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A sequence of norms on X" is a 1-multimorm if it satisfies
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Let X be a normed space. Put ||(x,...,xn)|| := 27 [Ixill-

Example
Let X = Lp(u). Put ||(x1, ..., x)|| == Hz;’zl x|

The only 1-multinorm on R is the ¢1-norm.
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Theorem

A sequence of norms is a 1-multinorm iff

|AX||m < ||A: ] — £ - ||X||n for every X € X™ and A € My, p.

Definition

Given 1 < p < oo, we say that a sequence of norms on X" is a
p-multinorm if [|Ax||m < [|A: €5 — £7| - ||X||n for every x € X"
and A€ Mp, .

multinorm = oco-multinorm

p-multinorms satisfy (A1), (A2), and (A3).
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Let X be a p-multinormed space and Y be a linear subspace of X.
Then Y is p-multinormed.

X/Y is p-multinormed under

H(x1+ Y, .. Xn+ Y)H = if}fnevH(Xl + Y1, %0+ )|

Y1y
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Duality

Identify (X*)" with (X")* as follows
F:(fl,...,fn) fl,...,anX*
(F.%) =31 (fixi)
This induces a norm on (X*)" for every n.
1flln = sup (%)
lIxll.<1

This is a g-multinorm on X*, where g = p*.
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Operators

A linear operator T: X — Y between two p-multinormed spaces is
multibounded if 3 C > 0 such that

H(TXL"‘)TXI‘I)H < CH(Xla“ . 7Xn)H

for any x1,...,x, € X.
The least such C is denoted || T||mb-
multibounded = bounded, || T|| < || T|/mp-

T is a multiisometry if

H(Txl,..., Tx,,)” = H(Xl,...,x,,)H

for any x1,...,x, € X.

X and Y are multiisometric if there is a surjective multiisometry
from X onto Y.
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p-multinorms and tensor products

A p-multinorm on X can be viewed as a norm on cyo(X), the
space of sequences of elements of X that are eventually zero.

coo = coo(R) (e;) the standard basis of coo

coo(X) = coo @ X (XI)HZeH@Xi
i=1

This induces a norm on ¢go ® X via

n
e
i=1

Which tensor norms on cgp ® X arise in this way?

=[x, xa) |-

Conversely, a norm on cyg ® X induces a sequence of norms on X".
When is this sequence a p-multinorm?



Theorem
There is a one-to-one correspondence between

> the p-multinorms on X;



Theorem
There is a one-to-one correspondence between

> the p-multinorms on X;

» the cross-norms on coo @ X such that ||A® Ix]|| < ||A| for
every matrix A viewed as an operator A: £, — {p;



Theorem
There is a one-to-one correspondence between

> the p-multinorms on X;

» the cross-norms on coo @ X such that ||A® Ix]|| < ||A| for
every matrix A viewed as an operator A: £, — {p;

Cross norm: [|[x @ y/|| < |Ix]||ly|l



Theorem
There is a one-to-one correspondence between

> the p-multinorms on X;

» the cross-norms on coo @ X such that ||A® Ix]|| < ||A| for
every matrix A viewed as an operator A: £, — {p;

Cross norm: [|[x @ y/|| < |Ix]||ly|l

(A® IX)(Zk: ui ® x,-) = (Zk: Au; ® x,-)
i=1 i=1



Theorem
There is a one-to-one correspondence between

> the p-multinorms on X;

» the cross-norms on coo @ X such that ||A® Ix]|| < ||A| for
every matrix A viewed as an operator A: £, — {p;

» the cross-norms on ¢, @ X such that |T @ Ix|| < || T|| for
every operator T: {p — {p.

Cross norm: [|[x @ y/|| < |Ix]||ly|l

(A® IX)(Zk: ui ® x,-) = (Zk: Au; ® x,-)
i=1 i=1



Theorem
There is a one-to-one correspondence between

> the p-multinorms on X;

» the cross-norms on coo @ X such that ||A® Ix]|| < ||A| for
every matrix A viewed as an operator A: Ly — {p;

» the cross-norms on ¢, @ X such that |T @ Ix|| < || T|| for
every (compact) operator T: £y, — £p.

Cross norm: [|[x @ y/|| < |Ix]||ly|l

(A® IX)(Zk: ui ® x,-) = (Zk: Au; ® x,-)
i=1 i=1



Theorem
There is a one-to-one correspondence between

> the p-multinorms on X;

» the cross-norms on coo @ X such that ||A® Ix]|| < ||A| for
every matrix A viewed as an operator A: Ly — {p;

» the cross-norms on ¢, @ X such that |T @ Ix|| < || T|| for
every (compact) operator T: £y, — £p.

Cross norm: [|[x @ y/|| < |Ix]||ly|l

(A® IX)(Zk: ui ® x,-) = (Zk: Au; ® x,-)
i=1 i=1

(In case p = 0o we use ¢ instead of /)
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Banach lattices
Banach lattice = Banach space + order

the order is compatible with the linear structure:

x<y = x+z<y+z

x<y,0<AeR = Ax< )y

The order is a lattice order:

xVy =sup{x,y} and x Ay = inf{x, y} exist for all x,y
|x] == x V (—x)

The order is compatible with the norm:
0<x<y =[x <]yl

<l = lIx1-

Example
lo, Lp(p) (1 < p<o00), o, C(K), Orlicz and Lorentz spaces.

T: X — Y is positive, T > 0, if Tx > 0 whenever x > 0.
T>SifT-S>0.
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Example

X=1Lp(p), Y={feX :suppf C A}

X =1/lp, Y =spane;
icA
Given 0 < e € X.The ideal generated by it:

le={xeX : |x] <)Xe, Ae Ry }.

For x € I, define ||x|le = inf{A >0 : |x| < Xe}.

Fact: (le, ||-|le) is a Banach lattice.
It is lattice isometric to C(K) for a compact topological space K.
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Function Calculus

Given xq,..., X, in a Banach lattice X. Choose e so that

X1,...,%n € lo (e.g., take e = \/{_;|xi|), then we may think of

X1,...,Xn as elements of some C(K).

Hence, for every continuous f: R” — R, we can view f(xi,...,Xp)
as a function in C(K) via

F(xt,. ... xn)(t) = F(xa(t), ..., xa(2)).

So we can view f(xy,...,X,) as an element of /., hence of E.
Problem: not well defined; the result depends on the choice of e.
Fact: well defined provided that f is positively homogeneous:

f(Atr, ..., ty) = Af(ty,...,t,) forall ty,...,tp€Rand A >0

1

Example: (Z,'-’:1|x,-\”);. 1<p<oo If p=oo, use VVI_q|xi|.
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Every Banach lattice can locally be represented as C(K) space.
Ix+yl < x|+ 1yl
Corollary

Given any inequality or identity which involves finitely many
variables and algebraic and lattice operations. If it is valid in R
then it is also valid in every Banach lattice.

Example

1
_1 >
ne STl < (SPalalP)” < X7l where g = p*
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Given a Banach lattice E.

is an co-multinorm

n
6, = |V Ix

i=1

6. m)l| = HZM

is a 1-multinorm

H X1, %n)|| = H( ]x,| ) H is a p-multinorm

— the canonical p—multlnorm on a Banach lattice E.
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p-multibounded operators

For an operator T: E — F between two Banach lattices, we say
that T is p-multibounded if it is multibounded w.r.t. the
canonical p-multinorms on E and F. That is, there exists C >0
such that H(Txl, - Tx,,)H < CH(xl, . 7x,,)H for any
X1y...,%Xp €X

(S

1Tl oo = [T b

n 1
< CH(Z|X,-\”)"H for any x1,...,x, € X.
i=1

L 1
Easy fact: if T >0 then <27:1‘Txi,p)p < T<Zin:1‘xl_’p)p. o

()’
i=1

<ITI(SeP)”

Hence T is p-multibounded and || T'||p—mb = || T||.
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Regular operators

So every positive operator is p-multibounded.

It follows immediately that every regular operator is
p-multibounded.

Recall: T is regular if T = U — V for some positive U and V.

Equivalently, if —R < T < R for some positive operator R.

ITIl, =inf{|IR| : =R< T <R, R>0},
the regular norm of T.
If T is regular then T* is regular.

The converse is false in general.
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In this case, || T ||co—mb = || T|l1—mb = || T*||-

What happens for other values of p?
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Every operator is 2-multibounded

For p = 2, every operator is 2-multibounded.
This immediately follows from Krivine's Theorem:

Theorem
For every operator T: E — F and any x1,...,x, € E,

(01702 | < kel T (S
i=1 i=1

K¢ the Grothendieck constant

It follows also that || T||2—mb < Kg|| T
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Representation theorem, case p = oo

Theorem
Every multinormed space is multiisometric to a subspace of a
Banach lattice (with the canonical multinorm).

That is, for every multinormed space X there exists a Banach
lattice E and a linear map T: X — E such that

|

G, )| = H\Z|n,-\

for any x1,...,x, € X.

That is, there is a one-to-one correspondence between multinorms
on X and embeddings of X into Banach lattices as a subspace.
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Dual version

Theorem
Every 1-multinormed space is multiisometric to a quotient of a
Banach lattice (with the canonical 1-multinorm).

That is, for every 1-multinormed space X there exists a Banach
lattice E (with the canonical 1-multinorm), a subspace Y of E and
a linear map T: X — E/Y such that T is a multiisometry.

1-multinormed spaces = quotients of Banach lattices
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Representation theorems for 1 < p < co? As a subspace of a
Banach lattice?

Partial success.

Need some additional assumptions on the p-multinorm: it has to
be strong and convex.

Theorem
Every convex strong p-multinormed space is multiisometric to a
subspace of a Banach lattice with the canonical p-multinorm.

Without extra assumptions, there are examples of p-multinormed
spaces which cannot be embedded into a Banach lattice with the
canonical p-multinorm (as a subspace).
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Convex p-multinorms

A p-multinorm is convex if

G xa) || <Gy x) ||+ | Gokns - -2 )|

for any x1,...,x, € X and k < n.

If p=1, trivial.
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Strong p-multinorms

Definition
A sequence of norms on powers of X is called a strong
p-multinorm if the following condition is satisfied.
Given x € X" and y € X,
if ||[£(X)]],0 < ||F(7)]| for every £ € X*

P 2
then [[x[[» < [[7lm-

f(x) = (f(x;l)7 cee f(x,,))
Fact: strong p-multinorm = p-multinorm.
The converse is true when p = oo or p = 2.

Fact: The canonical p-multinorm on a Banach lattice is strong.



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,

if Hf()'() " < Hf()_/)Hégl for every f € X* then [|X||n < ||X]|m-




When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,

if Hf()'() " < Hf()_/)Hég’ for every f € X* then [|X||n < ||X]|m-

Let Z={f(y) : f e X*}.



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,

if Hf()'() " < Hf()_/)Hég’ for every f € X* then [|X||n < ||X]|m-

Let Z={f(y) : f e X*}.
Z is a subspace of R™.



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,

if Hf()'() " < Hf(}_/)Hég’ for every f € X* then [|X||n < ||X]|m-

Let Z={f(y) : f e X*}.
Z is a subspace of R™.
Define T: Z — R" via f(y) — f(X).



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,

if Hf()'() " < Hf(}_/)HZB" for every f € X* then [|X||n < ||X]|m-

Let Z={f(y) : f e X*}.

Z is a subspace of R™.

Define T: Z — R" via f(y) — f(X).

By assumption, T is well defined and || T: Z C £7 — 7| < 1.



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,

if ||F(%) g S Hf(y)“w for every f € X* then |||/, < [|X]|m-

Let Z={f(y) : f e X*}.

Z is a subspace of R™.

Define T: Z — R" via f(y) — f(X).

By assumption, T is well defined and || T: Z C £7 — 7| < 1.
Since p =00 or p=2, T extends to a contraction (7 — (7.



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,

if ||F(%) g S Hf(y)“w for every f € X* then |||/, < [|X]|m-

Let Z={f(y) : f e X*}.

Z is a subspace of R™.

Define T: Z — R" via f(y) — f(X).

By assumption, T is well defined and || T: Z C o — EITH < 1.
Since p =00 or p=2, T extends to a contraction (7 — (7.
We may view T as a matrix.



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,

if ||F(%) g S Hf(y)“w for every f € X* then |||/, < [|X]|m-

Let Z={f(y) : f e X*}.

Z is a subspace of R™.

Define T: Z — R" via f(y) — f(X).

By assumption, T is well defined and || T: Z C o — EITH < 1.
Since p =00 or p=2, T extends to a contraction (7 — (7.
We may view T as a matrix.

For every f € X*, we have f(x) = Tf(y)



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,

if ||F(%) g S Hf(y)“w for every f € X* then |||/, < [|X]|m-

Let Z={f(y) : f e X*}.

Z is a subspace of R™.

Define T: Z — R" via f(y) — f(X).

By assumption, T is well defined and || T: Z C o — EITH < 1.
Since p =00 or p=2, T extends to a contraction (7 — (7.
We may view T as a matrix.

For every f € X*, we have f(x) = Tf(y)=f(Ty).



When p = 2 or p = oo, every p-multinorm is strong

Proof.

Given a p-multinorm; p =oc0 or p = 2.

To prove: given X € X" and y € X7,
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Define T: Z — R" via f(y) — f(X).

By assumption, T is well defined and || T: Z C o — EITH < 1.
Since p =00 or p=2, T extends to a contraction (7 — (7.
We may view T as a matrix.

For every f € X*, we have f(x) = Tf(y)=f(Ty).

x=Ty.
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Z is a subspace of R™.

Define T: Z — R" via f(y) — f(X).
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Sketch of the proof.

Let X be a space with a convex strong p-multinorm.
J: X = C(K) where K = Bx+; j: x — X.
Let V be the order ideal generated by j(X) in C(K), j: X = V

n
peV < |<,0|<Z|>A<,-|forsomexl,...,x,,EX
/1

&yl < (Z\x, ) for some x1,...,xp € X
p(p) == inf{“(xl, Y ] < <Z|X: ) }
lattice seminorm, p<<2\>?i!p)p) = H(Xla e 7Xn)H

i=1

Put E = V/kerp. Put T: X — E via Tx = X + ker p. Then

H(;"lm,\p)%u -]



