Open Linear Maps and Geometry of the Numerical Range

Stephan Weis

Max-Planck-Institute for Mathematics, Leipzig, Germany

LAW'14

The Seventh Linear Algebra Workshop Faculty of Mathematics and Physics, Ljubljana, Slovenia June 4–12, 2014

- 1877 Ludwig Boltzmann shows that Gibbs distributions maximize *Shannon entropy* under energy constraints
- 1927 John von Neumann shows that quantum Gibbs states maximize *von Neumann entropy* entropy under energy constraints
- 1957 Edwin Jaynes proposes the entropy maximization as a universal *statistical inference method*
- Today the maximum-entropy inference is a recognized method in quantum state reconstruction (Bužek et al. 1999)
- The maximum-entropy inference under linear constraints is always continuous for probability distributions on a finite space but can be discontinuous for quantum states (W. & Knauf 2012)
- Open problem for 3 × 3-matrices: What is the structure of the (dis-) continuity of the maximum-entropy inference?

- 1877 Ludwig Boltzmann shows that Gibbs distributions maximize *Shannon entropy* under energy constraints
- 1927 John von Neumann shows that quantum Gibbs states maximize von Neumann entropy entropy under energy constraints
- 1957 Edwin Jaynes proposes the entropy maximization as a universal *statistical inference method*
- Today the maximum-entropy inference is a recognized method in quantum state reconstruction (Bužek et al. 1999)
- The maximum-entropy inference under linear constraints is always continuous for probability distributions on a finite space but can be discontinuous for quantum states (W. & Knauf 2012)
- Open problem for 3 × 3-matrices: What is the structure of the (dis-) continuity of the maximum-entropy inference?

- 1877 Ludwig Boltzmann shows that Gibbs distributions maximize *Shannon entropy* under energy constraints
- 1927 John von Neumann shows that quantum Gibbs states maximize von Neumann entropy entropy under energy constraints
- 1957 Edwin Jaynes proposes the entropy maximization as a universal *statistical inference method*
- Today the maximum-entropy inference is a recognized method in quantum state reconstruction (Bužek et al. 1999)
- The maximum-entropy inference under linear constraints is always continuous for probability distributions on a finite space but can be discontinuous for quantum states (W. & Knauf 2012)
- Open problem for 3 × 3-matrices: What is the structure of the (dis-) continuity of the maximum-entropy inference?

- 1877 Ludwig Boltzmann shows that Gibbs distributions maximize *Shannon entropy* under energy constraints
- 1927 John von Neumann shows that quantum Gibbs states maximize von Neumann entropy entropy under energy constraints
- 1957 Edwin Jaynes proposes the entropy maximization as a universal *statistical inference method*
- Today the maximum-entropy inference is a recognized method in quantum state reconstruction (Bužek et al. 1999)
- The maximum-entropy inference under linear constraints is always continuous for probability distributions on a finite space but can be discontinuous for quantum states (W. & Knauf 2012)
- Open problem for 3 × 3-matrices: What is the structure of the (dis-) continuity of the maximum-entropy inference?

- 1877 Ludwig Boltzmann shows that Gibbs distributions maximize *Shannon entropy* under energy constraints
- 1927 John von Neumann shows that quantum Gibbs states maximize von Neumann entropy entropy under energy constraints
- 1957 Edwin Jaynes proposes the entropy maximization as a universal *statistical inference method*
- Today the maximum-entropy inference is a recognized method in quantum state reconstruction (Bužek et al. 1999)
- The maximum-entropy inference under linear constraints is always continuous for probability distributions on a finite space but can be discontinuous for quantum states (W. & Knauf 2012)
- Open problem for 3 × 3-matrices: What is the structure of the (dis-) continuity of the maximum-entropy inference?

- 1877 Ludwig Boltzmann shows that Gibbs distributions maximize *Shannon entropy* under energy constraints
- 1927 John von Neumann shows that quantum Gibbs states maximize von Neumann entropy entropy under energy constraints
- 1957 Edwin Jaynes proposes the entropy maximization as a universal *statistical inference method*
- Today the maximum-entropy inference is a recognized method in quantum state reconstruction (Bužek et al. 1999)
- The maximum-entropy inference under linear constraints is always continuous for probability distributions on a finite space but can be discontinuous for quantum states (W. & Knauf 2012)
- Open problem for 3 × 3-matrices: What is the structure of the (dis-) continuity of the maximum-entropy inference?

- 1877 Ludwig Boltzmann shows that Gibbs distributions maximize *Shannon entropy* under energy constraints
- 1927 John von Neumann shows that quantum Gibbs states maximize von Neumann entropy entropy under energy constraints
- 1957 Edwin Jaynes proposes the entropy maximization as a universal *statistical inference method*
- Today the maximum-entropy inference is a recognized method in quantum state reconstruction (Bužek et al. 1999)
- The maximum-entropy inference under linear constraints is always continuous for probability distributions on a finite space but can be discontinuous for quantum states (W. & Knauf 2012)
- Open problem for 3 × 3-matrices: What is the structure of the (dis-) continuity of the maximum-entropy inference?

- *M_d*(𝔅) the full matrix algebra of *d* × *d* matrices, *d* ∈ ℕ, over the field 𝔅 of complex numbers ℂ or real numbers ℝ; identity matrix 1_{*d*} ∈ *M_d*(𝔅), zero matrix 0_{*d*} ∈ *M_d*(𝔅)
- A ⊂ M_d(C) a *real* C*-subalgebra;
 in quantum mechanics take a *complex* C*-subalgebra A
- Euclidean space A_{sa} := {a ∈ A | a* = a}, ⟨a, b⟩ := tr(ab); in quantum mechanics A_{sa} is the space of observables
- state space M := {ρ ∈ A | ρ ≿ 0, tr(ρ) = 1}, positive semi-definite matrices of trace one called *density matrices* or *states*; in quantum mechanics ⟨ρ, a⟩ ∈ ℝ is the *expected value* of the observable a ∈ A_{sa} if the system is in the state ρ ∈ M
- we fix observables u₁,..., u_k ∈ A_{sa}, k ∈ N, and define the expected value functional E : A_{sa} → R^k, a ↦ (⟨a, u₁⟩,...,⟨a, u_k⟩)
- $C := \mathbb{E}(\mathcal{M})$; \mathcal{M} and C is compact and convex, a *convex body*

- *M_d*(𝔅) the full matrix algebra of *d* × *d* matrices, *d* ∈ ℕ, over the field 𝔅 of complex numbers ℂ or real numbers ℝ; identity matrix 1_{*d*} ∈ *M_d*(𝔅), zero matrix 0_{*d*} ∈ *M_d*(𝔅)
- A ⊂ M_d(C) a real C*-subalgebra;
 in quantum mechanics take a *complex* C*-subalgebra A
- Euclidean space A_{sa} := {a ∈ A | a* = a}, ⟨a, b⟩ := tr(ab); in quantum mechanics A_{sa} is the space of observables
- state space M := {ρ ∈ A | ρ ≥ 0, tr(ρ) = 1}, positive semi-definite matrices of trace one called *density matrices* or *states*; in quantum mechanics ⟨ρ, a⟩ ∈ ℝ is the *expected value* of the observable a ∈ A_{sa} if the system is in the state ρ ∈ M
- we fix observables u₁,..., u_k ∈ A_{sa}, k ∈ N, and define the expected value functional E : A_{sa} → R^k, a ↦ (⟨a, u₁⟩,...,⟨a, u_k⟩)
- $C := \mathbb{E}(\mathcal{M})$; \mathcal{M} and C is compact and convex, a *convex body*

- *M_d*(𝔅) the full matrix algebra of *d* × *d* matrices, *d* ∈ ℕ, over the field 𝔅 of complex numbers ℂ or real numbers ℝ; identity matrix 1_{*d*} ∈ *M_d*(𝔅), zero matrix 0_{*d*} ∈ *M_d*(𝔅)
- A ⊂ M_d(ℂ) a real C*-subalgebra;
 in quantum mechanics take a complex C*-subalgebra A
- Euclidean space A_{sa} := {a ∈ A | a* = a}, ⟨a, b⟩ := tr(ab); in quantum mechanics A_{sa} is the space of observables
- state space M := {ρ ∈ A | ρ ≥ 0, tr(ρ) = 1}, positive semi-definite matrices of trace one called *density matrices* or *states*; in quantum mechanics ⟨ρ, a⟩ ∈ ℝ is the *expected value* of the observable a ∈ A_{sa} if the system is in the state ρ ∈ M
- we fix observables u₁,..., u_k ∈ A_{sa}, k ∈ N, and define the expected value functional E : A_{sa} → R^k, a ↦ (⟨a, u₁⟩,...,⟨a, u_k⟩)
- $C := \mathbb{E}(\mathcal{M})$; \mathcal{M} and C is compact and convex, a *convex body*

- *M_d*(𝔅) the full matrix algebra of *d* × *d* matrices, *d* ∈ ℕ, over the field 𝔅 of complex numbers ℂ or real numbers ℝ; identity matrix 1_{*d*} ∈ *M_d*(𝔅), zero matrix 0_{*d*} ∈ *M_d*(𝔅)
- A ⊂ M_d(ℂ) a real C*-subalgebra;
 in quantum mechanics take a *complex* C*-subalgebra A
- Euclidean space A_{sa} := {a ∈ A | a* = a}, ⟨a, b⟩ := tr(ab); in quantum mechanics A_{sa} is the space of observables
- state space M := {ρ ∈ A | ρ ≥ 0, tr(ρ) = 1}, positive semi-definite matrices of trace one called *density matrices* or *states*; in quantum mechanics ⟨ρ, a⟩ ∈ ℝ is the *expected value* of the observable a ∈ A_{sa} if the system is in the state ρ ∈ M
- we fix observables u₁,..., u_k ∈ A_{sa}, k ∈ N, and define the expected value functional E : A_{sa} → R^k, a ↦ (⟨a, u₁⟩,...,⟨a, u_k⟩)
- $C := \mathbb{E}(\mathcal{M})$; \mathcal{M} and C is compact and convex, a *convex body*

- *M_d*(𝔅) the full matrix algebra of *d* × *d* matrices, *d* ∈ ℕ, over the field 𝔅 of complex numbers ℂ or real numbers ℝ; identity matrix 1_{*d*} ∈ *M_d*(𝔅), zero matrix 0_{*d*} ∈ *M_d*(𝔅)
- A ⊂ M_d(ℂ) a real C*-subalgebra;
 in quantum mechanics take a *complex* C*-subalgebra A
- Euclidean space A_{sa} := {a ∈ A | a* = a}, ⟨a, b⟩ := tr(ab); in quantum mechanics A_{sa} is the space of observables
- state space M := {ρ ∈ A | ρ ≿ 0, tr(ρ) = 1}, positive semi-definite matrices of trace one called *density matrices* or *states*; in quantum mechanics ⟨ρ, a⟩ ∈ ℝ is the *expected value* of the observable a ∈ A_{sa} if the system is in the state ρ ∈ M
- we fix observables u₁,..., u_k ∈ A_{sa}, k ∈ N, and define the expected value functional E : A_{sa} → R^k, a ↦ (⟨a, u₁⟩,...,⟨a, u_k⟩)
- $\mathcal{C} := \mathbb{E}(\mathcal{M})$; \mathcal{M} and \mathcal{C} is compact and convex, a *convex body*

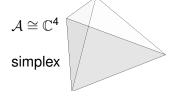
- *M_d*(𝔅) the full matrix algebra of *d* × *d* matrices, *d* ∈ ℕ, over the field 𝔅 of complex numbers ℂ or real numbers ℝ; identity matrix 1_{*d*} ∈ *M_d*(𝔅), zero matrix 0_{*d*} ∈ *M_d*(𝔅)
- A ⊂ M_d(ℂ) a real C*-subalgebra;
 in quantum mechanics take a *complex* C*-subalgebra A
- Euclidean space A_{sa} := {a ∈ A | a* = a}, ⟨a, b⟩ := tr(ab); in quantum mechanics A_{sa} is the space of observables
- state space M := {ρ ∈ A | ρ ≥ 0, tr(ρ) = 1}, positive semi-definite matrices of trace one called *density matrices* or *states*; in quantum mechanics ⟨ρ, a⟩ ∈ ℝ is the *expected value* of the observable a ∈ A_{sa} if the system is in the state ρ ∈ M
- we fix observables u₁,..., u_k ∈ A_{sa}, k ∈ N, and define the expected value functional E : A_{sa} → R^k, a ↦ (⟨a, u₁⟩,...,⟨a, u_k⟩)

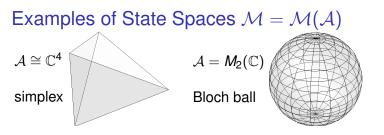
• $C := \mathbb{E}(\mathcal{M})$; \mathcal{M} and C is compact and convex, a *convex body*

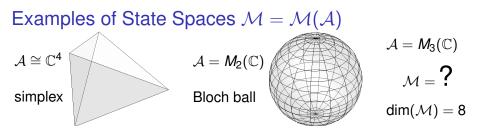
- *M_d*(𝔅) the full matrix algebra of *d* × *d* matrices, *d* ∈ ℕ, over the field 𝔅 of complex numbers ℂ or real numbers ℝ; identity matrix 1_{*d*} ∈ *M_d*(𝔅), zero matrix 0_{*d*} ∈ *M_d*(𝔅)
- A ⊂ M_d(ℂ) a real C*-subalgebra;
 in quantum mechanics take a *complex* C*-subalgebra A
- Euclidean space A_{sa} := {a ∈ A | a* = a}, ⟨a, b⟩ := tr(ab); in quantum mechanics A_{sa} is the space of observables
- state space M := {ρ ∈ A | ρ ≿ 0, tr(ρ) = 1}, positive semi-definite matrices of trace one called *density matrices* or *states*; in quantum mechanics ⟨ρ, a⟩ ∈ ℝ is the *expected value* of the observable a ∈ A_{sa} if the system is in the state ρ ∈ M
- we fix observables u₁,..., u_k ∈ A_{sa}, k ∈ N, and define the expected value functional E : A_{sa} → R^k, a ↦ (⟨a, u₁⟩,...,⟨a, u_k⟩)
- $\mathcal{C} := \mathbb{E}(\mathcal{M})$; \mathcal{M} and \mathcal{C} is compact and convex, a *convex body*

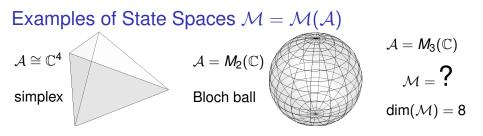
Examples of State Spaces $\mathcal{M} = \mathcal{M}(\mathcal{A})$

Examples of State Spaces $\mathcal{M} = \mathcal{M}(\mathcal{A})$

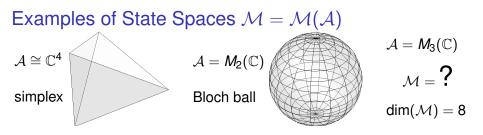




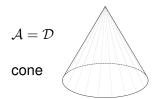


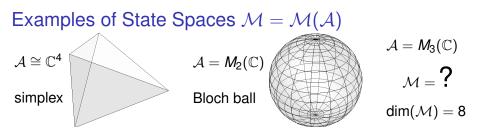


For $d \ge 3$ the state space $\mathcal{M}(M_d(\mathbb{C}))$ is neither a polytope nor a ball. But the direct sum algebra $\mathcal{D} := M_2(\mathbb{R}) \oplus \mathbb{R}$ of real matrices $\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix}$ suffices to illustrate the continuity problem.

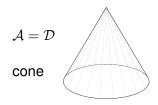


For $d \ge 3$ the state space $\mathcal{M}(M_d(\mathbb{C}))$ is neither a polytope nor a ball. But the direct sum algebra $\mathcal{D} := M_2(\mathbb{R}) \oplus \mathbb{R}$ of real matrices $\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix}$ suffices to illustrate the continuity problem.





For $d \ge 3$ the state space $\mathcal{M}(M_d(\mathbb{C}))$ is neither a polytope nor a ball. But the direct sum algebra $\mathcal{D} := M_2(\mathbb{R}) \oplus \mathbb{R}$ of real matrices $\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix}$ suffices to illustrate the continuity problem.



For curiosity: $\mathcal{M}(M_3(\mathbb{C})) \cap A$ inside the orthogonal projection of $\mathcal{M}(M_3(\mathbb{C}))$ to the affine space A of real matrices $\binom{1/3 \times y}{\chi \times 1/3 \times 2}$

- von Neumann entropy S : M → ℝ, ρ ↦ −tr ρ log(ρ), S is continuous and strictly concave, S has a unique maximum on every convex body included in M
- maximum-entropy inference $\Psi : \mathcal{C} \to \mathcal{M}, x \mapsto \operatorname{argmax} \{ S(\rho) \mid \rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x) \}$
- we call E|_M : M → C open at ρ ∈ M if E(N) is a neighborhood of E(ρ) for every neighborhood N ⊂ M of ρ;
 we call E|_M open on X ⊂ M if E|_M is open at each ρ ∈ X

Proof. For all $N \subset M$ we have $\Psi^{-1}(N) = \mathbb{E}(N \cap \Psi(C)) \subset \mathbb{E}(N)$. So continuity implies openness.

- von Neumann entropy S : M → ℝ, ρ ↦ −tr ρ log(ρ),
 S is continuous and strictly concave, S has a unique maximum on every convex body included in M
- maximum-entropy inference $\Psi : C \to M$, $x \mapsto \operatorname{argmax} \{ S(\rho) \mid \rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x) \}$
- we call E|_M : M → C open at ρ ∈ M if E(N) is a neighborhood of E(ρ) for every neighborhood N ⊂ M of ρ;
 we call E|_M open on X ⊂ M if E|_M is open at each ρ ∈ X

Proof. For all $N \subset M$ we have $\Psi^{-1}(N) = \mathbb{E}(N \cap \Psi(C)) \subset \mathbb{E}(N)$. So continuity implies openness.

- von Neumann entropy S : M → ℝ, ρ ↦ −tr ρ log(ρ), S is continuous and strictly concave, S has a unique maximum on every convex body included in M
- maximum-entropy inference $\Psi : C \to M$, $x \mapsto \operatorname{argmax} \{ S(\rho) \mid \rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x) \}$

we call E|_M : M → C open at ρ ∈ M if E(N) is a neighborhood of E(ρ) for every neighborhood N ⊂ M of ρ;
 we call E|_M open on X ⊂ M if E|_M is open at each ρ ∈ X

Proof. For all $N \subset M$ we have $\Psi^{-1}(N) = \mathbb{E}(N \cap \Psi(C)) \subset \mathbb{E}(N)$. So continuity implies openness.

- von Neumann entropy S : M → ℝ, ρ ↦ −tr ρ log(ρ), S is continuous and strictly concave, S has a unique maximum on every convex body included in M
- maximum-entropy inference $\Psi : \mathcal{C} \to \mathcal{M}$, $x \mapsto \operatorname{argmax} \{ S(\rho) \mid \rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x) \}$
- we call E|_M : M → C open at ρ ∈ M if E(N) is a neighborhood of E(ρ) for every neighborhood N ⊂ M of ρ;
 we call E|_M open on X ⊂ M if E|_M is open at each ρ ∈ X

Proof. For all $N \subset M$ we have $\Psi^{-1}(N) = \mathbb{E}(N \cap \Psi(C)) \subset \mathbb{E}(N)$. So continuity implies openness.

- von Neumann entropy S : M → ℝ, ρ ↦ −tr ρ log(ρ), S is continuous and strictly concave, S has a unique maximum on every convex body included in M
- maximum-entropy inference $\Psi : \mathcal{C} \to \mathcal{M}$, $x \mapsto \operatorname{argmax} \{ S(\rho) \mid \rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x) \}$
- we call E|_M : M → C open at ρ ∈ M if E(N) is a neighborhood of E(ρ) for every neighborhood N ⊂ M of ρ;
 we call E|_M open on X ⊂ M if E|_M is open at each ρ ∈ X

Theorem (W. 2014)

If $x \in C$ then Ψ is continuous at x if and only if $\mathbb{E}|_{\mathcal{M}}$ is open at $\Psi(x)$.

Proof. For all $N \subset M$ we have $\Psi^{-1}(N) = \mathbb{E}(N \cap \Psi(\mathcal{C})) \subset \mathbb{E}(N)$. So continuity implies openness.

- von Neumann entropy S : M → ℝ, ρ ↦ −tr ρ log(ρ), S is continuous and strictly concave, S has a unique maximum on every convex body included in M
- maximum-entropy inference $\Psi : \mathcal{C} \to \mathcal{M}$, $x \mapsto \operatorname{argmax} \{ S(\rho) \mid \rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x) \}$
- we call E|_M : M → C open at ρ ∈ M if E(N) is a neighborhood of E(ρ) for every neighborhood N ⊂ M of ρ;
 we call E|_M open on X ⊂ M if E|_M is open at each ρ ∈ X

Theorem (W. 2014)

If $x \in C$ then Ψ is continuous at x if and only if $\mathbb{E}|_{\mathcal{M}}$ is open at $\Psi(x)$.

Proof. For all $N \subset \mathcal{M}$ we have $\Psi^{-1}(N) = \mathbb{E}(N \cap \Psi(\mathcal{C})) \subset \mathbb{E}(N)$. So continuity implies openness.

- von Neumann entropy S : M → ℝ, ρ ↦ −tr ρ log(ρ), S is continuous and strictly concave, S has a unique maximum on every convex body included in M
- maximum-entropy inference $\Psi : \mathcal{C} \to \mathcal{M}$, $x \mapsto \operatorname{argmax} \{ S(\rho) \mid \rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x) \}$
- we call E|_M : M → C open at ρ ∈ M if E(N) is a neighborhood of E(ρ) for every neighborhood N ⊂ M of ρ;
 we call E|_M open on X ⊂ M if E|_M is open at each ρ ∈ X

Theorem (W. 2014)

If $x \in C$ then Ψ is continuous at x if and only if $\mathbb{E}|_{\mathcal{M}}$ is open at $\Psi(x)$.

Proof. For all $N \subset \mathcal{M}$ we have $\Psi^{-1}(N) = \mathbb{E}(N \cap \Psi(\mathcal{C})) \subset \mathbb{E}(N)$. So continuity implies openness. " \Leftarrow " is proved using compactness.

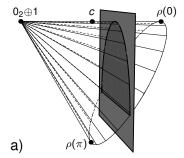


Fig. a). The cone \mathcal{M} . The subset, denoted N, left from the depicted plane is a neighborhood of $c := \frac{1}{2}(0_2 \oplus 1 + \rho(0))$

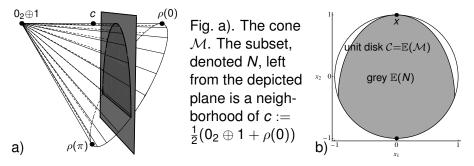


Figure b). The set of expected values $C = \mathbb{E}(\mathcal{M})$ for $u_1 := \sigma_1 \oplus 0$ and $u_2 := \sigma_3 \oplus 1$, where $\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are *Pauli* matrices. The image $\mathbb{E}(N)$ is bounded by an ellipse of curvature > 1 near *x*, so $\mathbb{E}(N)$ is not a neighborhood of $x := (0, 1) = \mathbb{E}(0_2 \oplus 1) = \mathbb{E}(\rho(0))$.

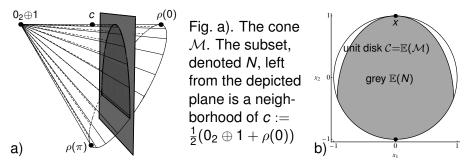


Figure b). The set of expected values $C = \mathbb{E}(\mathcal{M})$ for $u_1 := \sigma_1 \oplus 0$ and $u_2 := \sigma_3 \oplus 1$, where $\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are *Pauli* matrices. The image $\mathbb{E}(N)$ is bounded by an ellipse of curvature > 1 near x, so $\mathbb{E}(N)$ is not a neighborhood of $x := (0, 1) = \mathbb{E}(0_2 \oplus 1) = \mathbb{E}(\rho(0))$.

Sufficient Openness Conditions

Let $(X, \|\cdot\|)$ be a real normed vector space, $C \subset X$ a convex subset, $x \in C$. We define, respectively, the *ball* and *sphere* of radius $\epsilon > 0$

 $B_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid \|y - x\| \le \epsilon\}, S_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid \|y - x\| = \epsilon\}.$

The *gauge* of *C* is the function $\gamma_C : X \to [0, \infty]$,

 $\gamma_{\mathcal{C}}(u) := \inf\{\lambda \ge 0 \mid u \in \lambda \mathcal{C}\}, \quad u \in X.$

The *positive hull* of *C* is $C^+ = \{\lambda y \mid y \in C, \lambda \ge 0\}$.

Remark. If ||u|| = 1 then $\gamma_{C-x}(u)$ is the inverse radius of *C* from the center *x* in the direction of *u*. Since *C* is convex γ_{C-x} is convex.

Sufficient Openness Conditions

Let $(X, \|\cdot\|)$ be a real normed vector space, $C \subset X$ a convex subset, $x \in C$. We define, respectively, the *ball* and *sphere* of radius $\epsilon > 0$

 $B_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid \|y - x\| \le \epsilon\}, S_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid \|y - x\| = \epsilon\}.$

The *gauge* of *C* is the function $\gamma_C : X \to [0, \infty]$,

 $\gamma_{\mathcal{C}}(u) := \inf\{\lambda \ge 0 \mid u \in \lambda \mathcal{C}\}, \quad u \in X.$

The *positive hull* of *C* is $C^+ = \{\lambda y \mid y \in C, \lambda \ge 0\}$.

Remark. If ||u|| = 1 then $\gamma_{C-x}(u)$ is the inverse radius of *C* from the center *x* in the direction of *u*. Since *C* is convex γ_{C-x} is convex.

Sufficient Openness Conditions

Let $(X, \|\cdot\|)$ be a real normed vector space, $C \subset X$ a convex subset, $x \in C$. We define, respectively, the *ball* and *sphere* of radius $\epsilon > 0$

$$B_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| \leq \epsilon\}, S_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| = \epsilon\}.$$

The *gauge* of *C* is the function $\gamma_C : X \to [0, \infty]$,

 $\gamma_{\mathcal{C}}(u) := \inf\{\lambda \ge 0 \mid u \in \lambda \mathcal{C}\}, \quad u \in X.$

The *positive hull* of *C* is $C^+ = \{\lambda y \mid y \in C, \lambda \ge 0\}$.

Remark. If ||u|| = 1 then $\gamma_{C-x}(u)$ is the inverse radius of *C* from the center *x* in the direction of *u*. Since *C* is convex γ_{C-x} is convex.

Let $(X, \|\cdot\|)$ be a real normed vector space, $C \subset X$ a convex subset, $x \in C$. We define, respectively, the *ball* and *sphere* of radius $\epsilon > 0$

$$B_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| \leq \epsilon\}, S_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| = \epsilon\}.$$

The *gauge* of *C* is the function $\gamma_C : X \to [0, \infty]$,

$$\gamma_{\mathcal{C}}(u) := \inf\{\lambda \ge 0 \mid u \in \lambda \mathcal{C}\}, \quad u \in \mathcal{X}.$$

The *positive hull* of *C* is $C^+ = \{\lambda y \mid y \in C, \lambda \ge 0\}$.

Remark. If ||u|| = 1 then $\gamma_{C-x}(u)$ is the inverse radius of *C* from the center *x* in the direction of *u*. Since *C* is convex γ_{C-x} is convex.

Let $(X, \|\cdot\|)$ be a real normed vector space, $C \subset X$ a convex subset, $x \in C$. We define, respectively, the *ball* and *sphere* of radius $\epsilon > 0$

$$B_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| \leq \epsilon\}, S_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| = \epsilon\}.$$

The *gauge* of *C* is the function $\gamma_C : X \to [0, \infty]$,

$$\gamma_{\mathcal{C}}(u) := \inf\{\lambda \ge 0 \mid u \in \lambda \mathcal{C}\}, \quad u \in \mathcal{X}.$$

The *positive hull* of *C* is $C^+ = \{\lambda y \mid y \in C, \lambda \ge 0\}$.

Remark. If ||u|| = 1 then $\gamma_{C-x}(u)$ is the inverse radius of *C* from the center *x* in the direction of *u*. Since *C* is convex γ_{C-x} is convex.

Let $(X, \|\cdot\|)$ be a real normed vector space, $C \subset X$ a convex subset, $x \in C$. We define, respectively, the *ball* and *sphere* of radius $\epsilon > 0$

$$B_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| \leq \epsilon\}, S_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| = \epsilon\}.$$

The *gauge* of *C* is the function $\gamma_{C} : X \to [0, \infty]$,

$$\gamma_{\mathcal{C}}(u) := \inf\{\lambda \ge 0 \mid u \in \lambda \mathcal{C}\}, \quad u \in X.$$

The *positive hull* of *C* is $C^+ = \{\lambda y \mid y \in C, \lambda \ge 0\}$.

Remark. If ||u|| = 1 then $\gamma_{C-x}(u)$ is the inverse radius of *C* from the center *x* in the direction of *u*. Since *C* is convex γ_{C-x} is convex.

Let $(X, \|\cdot\|)$ be a real normed vector space, $C \subset X$ a convex subset, $x \in C$. We define, respectively, the *ball* and *sphere* of radius $\epsilon > 0$

$$B_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| \leq \epsilon\}, S_{\mathcal{C}}(x,\epsilon) := \{y \in \mathcal{C} \mid ||y-x|| = \epsilon\}.$$

The *gauge* of *C* is the function $\gamma_C : X \to [0, \infty]$,

$$\gamma_{\mathcal{C}}(u) := \inf\{\lambda \ge 0 \mid u \in \lambda \mathcal{C}\}, \quad u \in X.$$

The *positive hull* of *C* is $C^+ = \{\lambda y \mid y \in C, \lambda \ge 0\}$.

Remark. If ||u|| = 1 then $\gamma_{C-x}(u)$ is the inverse radius of *C* from the center *x* in the direction of *u*. Since *C* is convex γ_{C-x} is convex.

Proposition (W. 2014)

If $x \in C$ and if γ_{C-x} is bounded on $S_{(C-x)^+}(0,1)$ then the expected value functional $\mathbb{E}|_{\mathcal{M}}$ is open on the fiber $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

Stephan Weis (MPI MIS)

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then $\mathbb{E}|_{\mathcal{M}}$ is open on $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then $\mathbb{E}|_{\mathcal{M}}$ is open on $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

Proof: There exists $\epsilon > 0$ such that $B_{aff(\mathcal{C})}(x, \epsilon) \subset \mathcal{C}$, so $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ for $u \in S_{(\mathcal{C}-x)^+}(0, 1) = S^{k-1} \cap aff(\mathcal{C})$.

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then $\mathbb{E}|_{\mathcal{M}}$ is open on $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

Proof: There exists $\epsilon > 0$ such that $B_{aff(\mathcal{C})}(x, \epsilon) \subset \mathcal{C}$, so $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ for $u \in S_{(\mathcal{C}-x)^+}(0, 1) = S^{k-1} \cap aff(\mathcal{C})$.

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then $\mathbb{E}|_{\mathcal{M}}$ is open on $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

Proof: There exists $\epsilon > 0$ such that $B_{aff(\mathcal{C})}(x, \epsilon) \subset \mathcal{C}$, so $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ for $u \in S_{(\mathcal{C}-x)^+}(0, 1) = S^{k-1} \cap aff(\mathcal{C})$.

Corollary

If C is a polytope, then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} .

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then $\mathbb{E}|_{\mathcal{M}}$ is open on $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

Proof: There exists $\epsilon > 0$ such that $B_{aff(\mathcal{C})}(x, \epsilon) \subset \mathcal{C}$, so $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ for $u \in S_{(\mathcal{C}-x)^+}(0, 1) = S^{k-1} \cap aff(\mathcal{C})$.

Corollary

If C is a polytope, then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} .

Proof: If $x \in C$ then $(C - x)^+$ is polyhedral convex where γ_{C-x} is upper semi-continuous and has a maximum on the compact unit sphere.

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then $\mathbb{E}|_{\mathcal{M}}$ is open on $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

Proof: There exists $\epsilon > 0$ such that $B_{aff(\mathcal{C})}(x, \epsilon) \subset \mathcal{C}$, so $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ for $u \in S_{(\mathcal{C}-x)^+}(0, 1) = S^{k-1} \cap aff(\mathcal{C})$.

Corollary

If C is a polytope, then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} .

Proof: If $x \in C$ then $(C - x)^+$ is polyhedral convex where γ_{C-x} is upper semi-continuous and has a maximum on the compact unit sphere.

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then $\mathbb{E}|_{\mathcal{M}}$ is open on $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

Proof: There exists $\epsilon > 0$ such that $B_{aff(\mathcal{C})}(x, \epsilon) \subset \mathcal{C}$, so $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ for $u \in S_{(\mathcal{C}-x)^+}(0, 1) = S^{k-1} \cap aff(\mathcal{C})$.

Corollary

If C is a polytope, then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} .

Proof: If $x \in C$ then $(C - x)^+$ is polyhedral convex where γ_{C-x} is upper semi-continuous and has a maximum on the compact unit sphere.

Corollary

If the observables u_1, \ldots, u_k commute then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} .

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then $\mathbb{E}|_{\mathcal{M}}$ is open on $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

Proof: There exists $\epsilon > 0$ such that $B_{aff(\mathcal{C})}(x, \epsilon) \subset \mathcal{C}$, so $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ for $u \in S_{(\mathcal{C}-x)^+}(0, 1) = S^{k-1} \cap aff(\mathcal{C})$.

Corollary

If C is a polytope, then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} .

Proof: If $x \in C$ then $(C - x)^+$ is polyhedral convex where γ_{C-x} is upper semi-continuous and has a maximum on the compact unit sphere.

Corollary

If the observables u_1, \ldots, u_k commute then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} .

Proof: If u_1, \ldots, u_k commute then C is a polytope.

The *relative interior* of C is the interior of C in the affine hull aff(C) of C.

Corollary

If x lies in the relative interior of C, then $\mathbb{E}|_{\mathcal{M}}$ is open on $\mathbb{E}|_{\mathcal{M}}^{-1}(x)$.

Proof: There exists $\epsilon > 0$ such that $B_{aff(\mathcal{C})}(x, \epsilon) \subset \mathcal{C}$, so $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ for $u \in S_{(\mathcal{C}-x)^+}(0, 1) = S^{k-1} \cap aff(\mathcal{C})$.

Corollary

If C is a polytope, then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} .

Proof: If $x \in C$ then $(C - x)^+$ is polyhedral convex where γ_{C-x} is upper semi-continuous and has a maximum on the compact unit sphere.

Corollary

If the observables u_1, \ldots, u_k commute then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} .

Proof: If u_1, \ldots, u_k commute then C is a polytope.

Lemma (One-point fibers)

If $\rho \in \mathcal{M}$ and $\{\rho\} = \mathbb{E}|_{\mathcal{M}}^{-1} \circ \mathbb{E}(\rho)$ holds then $\mathbb{E}|_{\mathcal{M}}$ is open at ρ .

Lemma (One-point fibers)

If $\rho \in \mathcal{M}$ and $\{\rho\} = \mathbb{E}|_{\mathcal{M}}^{-1} \circ \mathbb{E}(\rho)$ holds then $\mathbb{E}|_{\mathcal{M}}$ is open at ρ .

The sufficient conditions allow us to discuss the cone $\mathcal{M} = \mathcal{M}(\mathcal{D})$.

Lemma

If $\mathcal{A} = \mathcal{D}$ then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} unless dim $(\mathcal{C}) = 2$ and a generatrix of \mathcal{M} is a fiber of $\mathbb{E}|_{\mathcal{M}}$, that is $[\rho \oplus 0, 0_2 \oplus 1] = \mathbb{E}|_{\mathcal{M}}^{-1} \circ \mathbb{E}(0_2 \oplus 1)$ holds for some $\rho \in M_2(\mathbb{R})$. In the latter case $\mathbb{E}|_{\mathcal{M}}$ is not open at any point of $]\rho \oplus 0, 0_2 \oplus 1]$ and open on the complement.

Lemma (One-point fibers)

If $\rho \in \mathcal{M}$ and $\{\rho\} = \mathbb{E}|_{\mathcal{M}}^{-1} \circ \mathbb{E}(\rho)$ holds then $\mathbb{E}|_{\mathcal{M}}$ is open at ρ .

The sufficient conditions allow us to discuss the cone $\mathcal{M} = \mathcal{M}(\mathcal{D})$.

Lemma

If $\mathcal{A} = \mathcal{D}$ then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} unless dim $(\mathcal{C}) = 2$ and a generatrix of \mathcal{M} is a fiber of $\mathbb{E}|_{\mathcal{M}}$, that is $[\rho \oplus 0, 0_2 \oplus 1] = \mathbb{E}|_{\mathcal{M}}^{-1} \circ \mathbb{E}(0_2 \oplus 1)$ holds for some $\rho \in M_2(\mathbb{R})$. In the latter case $\mathbb{E}|_{\mathcal{M}}$ is not open at any point of $]\rho \oplus 0, 0_2 \oplus 1]$ and open on the complement.

Using rotation in the first summand of $\mathcal{D} = M_2(\mathbb{R}) \oplus \mathbb{R}$ (double cover $SO(2) \rightarrow SO(2)$ restricted from $SU(2) \rightarrow S(3)$), we have the following.

Lemma

If $\mathcal{A} = \mathcal{D}$ then $\mathbb{E}|_{\mathcal{M}}$ is open on \mathcal{M} unless the real span of $u_1, \ldots, u_k, \mathbb{1}_3$ is unitarily equivalent to the real span of $\sigma_1 \oplus 0, \sigma_3 \oplus 1, \mathbb{1}_3$.

- Invertible linear transformations preserve openness. For two linearly independent observables u₁, u₂ we replace E by the orthogonal projection onto a plance V ⊂ D_{sa} of trace-less matrices, dim(V) = 2, that is an element of the Grassmannian G_{2,3}. We identify C = E(M) and the image of M on V.
- The SO(2)-symmetry of the cone M(D) reduces the parametrization of G_{2,3} to a circle SO(2) ≅ G_{2,3}/SO(2).

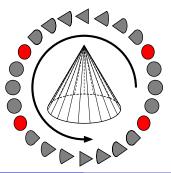
- Invertible linear transformations preserve openness. For two linearly independent observables u₁, u₂ we replace E by the orthogonal projection onto a plance V ⊂ D_{sa} of trace-less matrices, dim(V) = 2, that is an element of the Grassmannian G_{2,3}. We identify C = E(M) and the image of M on V.
- The SO(2)-symmetry of the cone M(D) reduces the parametrization of G_{2,3} to a circle SO(2) ≅ G_{2,3}/SO(2).

- Invertible linear transformations preserve openness. For two linearly independent observables u₁, u₂ we replace E by the orthogonal projection onto a plance V ⊂ D_{sa} of trace-less matrices, dim(V) = 2, that is an element of the Grassmannian G_{2,3}. We identify C = E(M) and the image of M on V.
- The SO(2)-symmetry of the cone M(D) reduces the parametrization of G_{2,3} to a circle SO(2) ≅ G_{2,3}/SO(2).

- Invertible linear transformations preserve openness. For two linearly independent observables u₁, u₂ we replace E by the orthogonal projection onto a plance V ⊂ D_{sa} of trace-less matrices, dim(V) = 2, that is an element of the Grassmannian G_{2,3}. We identify C = E(M) and the image of M on V.
- The SO(2)-symmetry of the cone M(D) reduces the parametrization of G_{2,3} to a circle SO(2) ≅ G_{2,3}/SO(2).

Figure:

Orthogonal projections of $\mathcal{M}(\mathcal{D})$ to planes $V \in G_{2,3}$. Planes *V* with a discontinuous maximum-entropy inference are marked by a red $\mathcal{C}(V)$.



Discussion: Geometry of C and Numerical Range

A discontinuity exists for $V \in G_{2,3}$ where

- flat boundary portions of C(V) disappear,
- non-exposed points of C(V) disappear.

A *non-exposed* point of C (green) is an extreme point which is not the unique maximizer in C of a linear functional.

Discussion: Geometry of C and Numerical Range A discontinuity exists for $V \in G_{2,3}$ where

- flat boundary portions of C(V) disappear,
- non-exposed points of C(V) disappear.

A *non-exposed* point of C (green) is an extreme point which is not the unique maximizer in C of a linear functional.

Discussion: Geometry of C and Numerical Range A discontinuity exists for $V \in G_{2,3}$ where

- flat boundary portions of C(V) disappear,
- non-exposed points of C(V) disappear.

A *non-exposed* point of C (green) is an extreme point which is not the unique maximizer in C of a linear functional.

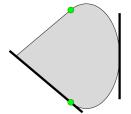
- A discontinuity exists for $V \in G_{2,3}$ where
 - flat boundary portions of C(V) disappear,
 - non-exposed points of C(V) disappear.

A *non-exposed* point of C (green) is an extreme point which is not the unique maximizer in C of a linear functional.

A discontinuity exists for $V \in G_{2,3}$ where

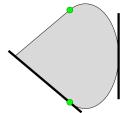
- flat boundary portions of C(V) disappear,
- non-exposed points of C(V) disappear.

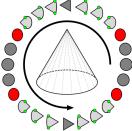
A *non-exposed* point of C (green) is an extreme point which is not the unique maximizer in C of a linear functional.



- A discontinuity exists for $V \in G_{2,3}$ where
 - flat boundary portions of $\mathcal{C}(V)$ disappear,
 - non-exposed points of C(V) disappear.

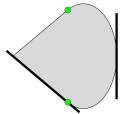
A *non-exposed* point of C (green) is an extreme point which is not the unique maximizer in C of a linear functional.

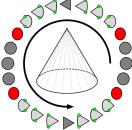




- A discontinuity exists for $V \in G_{2,3}$ where
 - flat boundary portions of C(V) disappear,
 - non-exposed points of C(V) disappear.

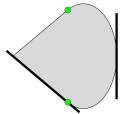
A *non-exposed* point of C (green) is an extreme point which is not the unique maximizer in C of a linear functional.

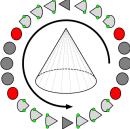




- A discontinuity exists for $V \in G_{2,3}$ where
 - flat boundary portions of $\mathcal{C}(V)$ disappear,
 - non-exposed points of C(V) disappear.

A *non-exposed* point of C (green) is an extreme point which is not the unique maximizer in C of a linear functional.





C is equivalent to the *numerical range* of $\langle z, (u_1 + iu_2)z \rangle \in \mathbb{C}, z \in \mathbb{C}^3$ and ||z|| = 1 (*Toeplitz-Hausdorff*).

Do geometric results about the numerical range help in the continuity analysis of Ψ in $M_3(\mathbb{C})$?

Stephan Weis (MPI MIS)

Open Linear Maps

Thanks!

Credits:

Supported by the DFG (German Research Foundation) project (10/2011–09/2014) *Quantum Statistics: Decision problems and entropic functionals on state spaces*

Stephan Weis (MPI MIS)

Open Linear Maps

Let $\epsilon > 0$ and denote the diameter of \mathcal{M} by $d := \max_{\tau_1, \tau_2 \in \mathcal{M}} \|\tau_2 - \tau_1\|$. If d = 0 then nothing is to prove so let d > 0. For $\rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x)$ we have

$$\mathbb{E}(B_{\mathcal{M}}(\rho, d)) = \mathcal{C} \supset S_{\mathcal{C}}(x, \epsilon).$$

For $\delta \in (0, d]$ the linearity of \mathbb{E} and the convexity of \mathcal{M} imply

$$\mathbb{E}(B_{\mathcal{M}}(\rho,\delta)) \supset \{x + \eta \cdot (y - x) \mid y \in S_{\mathcal{C}}(x,\epsilon)\}, \qquad 0 \le \eta \le \delta/d.$$

Let $\epsilon > 0$ such that $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ holds for all $u \in S_{(\mathcal{C}-x)^+}(0,1)$. Then

$$\{x + \eta(y - x) \mid y \in S_{\mathcal{C}}(x, \epsilon)\} = S_{\mathcal{C}}(x, \eta \cdot \epsilon), \qquad 0 \le \eta \le 1.$$

Let $\epsilon > 0$ and denote the diameter of \mathcal{M} by $d := \max_{\tau_1, \tau_2 \in \mathcal{M}} \|\tau_2 - \tau_1\|$. If d = 0 then nothing is to prove so let d > 0. For $\rho \in \mathbb{R}^{|-1|}_{\mathcal{M}}(x)$ we have

$\mathbb{E}(B_{\mathcal{M}}(\rho, d)) = \mathcal{C} \supset S_{\mathcal{C}}(x, \epsilon).$

For $\delta \in (0, d]$ the linearity of \mathbb{E} and the convexity of \mathcal{M} imply

 $\mathbb{E}(B_{\mathcal{M}}(\rho,\delta)) \supset \{x + \eta \cdot (y - x) \mid y \in S_{\mathcal{C}}(x,\epsilon)\}, \qquad 0 \leq \eta \leq \delta/d.$

Let $\epsilon > 0$ such that $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ holds for all $u \in S_{(\mathcal{C}-x)^+}(0,1)$. Then

 $\{x + \eta(y - x) \mid y \in S_{\mathcal{C}}(x, \epsilon)\} = S_{\mathcal{C}}(x, \eta \cdot \epsilon), \qquad 0 \le \eta \le 1.$

Let $\epsilon > 0$ and denote the diameter of \mathcal{M} by $d := \max_{\tau_1, \tau_2 \in \mathcal{M}} \|\tau_2 - \tau_1\|$. If d = 0 then nothing is to prove so let d > 0. For $\rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x)$ we have

$$\mathbb{E}(B_{\mathcal{M}}(\rho, d)) = \mathcal{C} \supset S_{\mathcal{C}}(x, \epsilon).$$

For $\delta \in (0, d]$ the linearity of \mathbb{E} and the convexity of \mathcal{M} imply

 $\mathbb{E}(B_{\mathcal{M}}(\rho,\delta)) \supset \{x + \eta \cdot (y - x) \mid y \in S_{\mathcal{C}}(x,\epsilon)\}, \qquad 0 \le \eta \le \delta/d.$

Let $\epsilon > 0$ such that $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ holds for all $u \in S_{(\mathcal{C}-x)^+}(0,1)$. Then

 $\{x + \eta(y - x) \mid y \in S_{\mathcal{C}}(x, \epsilon)\} = S_{\mathcal{C}}(x, \eta \cdot \epsilon), \qquad 0 \le \eta \le 1.$

Let $\epsilon > 0$ and denote the diameter of \mathcal{M} by $d := \max_{\tau_1, \tau_2 \in \mathcal{M}} \|\tau_2 - \tau_1\|$. If d = 0 then nothing is to prove so let d > 0. For $\rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x)$ we have

$$\mathbb{E}(B_{\mathcal{M}}(\rho, d)) = \mathcal{C} \supset S_{\mathcal{C}}(x, \epsilon).$$

For $\delta \in (0, d]$ the linearity of \mathbb{E} and the convexity of \mathcal{M} imply

$$\mathbb{E}(\boldsymbol{B}_{\mathcal{M}}(\rho,\delta)) \supset \{\boldsymbol{x} + \eta \cdot (\boldsymbol{y} - \boldsymbol{x}) \mid \boldsymbol{y} \in \boldsymbol{S}_{\mathcal{C}}(\boldsymbol{x},\epsilon)\}, \qquad \boldsymbol{0} \leq \eta \leq \delta/\boldsymbol{d}.$$

Let $\epsilon > 0$ such that $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ holds for all $u \in S_{(\mathcal{C}-x)^+}(0,1)$. Then

$$\{x + \eta(y - x) \mid y \in S_{\mathcal{C}}(x, \epsilon)\} = S_{\mathcal{C}}(x, \eta \cdot \epsilon), \qquad 0 \le \eta \le 1.$$

Let $\epsilon > 0$ and denote the diameter of \mathcal{M} by $d := \max_{\tau_1, \tau_2 \in \mathcal{M}} \|\tau_2 - \tau_1\|$. If d = 0 then nothing is to prove so let d > 0. For $\rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x)$ we have

$$\mathbb{E}(B_{\mathcal{M}}(\rho, d)) = \mathcal{C} \supset S_{\mathcal{C}}(x, \epsilon).$$

For $\delta \in (0, d]$ the linearity of \mathbb{E} and the convexity of \mathcal{M} imply

$$\mathbb{E}(\mathcal{B}_{\mathcal{M}}(\rho,\delta)) \supset \{\mathbf{x} + \eta \cdot (\mathbf{y} - \mathbf{x}) \mid \mathbf{y} \in \mathcal{S}_{\mathcal{C}}(\mathbf{x},\epsilon)\}, \qquad \mathbf{0} \leq \eta \leq \delta/\mathbf{d}.$$

Let $\epsilon > 0$ such that $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ holds for all $u \in S_{(\mathcal{C}-x)^+}(0, 1)$. Then

$$\{x + \eta(y - x) \mid y \in S_{\mathcal{C}}(x, \epsilon)\} = S_{\mathcal{C}}(x, \eta \cdot \epsilon), \qquad 0 \le \eta \le 1.$$

Let $\epsilon > 0$ and denote the diameter of \mathcal{M} by $d := \max_{\tau_1, \tau_2 \in \mathcal{M}} \|\tau_2 - \tau_1\|$. If d = 0 then nothing is to prove so let d > 0. For $\rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x)$ we have

$$\mathbb{E}(B_{\mathcal{M}}(\rho, d)) = \mathcal{C} \supset S_{\mathcal{C}}(x, \epsilon).$$

For $\delta \in (0, d]$ the linearity of \mathbb{E} and the convexity of \mathcal{M} imply

$$\mathbb{E}(\mathcal{B}_{\mathcal{M}}(
ho,\delta))\supset\{x+\eta\cdot(y-x)\mid y\in\mathcal{S}_{\mathcal{C}}(x,\epsilon)\},\qquad \mathsf{0}\leq\eta\leq\delta/\mathsf{d}.$$

Let $\epsilon > 0$ such that $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ holds for all $u \in S_{(\mathcal{C}-x)^+}(0, 1)$. Then

$$\{x + \eta(y - x) \mid y \in S_{\mathcal{C}}(x, \epsilon)\} = S_{\mathcal{C}}(x, \eta \cdot \epsilon), \qquad 0 \le \eta \le 1.$$

So $\mathbb{E}(B_{\mathcal{M}}(\rho, \delta))$ contains the sphere $S_{\mathcal{C}}(x, \eta \cdot \epsilon)$ for all $0 \le \eta \le \delta/d$.

This proves that $\mathbb{E}(B_{\mathcal{M}}(\rho, \delta))$ contains the ball $B_{\mathcal{C}}(x, \delta/d \cdot \epsilon)$. We conclude that $\mathbb{E}|_{\mathcal{M}}$ is open at ρ .

Let $\epsilon > 0$ and denote the diameter of \mathcal{M} by $d := \max_{\tau_1, \tau_2 \in \mathcal{M}} \|\tau_2 - \tau_1\|$. If d = 0 then nothing is to prove so let d > 0. For $\rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x)$ we have

$$\mathbb{E}(B_{\mathcal{M}}(\rho, d)) = \mathcal{C} \supset S_{\mathcal{C}}(x, \epsilon).$$

For $\delta \in (0, d]$ the linearity of \mathbb{E} and the convexity of \mathcal{M} imply

$$\mathbb{E}(\boldsymbol{B}_{\mathcal{M}}(\rho,\delta)) \supset \{\boldsymbol{x} + \eta \cdot (\boldsymbol{y} - \boldsymbol{x}) \mid \boldsymbol{y} \in \boldsymbol{S}_{\mathcal{C}}(\boldsymbol{x},\epsilon)\}, \qquad \boldsymbol{0} \leq \eta \leq \delta/\boldsymbol{d}.$$

Let $\epsilon > 0$ such that $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ holds for all $u \in S_{(\mathcal{C}-x)^+}(0, 1)$. Then

$$\{x + \eta(y - x) \mid y \in S_{\mathcal{C}}(x, \epsilon)\} = S_{\mathcal{C}}(x, \eta \cdot \epsilon), \qquad 0 \le \eta \le 1.$$

Let $\epsilon > 0$ and denote the diameter of \mathcal{M} by $d := \max_{\tau_1, \tau_2 \in \mathcal{M}} \|\tau_2 - \tau_1\|$. If d = 0 then nothing is to prove so let d > 0. For $\rho \in \mathbb{E}|_{\mathcal{M}}^{-1}(x)$ we have

$$\mathbb{E}(B_{\mathcal{M}}(\rho, d)) = \mathcal{C} \supset S_{\mathcal{C}}(x, \epsilon).$$

For $\delta \in (0, d]$ the linearity of \mathbb{E} and the convexity of \mathcal{M} imply

$$\mathbb{E}(\boldsymbol{B}_{\mathcal{M}}(\rho,\delta)) \supset \{\boldsymbol{x} + \eta \cdot (\boldsymbol{y} - \boldsymbol{x}) \mid \boldsymbol{y} \in \boldsymbol{S}_{\mathcal{C}}(\boldsymbol{x},\epsilon)\}, \qquad \boldsymbol{0} \leq \eta \leq \delta/\boldsymbol{d}.$$

Let $\epsilon > 0$ such that $\gamma_{\mathcal{C}-x}(u) \leq 1/\epsilon$ holds for all $u \in S_{(\mathcal{C}-x)^+}(0, 1)$. Then

$$\{x + \eta(y - x) \mid y \in S_{\mathcal{C}}(x, \epsilon)\} = S_{\mathcal{C}}(x, \eta \cdot \epsilon), \qquad 0 \le \eta \le 1.$$