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@ 1877 Ludwig Boltzmann shows that Gibbs distributions maximize
Shannon entropy under energy constraints

@ 1927 John von Neumann shows that quantum Gibbs states
maximize von Neumann entropy entropy under energy constraints

@ 1957 Edwin Jaynes proposes the entropy maximization as a
universal statistical inference method

@ Today the maximum-entropy inference is a recognized method in
quantum state reconstruction (Buzek et al. 1999)

@ The maximum-entropy inference under linear constraints is always
continuous for probability distributions on a finite space but can be
discontinuous for quantum states (W. & Knauf 2012)

@ Open problem for 3 x 3-matrices: What is the structure of the
(dis-) continuity of the maximum-entropy inference?
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@ Euclidean space A, :=={ac A| a* = a}, (a,b) :=tr(ab);
in quantum mechanics Ay, is the space of observables

@ state space M :={p e A|p = 0,tr(p) = 1}, positive semi-definite
matrices of trace one called density matrices or states;
in quantum mechanics (p, a) € R is the expected value of the
observable a € A, if the system is in the state p € M

@ we fix observables uy, ..., ux € As, kK € N, and define the
expected value functional . : A, — RX, as ((a,u1), ..., (a, ux))

@ C:=[E(M); M and C is compact and convex, a convex body
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Examples of State Spaces M = M(.A)
A=ct : S

simplex

For d > 3 the state space M(My(C)) is neither a polytope nor
But the direct sum algebra D := My(R) @ R of real matrices <§
suffices to illustrate the continuity problem.

For curiosity:
M(M5(C)) N Ainside the

A=D orthogonal projection of
M(Mj5(C)) to the affine
cone space A of real matrices

1/3 x y
x 1/3 z
y z 1/3
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every convex body included in M

@ maximum-entropy inference V : C — M,
x — argmax{S(p) | p € E[;} (x)}

@ wecal Ejp : M — C openat p e M if E(N) is a neighborhood of
E(p) for every neighborhood N C M of p;
we call E|ps openon X C M if E|r is open at each p € X

Theorem (W. 2014)
If x € C then V is continuous at x if and only if E| x4 is open at V(x). J

Proof. For all N ¢ M we have V~'(N) = E(NNW¥(C)) C E(N). So
continuity implies openness. ” < “is proved using compactness. [
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M. The subset,
denoted N, left
from the depicted
plane is a neigh-
borhood of ¢ :=
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Fig. a). The cone

M. The subset,
denoted N, left

from the depicted * °
plane is a neigh-
borhood of ¢ :=

102 @1+ p(0)) o

X1

Figure b). The set of expected values C = E(M) for uy := 01 & 0 and
Up =03 ® 1, where oy := (9 1) and o3 := ({ %) are Pauli matrices.
The image E(N) is bounded by an ellipse of curvature > 1 near x, so
E(N) is not a neighborhood of x := (0,1) = E(02 © 1) = E(p(0)).
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Example: Direct Sum Algebra D = Mx(R) & R
0p1 p(0) |
= Fig. a). The cone
M. The subset, it disk C=E(M)
denoted N, left
from the depicted * grey E(N)
plane is a neigh-
borhood of ¢ :=
20201 +p(0) o,

X1

Figure b). The set of expected values C = E(M) for uy := o1 ® 0 and
Up =03 ® 1, where oy := (9 1) and o3 := ({ %) are Pauli matrices.
The image E(N) is bounded by an ellipse of curvature > 1 near x, so
E(N) is not a neighborhood of x := (0,1) = E(02 © 1) = E(p(0)).

Conclusion: E| 4 is not open at c. We have V(x) = ¢ so the theorem
shows that V¥ is not continuous at x.

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 6/13



Sufficient Openness Conditions

Stephan Weis (MPI MIS) Open Linear Maps



Sufficient Openness Conditions
Let (X, || - ||) be a real normed vector space,

Stephan Weis (MPI MIS) Open Linear Maps



Sufficient Openness Conditions

Let (X, || - ||) be a real normed vector space, C C X a convex subset,
x € C. We define, respectively, the ball and sphere of radius ¢ > 0

Be(x,e) :={y € Cllly = x|l <}, Sc(x,e) :={y € C||ly — x|l = €}.

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 7/13



Sufficient Openness Conditions

Let (X, || - ||) be a real normed vector space, C C X a convex subset,
x € C. We define, respectively, the ball and sphere of radius ¢ > 0

Be(x,€) :={y € C||ly = x|| <€}, Sc(x,€) ={y € C[|ly — x| = ¢}.
The gauge of C is the function v¢ : X — [0, o],

vo(u) :=inf{A>0|uelC}, uvelX.

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 7/13



Sufficient Openness Conditions

Let (X, || - ||) be a real normed vector space, C C X a convex subset,
x € C. We define, respectively, the ball and sphere of radius ¢ > 0

Be(x,€) :={y € C||ly = x|| <€}, Sc(x,€) ={y € C[|ly — x| = ¢}.
The gauge of C is the function v¢ : X — [0, o],
ve(u) :=inf{A>0]uelC}, uelX

The positive hullof Cis Ct = {\y |y € C,\ > 0}.

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 7/13



Sufficient Openness Conditions

Let (X, | - ||) be a real normed vector space, C C X a convex subset,
x € C. We define, respectively, the ball and sphere of radius ¢ > 0

Be(x,€) :={y € C||ly = x|| <€}, Sc(x,€) ={y € C[|ly — x| = ¢}.
The gauge of C is the function v¢ : X — [0, o],
ve(u) :=inf{A>0]uelC}, uelX

The positive hullof Cis Ct = {\y |y € C,\ > 0}.

Remark. If ||u|| = 1 then vc_x(u) is the inverse radius of C from the
center x in the direction of u. Since C is convex y¢_y is convex.

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 7/13



Sufficient Openness Conditions

Let (X, | - ||) be a real normed vector space, C C X a convex subset,
x € C. We define, respectively, the ball and sphere of radius ¢ > 0

Be(x,€) :={y € C||ly = x|| <€}, Sc(x,€) ={y € C[|ly — x| = ¢}.
The gauge of C is the function v¢ : X — [0, o],
ve(u) :=inf{A>0]uelC}, uelX

The positive hullof Cis Ct = {\y |y € C,\ > 0}.

Remark. If ||u|| = 1 then vc_x(u) is the inverse radius of C from the
center x in the direction of u. Since C is convex y¢_y is convex.
Proposition (W. 2014)

If x € C and if yc—x is bounded on S_y)+(0, 1) then the expected
value functional E| »( is open on the fiberIE|jV} (x).

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 7/13



Consequences

Stephan Weis (MPI MIS) Open Linear Maps



Consequences
The relative interior of C is the interior of C in the affine hull aff(C) of C.

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Consequences

The relative interior of C is the interior of C in the affine hull aff(C) of C.
Corollary

If x lies in the relative interior of C, then E|r, is open on ]Em (x). J

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Consequences
The relative interior of C is the interior of C in the affine hull aff(C) of C.
Corollary

If x lies in the relative interior of C, then E|r, is open on Em (x). J

Proof: There exists e > 0 such that Bagc) (X, €) C C, 80 ye—x(u) < 1/e
for u € Sic_xy+(0,1) = S~ naff(C).

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Consequences
The relative interior of C is the interior of C in the affine hull aff(C) of C.
Corollary

If x lies in the relative interior of C, then E|r, is open on Em (x). J

Proof: There exists e > 0 such that Bagc) (X, €) C C, 80 ye—x(u) < 1/e

for u € Se_x+(0,1) = Sk naff(C). O

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Consequences
The relative interior of C is the interior of C in the affine hull aff(C) of C.

Corollary
If x lies in the relative interior of C, then E|r, is open on Em (x). J

Proof: There exists e > 0 such that Bagc) (X, €) C C, 80 ye—x(u) < 1/e
for u € Sic_xy+(0,1) = S~ naff(C). O

Corollary
IfC is a polytope, then E|, is open on M. J

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Consequences
The relative interior of C is the interior of C in the affine hull aff(C) of C.

Corollary J

If x lies in the relative interior of C, then E|r, is open on IE]/‘\,} (x).

Proof: There exists e > 0 such that Bagc) (X, €) C C, 80 ye—x(u) < 1/e
for u € Sc_x)+(0,1) = SK=1 naff(C). O

Corollary
IfC is a polytope, then E|, is open on M. J

Proof: If x € C then (C — x)* is polyhedral convex where ~¢_ is upper
semi-continuous and has a maximum on the compact unit sphere.

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Consequences
The relative interior of C is the interior of C in the affine hull aff(C) of C.

Corollary J

If x lies in the relative interior of C, then E|r, is open on IE]/‘\,} (x).

Proof: There exists e > 0 such that Bagc) (X, €) C C, 80 ye—x(u) < 1/e
for u € Sc_x)+(0,1) = SK=1 naff(C). O

Corollary
IfC is a polytope, then E|, is open on M. J

Proof: If x € C then (C — x)* is polyhedral convex where ~¢_ is upper
semi-continuous and has a maximum on the compact unit sphere. O

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Consequences
The relative interior of C is the interior of C in the affine hull aff(C) of C.

Corollary J

If x lies in the relative interior of C, then E|r, is open on IE]/‘\,} (x).

Proof: There exists e > 0 such that Bagc) (X, €) C C, 80 ye—x(u) < 1/e
for u € Sc_x)+(0,1) = SK=1 naff(C). O

Corollary
IfC is a polytope, then E|, is open on M. J

Proof: If x € C then (C — x)* is polyhedral convex where ~¢_ is upper
semi-continuous and has a maximum on the compact unit sphere. O

Corollary
If the observables uy, . . ., ux commute then E|, is open on M. J

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Consequences
The relative interior of C is the interior of C in the affine hull aff(C) of C.

Corollary J

If x lies in the relative interior of C, then E|r, is open on IE]/‘\,} (x).

Proof: There exists e > 0 such that Bagc) (X, €) C C, 80 ye—x(u) < 1/e
for u € Sc_x)+(0,1) = SK=1 naff(C). O

Corollary
IfC is a polytope, then E|, is open on M. J

Proof: If x € C then (C — x)* is polyhedral convex where ~¢_ is upper
semi-continuous and has a maximum on the compact unit sphere. O

Corollary
If the observables uy, . . ., ux commute then E|, is open on M. }
Proof: If uy, ..., ux commute then C is a polytope.

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Consequences
The relative interior of C is the interior of C in the affine hull aff(C) of C.

Corollary J

If x lies in the relative interior of C, then E|r, is open on IE]/‘\,} (x).

Proof: There exists e > 0 such that Bagc) (X, €) C C, 80 ye—x(u) < 1/e
for u € Sc_x)+(0,1) = SK=1 naff(C). O

Corollary
IfC is a polytope, then E|, is open on M. J

Proof: If x € C then (C — x)* is polyhedral convex where ~¢_ is upper
semi-continuous and has a maximum on the compact unit sphere. O

Corollary
If the observables uy, . . ., ux commute then E|, is open on M. }
Proof: If uy, ..., ux commute then C is a polytope. O

Stephan Weis (MPI MIS) Open Linear Maps LAW'14 8/13



Discussion: Openness of E|, for the Cone M (D)

Stephan Weis (MPI MIS) Open Linear Maps



Discussion: Openness of E|, for the Cone M (D)
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Discussion: Openness of E|, for the Cone M (D)
Lemma (One-point fibers)
If p € M and {p} = E|[}] o E(p) holds then E| is open at p. J

The sufficient conditions allow us to discuss the cone M = M(D).

Lemma

If A= D then E|\ is open on M unless dim(C) = 2 and a generatrix
of M is a fiber of E| 4, that is [p ® 0,0, @ 1] = E[ ] 0 E(02 @ 1) holds
for some p € M>(R). In the latter case E|\, is not open at any point of
]p ® 0,02 & 1] and open on the complement.
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Lemma (One-point fibers)
If p € M and {p} = E|[}] o E(p) holds then E| is open at p. J

The sufficient conditions allow us to discuss the cone M = M(D).

Lemma

If A =D then E|, is open on M unless dim(C) = 2 and a generatrix
of M is a fiber of E| 4, that is [p © 0,0, @ 1] = E| | o E(0, & 1) holds
for some p € Mx(R). In the latter case E|, is not open at any point of
lp® 0,02, © 1] and open on the complement.

Using rotation in the first summand of D = Mx(R) ¢ R (double cover
SO(2) — SO(2) restricted from SU(2) — S(3)), we have the following.

Lemma

If A =D then E|r is open on M unless the real span of uy, ..., Uy, 13
is unitarily equivalent to the real span of o1 & 0,03 ® 1, 13.
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Discussion: A Grassmannian Perspective

@ Invertible linear transformations preserve openness. For two
linearly independent observables uy, u» we replace E by the
orthogonal projection onto a plance V C Dy, of trace-less
matrices, dim(V) = 2, that is an element of the Grassmannian
Gz 3. We identify C = E(M) and the image of M on V.
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parametrization of Gy 3 to a circle SO(2) = G, 3/SO(2).
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Discussion: A Grassmannian Perspective

@ Invertible linear transformations preserve openness. For two
linearly independent observables uy, u» we replace E by the
orthogonal projection onto a plance V C Dy, of trace-less
matrices, dim(V) = 2, that is an element of the Grassmannian
Gz 3. We identify C = E(M) and the image of M on V.

@ The SO(2)-symmetry of the cone M (D) reduces the
parametrization of Gy 3 to a circle SO(2) = G, 3/SO(2).

Figure:

Orthogonal projections of
M(D) to planes V € Go3.
Planes V with a discontinuous
maximum-entropy inference
are marked by a red C(V).
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Discussion: Geometry of C and Numerical Range
A discontinuity exists for V € Gy 3 where

@ flat boundary portions of C(V) disappear,

@ non-exposed points of C(V) disappear.

A non-exposed point of C (green) is an extreme point which is not the
unique maximizer in C of a linear functional.
994,

C is equivalent to the numerical range of
(z,(u1 + ip)z) € C, z € C® and ||z|| = 1 (Toeplitz-Hausdorff).

Do geometric results about the numerical range help in the continuity
analysis of W in M5(C)?
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Thanks!
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Let ¢ > 0 and denote the diameter of M by d := max,, e ||T2 — 1]
If d = 0 then nothing is to prove so let d > 0.
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Let e > 0 and denote the diameter of M by d := max,, r,em |72 — 71|
If d = 0 then nothing is to prove so let d > 0. For p € Em (x) we have

E(Bm(p, d)) =C D Se(x;e€).
For o € (0, d] the linearity of E and the convexity of M imply
E(Bm(p:0)) D {x+n-(y —=x) |y € Se(x,e)},  0<n<d/d.
Let e > 0 such that y¢_x(u) < 1/e holds for all u € Si¢c_x)+(0,1). Then

{X+77(y_x)|yESC(X76)}:SC(X777'6)7 0§7I§1
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