that in this case the situation is very different from
the commutative and nilpotent case. We provide sharp upper and lower bounds
for the length of such pairs depending on n, k and the algebraic multiplicity of 0
as an eigenvalue of AB. We show how the interval between these extremal values
is divided into intervals of realizable values for the length and “gaps”, i.e. non-
realizable values.

This is a joint work with ALEXANDER GUTERMAN (Lomonosov Moscow State Uni-
versity, Russia) and VOLKER MEHRMANN (Technische Universität Berlin, Germany).
The talk is partially based on our papers [3, 4].

REFERENCES

[1] A. Paz, An application of the Cayley–Hamilton theorem to matrix polynomials in several variables, Linear
Multilinear Algebra, 15, 1984, 161–170.
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[3] A.E. Guterman, O.V. Markova, The realizability problem for values of the length function for quasi-
commuting matrix pairs, Zap. Nauchn. Sem. POMI. 439, 2015, 59–73.
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Jordan triple product homomorphisms on triangular matrices to and from
dimension one

BLAŽ MOJŠKERC
Faculty of Economics

University of Ljubljana (Slovenia)
blaz.mojskerc@ef.uni-lj.si

A map Φ : Mn(F) → Mm(F) is a Jordan triple product (J.T.P.) homomorphism
whenever Φ(ABA) = Φ(A)Φ(B)Φ(A) for all A, B ∈ Mn(F).

In work in progress, we study J.T.P. homomorphisms on upper triangular matrices
Tn(F). We characterize J.T.P. homomorphisms Φ : Tn(C) → C and J.T.P. homomor-
phisms Φ : F → Tn(F) for F ∈ {R, C}. In the later case we consider continuous
maps and the implications of omitting the assumption of continuity.

This is a joint work with DAMJANA KOKOL BUKOVŠEK (University of Ljubljana).

On matrix theory, graph theory, and finite geometry

MARKO OREL
Faculty of Mathematics, Natural Sciences and Information Technologies

University of Primorska (Slovenia)
marko.orel@upr.si

Preserver problems represent a research area in matrix theory, where a typical prob-
lem demands a characterizations of all maps on a certain set of matrices that pre-
serve some function, subset or a relation. If the studied maps are bijective by the
assumption, then the characterization of the maps involved is often easier to obtain.
In the case of certain preservers of binary relations it turns out that bijectivity can
be deduced automatically by using some techniques from graph theory, which in-
volve graph homomorphisms. In the talk I will survey few such techniques. While
several preserver problems on matrices over finite fields have been solved by using
these techniques, an increasing number of recent examples shows that both research
areas: (a) preserver problems and (b) the study of graph homomorphisms overlap
also with some problems in finite geometry.
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Inequalities on the spectral radius, operator norm and numerical radius of
Hadamard weighted geometric mean of positive kernel operators

ALJOŠA PEPERKO
Faculty of Mechanical Engineering
University of Ljubljana (Slovenia)

aljosa.peperko@fmf.uni-lj.si

In the talk several inequalities, on the spectral radius ρ, operator norm ‖ · ‖ and nu-
merical radius of Hadamard products and ordinary products of non-negative matri-
ces that define operators on sequence spaces, or of Hadamard geometric mean and
ordinary products of positive kernel operators on Banach function spaces, will be
presented. These inequalities generalize or refine ealier results of several authors.
In particular, we show that for a Hadamard geometric mean A( 1

2 ) ◦ B(
1
2 ) of positive

kernel operators A and B on a Banach function space L, we have

ρ
(

A( 1
2 ) ◦ B( 1

2 )
)
≤ ρ

(
(AB)(

1
2 ) ◦ (BA)(

1
2 )
) 1

2 ≤ ρ(AB)
1
2 .

In the special case L = L2(X, µ) we also prove that

‖A( 1
2 ) ◦ B( 1

2 )‖ ≤ ρ
(
(A∗B)(

1
2 ) ◦ (B∗A)(

1
2 )
) 1

2 ≤ ρ(A∗B)
1
2 .

If time allows, we will also present some related inequalities for the generalized and
joint spectral radius for bounded sets of positive kernel operators. The talk is mostly
based on the preprints [1, 2].

REFERENCES

[1] A. Peperko, Inequalities on the spectral radius, operator norm and numerical radius of Hadamard weighted
geometric mean of positive kernel operators, 2016, https://arxiv.org/abs/1612.01767

[2] A. Peperko, Bounds on the joint and generalized spectral radius of Hadamard geometric mean of bounded
sets of positive kernel operatorsbqtt n, 2016, https://arxiv.org/abs/1612.01765

Minimal determinantal representations of bivariate polynomials

BOR PLESTENJAK
Faculty of Mathematics and Physics

University of Ljubljana (Slovenia)
bor.plestenjak@fmf.uni-lj.si

It is known since Dixon’s 1902 paper that every bivariate polynomial of degree n ad-
mits a determinantal representation with n× n symmetric matrices. However, the
construction of such matrices is far from trivial and up to now there have been no ef-
ficient numerical algorithms, even if we do not insist on matrices being symmetric.
We present a numerical construction of determinantal representations that returns
n × n matrices for a square-free bivariate polynomial of degree n, which, with the
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exception of the symmetry, agrees with Dixon’s result. For a non square-free poly-
nomial one can combine it with a square-free factorization to obtain a representation
of order n.

Our motivation is a novel numerical method for solving systems of bivariate poly-
nomials as two-parameter eigenvalue problems. Symmetry is not important for this
particular application.

The Birkhoff–James and Roberts orthogonality in C∗-algebras

RAJNA RAJIĆ
Faculty of Mining, Geology and Petroleum Engineering

University of Zagreb (Croatia)
rajna.rajic@rgn.hr

Orthogonality in normed linear spaces can be defined in different ways. In this
talk, we consider two types of orthogonality in C∗-algebras. The Birkhoff–James
orthogonality a⊥BJb for arbitrary elements a and b of a C∗-algebraA is characterized
in terms of states acting on A. A characterization of a special case of the Roberts
orthogonality a⊥Re, where e is the unit in A, is obtained in terms of the Davis–
Wielandt shell of a.

This is a joint work with LJILJANA ARAMBAŠIĆ (University of Zagreb) and TOMIS-
LAV BERIĆ (University of Zagreb).

This research was supported by the Croatian Science Foundation under the project
IP-2016-06-1046.

Dimension of commuting varieties

KLEMEN ŠIVIC
Faculty of Mathematics and Physics

University of Ljubljana (Slovenia)
klemen.sivic@fmf.uni-lj.si

Let Cr(g) denote the set of all r-tuples of commuting elements of the Lie algebra
g of a linear algebraic group G, and Cr(N ) the subset of Cr(g) consisting of all r-
tuples of commuting nilpotent elements. Both sets have natural structures of affine
varieties. If g is reductive, then C2(g) is known to be irreducible and of dimension
dim g + rank g, while C2(N ) is equidimensional of dimension dim[G, G]. On the
other hand, for r > 2 these varieties are reducible, except for some small ranks
of g, and very little is known about the irreducible components. We compute the
dimension of Cr(g) and of Cr(N ) for sufficiently large r if g is of type A or C and the
characteristic of the ground field is neither 2 nor 3.
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This is a joint work with PAUL D. LEVY (Lancaster University) and NHAM V. NGO
(University of Arizona).

A variation principle for ground spaces

STEPHAN WEIS
Centre for Quantum Information and Communication

Université libre de Bruxelles (Belgium)
maths@stephan-weis.info

A variation formula is presented for the ground space projections of a vector space of
energy operators in a matrix *-algebra. We prove that the ground space projections
are the greatest projections of the algebra under certain operator cone constraints.
The formula is derived from lattice isomorphisms between normal cones and ex-
posed faces of the state space of the algebra, and between ground space projections.

The vector space of local Hamiltonians is in the focus of quantum many-body phy-
sics. The variation formula will be demonstrated with two-local three-bit (commu-
tative) Hamiltonians. A future goal is to understand the lattice of ground spaces of
two-local three-qubit (non-commutative) Hamiltonians. Both the combinatorics and
topology of this lattice are unsettled issues.

REFERENCES

[1] S. Weis, A variation principle for ground spaces, 2017, https://arxiv.org/abs/1704.07675

There are many more positive maps than completely positive maps

ALJAŽ ZALAR
Faculty of Mathematics and Physics

University of Ljubljana (Slovenia)
aljaz.zalar@fmf.uni-lj.si

A linear map Φ between matrix spaces is positive if it maps positive semidefinite
matrices to positive semidefinite ones, and is called completely positive if all its am-
pliations In ⊗ Φ are positive. We establish quantitative bounds on the fraction of
positive maps that are completely positive. A main tool is the real algebraic geome-
try techniques developed by Blekherman to study the gap between positive polyno-
mials and sums of squares. We also develop an algorithm to produce positive maps
which are not completely positive.

This is a joint work with IGOR KLEP (The University of Auckland), SCOTT MCCUL-
LOUGH (University of Florida) and KLEMEN ŠIVIC (University of Ljubljana).
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Working groups

Positive maps

ANITA BUCKLEY, KLEMEN ŠIVIC
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A linear map Φ : Mn(R)→ Mm(R) is called ∗-linear if Φ(XT) = Φ(X)T for each X ∈
Mn(R). A ∗-linear map Φ : Mn(R) → Mm(R) is called positive if it maps positive
semidefinite matrices to positive semidefinite matrices. Note that a ∗-linear map
on the full matrix space is positive if and only if its restriction to the subspace of
symmetric matrices, Φ : Symn → Symm, is positive. For any positive integer k, a
∗-linear map Φ : Mn(R)→ Mm(R) induces a ∗-linear map Φk : Mkn → Mkm defined
by

Φk([Xij]
k
i,j=1) = [Φ(Xij)]

k
i,j=1.

The linear map Φ is called k-positive if Φk is positive. Φ is called completely positive if
it is k-positive for each positive integer k.

The space of linear maps Φ : Symn → Symm is isomorphic to the space of biquadratic
forms in n + m variables via the isomorphism

Φ 7→ pΦ(x, y) = yTΦ(xxT)y.

Additionally, Φ is positive if and only the polynomial pΦ is nonnegative on Rn×Rm,
and Φ is completely positive if and only if pΦ is a sum of squares of bilinear forms.
Investigating the difference between the convex cones of positive and completely
positive maps is therefore the same as investigating the difference between the con-
vex cones of nonnegative and SOS biquadratic forms. The two cones are known to
be equal only if m = 2 or n = 2. However, only few examples of positive maps
that are not completely positive are known, see e.g., [2, 3, 5, 6, 7]. There is also an
algorithm for constructing such maps in [4], but the positive maps obtained from
that algorithm are generically not extremal, i.e., they can be written as a sum of two
positive maps.

The aim of the working group is to consider some of the following problems:

• Construct new types of extremal positive maps. In particular, in dimension 3
the above mentioned examples are all of the form x y z

y w v
z v u

 7→
 a1x + a2w + a3u a4y a5z

a4y a6x + a7w + a8u a9v
a5z a9v a10x + a11w + a12u

 .
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We would like to know whether in dimension 3 all extremal positive maps
that are not completely positive are of that form.
• Quarez [6] initiated the study of the number and configuration of real zeros

of nonnegative biquadratic forms with finitely many real zeros. In the case
m = n = 3 the maximum number of real zeros is 10 [1], but the possible con-
figurations are not known. Moreover, the examples in [1] are the only known
nonnegative biquadratic forms with 10 real zeros. Can we construct more ex-
amples? Also, there are no examples of nonnegative biquadratic forms with
many real zeros if m > 3 or n > 3.
• If Φ : Symn → Symm is a positive map, then det Φ(xxT) ≥ 0 for each x ∈ Rn,

i.e., det Φ(xxT) is a nonnegative polynomial. We would like to know if all
nonnegative polynomials are of this form, and if not, what are the obstruc-

tions. In particular, the polynomials det
(

1

(t2−1)
2
3

Φt(xxT)

)
constructed in [1]

converge to the Robinson’s polynomial

x6
1 + x6

2 + x6
3 − x4

1x2
2 − x4

1x2
3 − x4

2x2
1 − x4

2x2
3 − x4

3x2
1 − x4

3x2
2 + 3x2

1x2
2x2

3,

but the maps
(

1

(t2−1)
2
3

Φt

)
do not converge. Can the Robinson’s polyno-

mial still be written as det Φ(xxT) for some positive map Φ? What about
the Motzkin’s polynomial

x4
1x2

2 + x2
1x4

2 + x6
3 − 3x2

1x2
2x2

3?
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Already in the 1930s, B. O. Koopman, G. D. Birkhoff, and J. von Neumann observed
that a system of nonlinear ordinary differential equations of the form{

ẋ(t) = F(x(t)), t ≥ 0,
x(0) = x0 ∈ Rd,

(1)

gives rise to a linear one by considering another state space. If the system is well-
posed, we can associate a semiflow ϕ to the system (1) by taking x(t) = ϕ(t, x0) and
derive the corresponding semigroup of Koopman operators, the so-called Koopman
semigroup, as

(T(t) f )(x) := f (ϕ(t, x)). (2)
The new state space is hence a linear space of functions defined on Rd, typically
a Banach space, and in this way we obtain a one-parameter semigroup (T(t))t≥0
of linear operators. As it turns out, many properties of the solutions to (1) can be
deduced from the appropriate properties of the associated Koopman semigroup or
its generator (which is a derivation, i.e., A( f · g) = f · Ag + A f · g).

In the working group we shall discuss possible choices of the new state space (con-
crete Banach spaces or just locally convex spaces with the appropriate topology)
and possible properties of the solutions that can be read off from the correspond-
ing Koopman semigroup or its generator. We shall also consider the case when the
semiflow (dynamical system) is defined on a topological space X (i.e., not necessarily
comes from an ODE). A particular emphasis will be given to case of non-(locally)-
compact X, which is important if the semiflow comes from a PDE, and X is (a convex
subset of) an infinite dimensional Banach space.

The aim of the working group is not much to solve concrete problems, but to find
ones, and most of all we want to initiate discussion on this topic.
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Local-to-global properties for matrix semigroups
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1. If we know a local property for a multiplicative semigroup of matrices, what
can we say about the semigroup? For example, let S be a semigroup of n×
n complex matrices and let P be an orthogonal projection matrix. We may
know something about the collection

PSP = {PAP : A ∈ S},

say, it is commutative. Does this imply something about the structure of S? If
PSP is finite or bounded, it is already known that so is S itself. If we assume
commutativity for PSP (in which case we assume, of course, that the rank
of P is more than one) we can show that S is reducible, i.e., it has a common
invariant subspace. What else can we say about the structure? There are
other variations of the local commutativity question.

The case where P has rank 1 has been studied by several authors in recent
years, and some of the talks given during the conference will address this,
and may generate new questions.

2. There are known results of the general form that certain approximate equal-
ities yield the corresponding exact equality. For example, a result of Bernik
and Radjavi (2005) says that if in group of unitary n× n matrices if

‖AB− BA‖ <
√

3

for all A and B in the group, then the group is commutative. Or, a result of
Marcoux, Mastnak and Radjavi (2007) says, among other things, that if A and
B are two invertible n× n matrices such that

tr (Ak − Bk) < 1

for all integers k, then A and B have the same spectra (with the same multi-
plicities). Is it possible to weaken the assumption by restricting k to a bound-
ed subset of integers in this statement? The short answer is no, because you
can take A and B close to the identity. But we are looking for long answers:
what if you assume something about the norms of A and B?

3. Let M be a nonnegative matrix (i.e., all its entries are nonnegative). If the
diagonal of M consists exactly of its eigenvalues with the right multiplicities,
then M is triangular after a similarity by a permutation. This was extended
to infinite-dimensional setting by Bernik, Marcoux and Radjavi (2012). What
about general operators?not necessarily nonnegative? Again we are looking
for long answers!

4. A result in Livshits, MacDonald and Radjavi (2011) is the following: let S be
a semigroup of nonnegative matrices (in the sense of Section 3 above) and
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assume S is indecomposable (that is, it has no simultaneous nontrivial in-
variant subspace spanned by the standard basis vectors). If the diagonals of
all members of S belong to {0, 1}, then after a simultaneous diagonal simi-
larity all the entries of all members of S are in {0, 1}. What happens if we
replace the set {0, 1} in the hypotheses by another set with a structure?

5. We haven’t given the next problem much thought at all, and it might be very
easy. (This is not to say that we have thought about all of the above problems
that deeply...)

Suppose that T = Tn(C) ⊆ Mn(C) is the algebra of upper triangular
matrices. The annihilator of T , namely T ⊥ := {X ∈Mn(C) : tr(T∗X) = 0} is
then the set of all strictly lower-triangular matrices. Observe that this means
that T ⊥ is itself an algebra.
(a) For which algebras A ⊆ Mn(C) is it also the case that A⊥ is again an

algebra? In particular, must A be a finite-dimensional “nest algebra”
(i.e. the full set of block-upper triangular matrices with respect to some
basis of the Hilbert space)?

(b) Is there an intrinsic characterization of those subspaces L ⊆ Mn(C)
which are the annihilators of some Alg(T), the algebra generated by a
fixed T ∈ Mn(C)? For example, a necessary condition is that such a
space Lmust have dimension at least equal to n2− n, as dim Alg(T) ≤ n
for all T ∈Mn(C).

6. SPECHT’S THEOREM IN A C∗-ALGEBRA? Suppose that A is a simple C∗-
algebra with a unique tracial state τ and that a, b ∈ A satisfy

τ(p(a, a∗)) = τ(p(b, b∗))

for all polynomials p(x, y) in two non-commuting variables x and y. Is a
approximately unitarily equivalent to b? That is, does there exist a sequence
(un)n of unitary elements of A so that b = limn u∗naun?

A test case for this problem would be the case where A is a uniformly hy-
perfinite (i.e. a (UHF)) C∗-algebra.

Three problems on quasidiagonality

Here are three problems that I (Laurent) have thought about on and off over the
years. I am offering these problems up to a wider audience (you or your students) in
the hope that I will learn the answer to these questions before I retire (which I expect
to do before my esteemed colleague, Heydar Radjavi).

Let H be an infinite-dimensional, separable, complex Hilbert space. An operator
T ∈ B(H) is said to be block-diagonal (we write T ∈ (BD)) if there exists a bounded
sequence (Tn)n of matrices [each Tn ∈ Mkn(C) for some kn ≥ 1] such that T is
unitarily equivalent to ⊕∞

n=1Tn.

An operator Q ∈ B(H) is said to be quasidiagonal (we write T ∈ (QD)) if it satisfies
any one of the three following (equivalent) conditions:
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(a) Q ∈ (BD); i.e. Q is a limit of block-diagonal operators;
(b) Q = B + K for some B ∈ (BD) and K ∈ B(H) a compact operator;
(c) Given ε > 0 there exist Bε ∈ (BD) and Kε a compact operator with ‖Kε‖ < ε

so that T = Bε + Kε.

A. Suppose that Q ∈ (QD) and that Q is quasinilpotent - i.e. the spectrum
σ(Q) = {0}. Is Q the limit of block-diagonal nilpotent operators? It is
known that it suffices to consider the case where Q is itself block-diagonal
(and quasinilpotent).

It is important to note that the approximating nilpotent block-diagonal op-
erators need not be block-diagonal with respect to the same decomposition
of the Hilbert space that block-diagonalizes Q.
KNOWN FACTS:
• Q⊕T is a limit of block-diagonal nilpotent operators inB(H⊕H) when-

ever T ∈ B(H) is a limit of block-diagonal nilpotent operators. In par-
ticular, Q⊕ 0 is a limit of block-diagonal nilpotent operators.
• If N ∈ B(H) is a normal operator, then N is a limit of block-diagonal

nilpotent operators if and only if σ(N) is connected and contains 0.
One approach to this problem is to try to solve the following matrix problem:
let T ∈ B(Cn) be a norm-one operator and k ≥ 1. If ε := ‖Tk‖1/k, find the
distance from T to the set of nilpotent matrices in B(Cn) in terms of ε and n.
In fact, thanks to a result of T. Loring on the lifting of nilpotent elements in
quotients of C∗-algebras, the estimate can be made independent of n.

B. Let (DSN) = {⊕n Mn ∈ (BD) : each Mn is nilpotent}, so that D ∈ (DSN)
precisely if D is (unitarily equivalent to) a direct sum of (a bounded sequence
of) nilpotent matrices. Note that the order of nilpotence of Mn depends upon
n, so that D need not be nilpotent itself - e.g. D = ⊕n Jn where Jn is the n× n
Jordan cell has spectrum equal to the closed unit disk centred at the origin in
C.

Let (ZTR) = {⊕nZn ∈ (BD) : tr(Zn) = 0 for all n ≥ 1}, so that Z ∈
(ZTR) if and only if Z is (unitarily equivalent to) a direct sum of (a bounded
sequence of) matrices, each of whose trace is zero.

Let (BDN) = {B ∈ (BD) : there exists k ≥ 1 so that Bk = 0}. Thus
B ' ⊕nBn, and there exists k ≥ 1 so that Bk

n = 0 for all n ≥ 1.
It is routine to verify that

(BDN) ⊆ (DSN) ⊆ (ZTR).

Question: is (ZTR) ⊆ (BDN)? (The real question is to characterize (BDN).)

C. It is routine to verify the following:
(a) If A, B ∈ (QD), then A⊕ B ∈ (QD). More generally, if Xn ∈ (QD) for

all n ≥ 1 and supn ‖Xn‖ < ∞, then ⊕nXn ∈ (QD).
(b) If T ∈ (QD) and K ∈ B(H) is a compact operator, then T + K ∈ (QD).

It is also true (but not as routine) that
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(c) If N ∈ B(H) is a normal operator, then (by the Weyl-von Neumann-Berg
Theorem), N = D + K for some diagonalizable operator D and some
compact operator K. By (b) above and the fact that a diagonal operator
is trivially block-diagonal, N ∈ (QD).

(d) Suppose that E ∈ B(H) is essentially normal (i.e. E∗E− EE∗ is a com-
pact operator), and that ‖E‖ ≤ 1. If N ∈ B(H) is a normal operator with
σ(N) = {z ∈ C : |z| ≤ 1}, then (by the Brown-Douglas-Fillmore Theo-
rem), E⊕ N = M + K for some normal operator M and some compact
operator K, so that E⊕ N ∈ (QD).

Suppose that T = Q ⊕ E has norm equal to 1, and that Q is quasidiagonal
and E is essentially normal. Suppose that N ∈ B(H) is a normal operator
with σ(N) = {z ∈ C : |z| ≤ 1}.

From (d) above, T ⊕ N = Q⊕ (E⊕ N) = Q⊕ (M + K) is a direct sum of
two quasidiagonal operators, and hence T is quasidiagonal.

Is the converse true? That is, suppose that T ∈ B(H), ‖T‖ ≤ 1, and T ⊕ N
is quasidiagonal, where N is the normal operator above. Must T be a (com-
pact perturbation) of an operator of the form Q⊕E, where Q is quasidiagonal
and E is essentially normal?

The answer is known to be “yes” if T is a weighted shift operator.
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