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Motivation
1877 Ludwig Boltzmann shows that Gibbs distributions maximize
Shannon entropy under energy constraints

1927 John von Neumann shows that quantum Gibbs states
maximize von Neumann entropy entropy under energy constraints

1957 Edwin Jaynes proposes the entropy maximization as a
universal statistical inference method

Today the maximum-entropy inference is a recognized method in
quantum state reconstruction (Bužek et al. 1999)

The maximum-entropy inference under linear constraints is always
continuous for probability distributions on a finite space but can be
discontinuous for quantum states (W. & Knauf 2012)

Open problem for 3× 3-matrices: What is the structure of the
(dis-) continuity of the maximum-entropy inference?
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Linear Constraints on a Quantum State Space
Md (F) the full matrix algebra of d × d matrices, d ∈ N,
over the field F of complex numbers C or real numbers R;
identity matrix 1d ∈ Md (F), zero matrix 0d ∈ Md (F)

A ⊂ Md (C) a real C*-subalgebra;
in quantum mechanics take a complex C*-subalgebra A

Euclidean space Asa := {a ∈ A | a∗ = a}, 〈a,b〉 := tr(ab);
in quantum mechanics Asa is the space of observables

state spaceM := {ρ ∈ A | ρ � 0, tr(ρ) = 1}, positive semi-definite
matrices of trace one called density matrices or states;
in quantum mechanics 〈ρ,a〉 ∈ R is the expected value of the
observable a ∈ Asa if the system is in the state ρ ∈M

we fix observables u1, . . . ,uk ∈ Asa, k ∈ N, and define the
expected value functional E : Asa → Rk , a 7→ (〈a,u1〉, . . . , 〈a,uk 〉)

C := E(M);M and C is compact and convex, a convex body
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Examples of State SpacesM =M(A)

A ∼= C4

simplex

A = M2(C)

Bloch ball

A = M3(C)

M =?
dim(M) = 8

For d ≥ 3 the state spaceM(Md (C)) is neither a polytope nor a ball.
But the direct sum algebra D := M2(R)⊕ R of real matrices

( a b 0
c d 0
0 0 e

)
suffices to illustrate the continuity problem.

A = D

cone

For curiosity:
M(M3(C)) ∩ A inside the
orthogonal projection of
M(M3(C)) to the affine
space A of real matrices(

1/3 x y
x 1/3 z
y z 1/3

)
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The Maximum-Entropy Inference
von Neumann entropy S :M→ R, ρ 7→ −tr ρ log(ρ),
S is continuous and strictly concave, S has a unique maximum on
every convex body included inM

maximum-entropy inference Ψ : C →M,
x 7→ argmax{S(ρ) | ρ ∈ E|−1

M (x)}

we call E|M :M→ C open at ρ ∈M if E(N) is a neighborhood of
E(ρ) for every neighborhood N ⊂M of ρ;
we call E|M open on X ⊂M if E|M is open at each ρ ∈ X

Theorem (W. 2014)
If x ∈ C then Ψ is continuous at x if and only if E|M is open at Ψ(x).

Proof. For all N ⊂M we have Ψ−1(N) = E(N ∩Ψ(C)) ⊂ E(N). So
continuity implies openness.

”⇐= “ is proved using compactness. �
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Example: Direct Sum Algebra D = M2(R)⊕ R

a)

02⊕1 c ρ(0)

ρ(π)

Fig. a). The cone
M. The subset,
denoted N, left
from the depicted
plane is a neigh-
borhood of c :=
1
2(02 ⊕ 1 + ρ(0))

b)

x

unit disk C=E(M)

grey E(N)

Figure b). The set of expected values C = E(M) for u1 := σ1 ⊕ 0 and
u2 := σ3 ⊕ 1, where σ1 :=

(
0 1
1 0

)
and σ3 :=

( 1 0
0 −1

)
are Pauli matrices.

The image E(N) is bounded by an ellipse of curvature > 1 near x , so
E(N) is not a neighborhood of x := (0,1) = E(02 ⊕ 1) = E(ρ(0)).

Conclusion: E|M is not open at c. We have Ψ(x) = c so the theorem
shows that Ψ is not continuous at x .

Stephan Weis (MPI MIS) Open Linear Maps LAW’14 6 / 13



Example: Direct Sum Algebra D = M2(R)⊕ R

a)

02⊕1 c ρ(0)

ρ(π)

Fig. a). The cone
M. The subset,
denoted N, left
from the depicted
plane is a neigh-
borhood of c :=
1
2(02 ⊕ 1 + ρ(0))

b)

x

unit disk C=E(M)

grey E(N)

Figure b). The set of expected values C = E(M) for u1 := σ1 ⊕ 0 and
u2 := σ3 ⊕ 1, where σ1 :=

(
0 1
1 0

)
and σ3 :=

( 1 0
0 −1

)
are Pauli matrices.

The image E(N) is bounded by an ellipse of curvature > 1 near x , so
E(N) is not a neighborhood of x := (0,1) = E(02 ⊕ 1) = E(ρ(0)).

Conclusion: E|M is not open at c. We have Ψ(x) = c so the theorem
shows that Ψ is not continuous at x .

Stephan Weis (MPI MIS) Open Linear Maps LAW’14 6 / 13



Example: Direct Sum Algebra D = M2(R)⊕ R

a)

02⊕1 c ρ(0)

ρ(π)

Fig. a). The cone
M. The subset,
denoted N, left
from the depicted
plane is a neigh-
borhood of c :=
1
2(02 ⊕ 1 + ρ(0))

-1 0 1

-1

0

1

x1

x2

b)

x

unit disk C=E(M)

grey E(N)

Figure b). The set of expected values C = E(M) for u1 := σ1 ⊕ 0 and
u2 := σ3 ⊕ 1, where σ1 :=

(
0 1
1 0

)
and σ3 :=

( 1 0
0 −1

)
are Pauli matrices.

The image E(N) is bounded by an ellipse of curvature > 1 near x , so
E(N) is not a neighborhood of x := (0,1) = E(02 ⊕ 1) = E(ρ(0)).

Conclusion: E|M is not open at c. We have Ψ(x) = c so the theorem
shows that Ψ is not continuous at x .

Stephan Weis (MPI MIS) Open Linear Maps LAW’14 6 / 13



Example: Direct Sum Algebra D = M2(R)⊕ R

a)

02⊕1 c ρ(0)

ρ(π)

Fig. a). The cone
M. The subset,
denoted N, left
from the depicted
plane is a neigh-
borhood of c :=
1
2(02 ⊕ 1 + ρ(0))

-1 0 1

-1

0

1

x1

x2

b)

x

unit disk C=E(M)

grey E(N)

Figure b). The set of expected values C = E(M) for u1 := σ1 ⊕ 0 and
u2 := σ3 ⊕ 1, where σ1 :=

(
0 1
1 0

)
and σ3 :=

( 1 0
0 −1

)
are Pauli matrices.

The image E(N) is bounded by an ellipse of curvature > 1 near x , so
E(N) is not a neighborhood of x := (0,1) = E(02 ⊕ 1) = E(ρ(0)).

Conclusion: E|M is not open at c. We have Ψ(x) = c so the theorem
shows that Ψ is not continuous at x .

Stephan Weis (MPI MIS) Open Linear Maps LAW’14 6 / 13



Sufficient Openness Conditions
Let (X , ‖ · ‖) be a real normed vector space, C ⊂ X a convex subset,
x ∈ C. We define, respectively, the ball and sphere of radius ε > 0

BC(x , ε) := {y ∈ C | ‖y − x‖ ≤ ε},SC(x , ε) := {y ∈ C | ‖y − x‖ = ε}.

The gauge of C is the function γC : X → [0,∞],

γC(u) := inf{λ ≥ 0 | u ∈ λC}, u ∈ X .

The positive hull of C is C+ = {λy | y ∈ C, λ ≥ 0}.

Remark. If ‖u‖ = 1 then γC−x (u) is the inverse radius of C from the
center x in the direction of u. Since C is convex γC−x is convex.

Proposition (W. 2014)
If x ∈ C and if γC−x is bounded on S(C−x)+(0,1) then the expected
value functional E|M is open on the fiber E|−1

M (x).
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Consequences

The relative interior of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then E|M is open on E|−1
M (x).

Proof: There exists ε > 0 such that Baff(C)(x , ε) ⊂ C, so γC−x (u) ≤ 1/ε
for u ∈ S(C−x)+(0,1) = Sk−1 ∩ aff(C). �

Corollary
If C is a polytope, then E|M is open onM.

Proof: If x ∈ C then (C − x)+ is polyhedral convex where γC−x is upper
semi-continuous and has a maximum on the compact unit sphere. �

Corollary
If the observables u1, . . . ,uk commute then E|M is open onM.

Proof: If u1, . . . ,uk commute then C is a polytope. �
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Discussion: Openness of E|M for the ConeM(D)

Lemma (One-point fibers)

If ρ ∈M and {ρ} = E|−1
M ◦ E(ρ) holds then E|M is open at ρ.

The sufficient conditions allow us to discuss the coneM =M(D).

Lemma
If A = D then E|M is open onM unless dim(C) = 2 and a generatrix
ofM is a fiber of E|M, that is [ρ⊕ 0,02 ⊕ 1] = E|−1

M ◦ E(02 ⊕ 1) holds
for some ρ ∈ M2(R). In the latter case E|M is not open at any point of
]ρ⊕ 0,02 ⊕ 1] and open on the complement.

Using rotation in the first summand of D = M2(R)⊕ R (double cover
SO(2)→ SO(2) restricted from SU(2)→ S(3)), we have the following.

Lemma
If A = D then E|M is open onM unless the real span of u1, . . . ,uk ,13
is unitarily equivalent to the real span of σ1 ⊕ 0, σ3 ⊕ 1,13.
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Discussion: A Grassmannian Perspective
Invertible linear transformations preserve openness. For two
linearly independent observables u1,u2 we replace E by the
orthogonal projection onto a plance V ⊂ Dsa of trace-less
matrices, dim(V ) = 2, that is an element of the Grassmannian
G2,3. We identify C = E(M) and the image ofM on V .

The SO(2)-symmetry of the coneM(D) reduces the
parametrization of G2,3 to a circle SO(2) ∼= G2,3/SO(2).

Figure:
Orthogonal projections of
M(D) to planes V ∈ G2,3.
Planes V with a discontinuous
maximum-entropy inference
are marked by a red C(V ).

Stephan Weis (MPI MIS) Open Linear Maps LAW’14 10 / 13



Discussion: A Grassmannian Perspective
Invertible linear transformations preserve openness. For two
linearly independent observables u1,u2 we replace E by the
orthogonal projection onto a plance V ⊂ Dsa of trace-less
matrices, dim(V ) = 2, that is an element of the Grassmannian
G2,3. We identify C = E(M) and the image ofM on V .

The SO(2)-symmetry of the coneM(D) reduces the
parametrization of G2,3 to a circle SO(2) ∼= G2,3/SO(2).

Figure:
Orthogonal projections of
M(D) to planes V ∈ G2,3.
Planes V with a discontinuous
maximum-entropy inference
are marked by a red C(V ).

Stephan Weis (MPI MIS) Open Linear Maps LAW’14 10 / 13



Discussion: A Grassmannian Perspective
Invertible linear transformations preserve openness. For two
linearly independent observables u1,u2 we replace E by the
orthogonal projection onto a plance V ⊂ Dsa of trace-less
matrices, dim(V ) = 2, that is an element of the Grassmannian
G2,3. We identify C = E(M) and the image ofM on V .

The SO(2)-symmetry of the coneM(D) reduces the
parametrization of G2,3 to a circle SO(2) ∼= G2,3/SO(2).

Figure:
Orthogonal projections of
M(D) to planes V ∈ G2,3.
Planes V with a discontinuous
maximum-entropy inference
are marked by a red C(V ).

Stephan Weis (MPI MIS) Open Linear Maps LAW’14 10 / 13



Discussion: A Grassmannian Perspective
Invertible linear transformations preserve openness. For two
linearly independent observables u1,u2 we replace E by the
orthogonal projection onto a plance V ⊂ Dsa of trace-less
matrices, dim(V ) = 2, that is an element of the Grassmannian
G2,3. We identify C = E(M) and the image ofM on V .

The SO(2)-symmetry of the coneM(D) reduces the
parametrization of G2,3 to a circle SO(2) ∼= G2,3/SO(2).

Figure:
Orthogonal projections of
M(D) to planes V ∈ G2,3.
Planes V with a discontinuous
maximum-entropy inference
are marked by a red C(V ).

Stephan Weis (MPI MIS) Open Linear Maps LAW’14 10 / 13



Discussion: Geometry of C and Numerical Range
A discontinuity exists for V ∈ G2,3 where

flat boundary portions of C(V ) disappear,

non-exposed points of C(V ) disappear.

A non-exposed point of C (green) is an extreme point which is not the
unique maximizer in C of a linear functional.

C is equivalent to the numerical range of
〈z, (u1 + iu2)z〉 ∈ C, z ∈ C3 and ‖z‖ = 1 (Toeplitz-Hausdorff).

Do geometric results about the numerical range help in the continuity
analysis of Ψ in M3(C)?
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Do geometric results about the numerical range help in the continuity
analysis of Ψ in M3(C)?
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Thanks!
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Proof. (Proposition on Slide 7)

Let ε > 0 and denote the diameter ofM by d := maxτ1,τ2∈M ‖τ2 − τ1‖.
If d = 0 then nothing is to prove so let d > 0. For ρ ∈ E|−1

M (x) we have

E(BM(ρ,d)) = C ⊃ SC(x , ε).

For δ ∈ (0,d ] the linearity of E and the convexity ofM imply

E(BM(ρ, δ)) ⊃ {x + η · (y − x) | y ∈ SC(x , ε)}, 0 ≤ η ≤ δ/d .

Let ε > 0 such that γC−x (u) ≤ 1/ε holds for all u ∈ S(C−x)+(0,1). Then

{x + η(y − x) | y ∈ SC(x , ε)} = SC(x , η · ε), 0 ≤ η ≤ 1.

So E(BM(ρ, δ)) contains the sphere SC(x , η · ε) for all 0 ≤ η ≤ δ/d .

This proves that E(BM(ρ, δ)) contains the ball BC(x , δ/d · ε).
We conclude that E|M is open at ρ.
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