Multinorms and Banach lattices Based on results of G.Dales, M.Polyakov, N.Laustsen, G.Pisier, L.McClaran, P.Ramsden, T.Oikhberg

Vladimir Troitsky

University of Alberta

June 7, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given a vector space X.

<□ > < @ > < E > < E > E のQ @

Given a vector space X.

For each *n*, given a norm $\|\cdot\|_n$ on X^n such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Given a vector space X. For each *n*, given a norm $\|\cdot\|_n$ on X^n such that (A1) $\|(x_{\sigma(1)}, \ldots, x_{\sigma(n)})\|_n = \|(x_1, \ldots, x_n)\|_n$

Given a vector space X. For each *n*, given a norm $\|\cdot\|_n$ on X^n such that (A1) $\|(x_{\sigma(1)}, \ldots, x_{\sigma(n)})\|_n = \|(x_1, \ldots, x_n)\|_n$ (A2) $\|(x_1, \ldots, x_n, 0)\|_{n+1} = \|(x_1, \ldots, x_n)\|_n$

Given a vector space X. For each n, given a norm $\|\cdot\|_n$ on X^n such that (A1) $\|(x_{\sigma(1)}, \dots, x_{\sigma(n)})\|_n = \|(x_1, \dots, x_n)\|_n$ (A2) $\|(x_1, \dots, x_n, 0)\|_{n+1} = \|(x_1, \dots, x_n)\|_n$ (A3) $\|(\alpha_1 x_1, \dots, \alpha_n x_n)\|_n \leq \max |\alpha_i| \cdot \|(x_1, \dots, x_n)\|_n$

Given a vector space X. For each *n*, given a norm $\|\cdot\|_n$ on X^n such that (A1) $\|(x_{\sigma(1)}, \dots, x_{\sigma(n)})\|_n = \|(x_1, \dots, x_n)\|_n$ (A2) $\|(x_1, \dots, x_n, 0)\|_{n+1} = \|(x_1, \dots, x_n)\|_n$ (A3) $\|(\alpha_1 x_1, \dots, \alpha_n x_n)\|_n \leq \max |\alpha_i| \cdot \|(x_1, \dots, x_n)\|_n$ (A4) $\|(x_1, \dots, x_{n-1}, x_n, x_n)\|_{n+1} = \|(x_1, \dots, x_{n-1}, x_n)\|_n$

Given a vector space X. For each *n*, given a norm $\|\cdot\|_n$ on X^n such that (A1) $\|(x_{\sigma(1)}, ..., x_{\sigma(n)})\|_n = \|(x_1, ..., x_n)\|_n$ (A2) $\|(x_1, ..., x_n, 0)\|_{n+1} = \|(x_1, ..., x_n)\|_n$ (A3) $\|(\alpha_1 x_1, ..., \alpha_n x_n)\|_n \le \max |\alpha_i| \cdot \|(x_1, ..., x_n)\|_n$ (A4) $\|(x_1, ..., x_{n-1}, x_n, x_n)\|_{n+1} = \|(x_1, ..., x_{n-1}, x_n)\|_n$ Such a sequence of norms is called a **multinorm** on X.

Given a vector space X. For each *n*, given a norm $\|\cdot\|_n$ on X^n such that (A1) $\|(x_{\sigma(1)}, \ldots, x_{\sigma(n)})\|_n = \|(x_1, \ldots, x_n)\|_n$ (A2) $\|(x_1, \ldots, x_n, 0)\|_{n+1} = \|(x_1, \ldots, x_n)\|_n$ (A3) $\|(\alpha_1 x_1, \ldots, \alpha_n x_n)\|_n \leq \max |\alpha_i| \cdot \|(x_1, \ldots, x_n)\|_n$ (A4) $\|(x_1, \ldots, x_{n-1}, x_n, x_n)\|_{n+1} = \|(x_1, \ldots, x_{n-1}, x_n)\|_n$ Such a sequence of norms is called a **multinorm** on X. Example

Let X be a normed space. Put $||(x_1,\ldots,x_n)|| := \max ||x_i||$.

Given a vector space X. For each *n*, given a norm $\|\cdot\|_n$ on X^n such that (A1) $\|(x_{\sigma(1)}, \ldots, x_{\sigma(n)})\|_n = \|(x_1, \ldots, x_n)\|_n$ (A2) $\|(x_1, \ldots, x_n, 0)\|_{n+1} = \|(x_1, \ldots, x_n)\|_n$ (A3) $\|(\alpha_1 x_1, \ldots, \alpha_n x_n)\|_n \le \max |\alpha_i| \cdot \|(x_1, \ldots, x_n)\|_n$ (A4) $\|(x_1, \ldots, x_{n-1}, x_n, x_n)\|_{n+1} = \|(x_1, \ldots, x_{n-1}, x_n)\|_n$ Such a sequence of norms is called a **multinorm** on X. Example

Let X be a normed space. Put $||(x_1,\ldots,x_n)|| := \max ||x_i||$.

Example

Let
$$X = L_p(\mu)$$
. Put $||(x_1, ..., x_n)|| := ||\bigvee_{i=1}^n |x_i|||$.

Given a vector space X. For each *n*, given a norm $\|\cdot\|_n$ on X^n such that (A1) $\|(x_{\sigma(1)}, \ldots, x_{\sigma(n)})\|_n = \|(x_1, \ldots, x_n)\|_n$ (A2) $\|(x_1, \ldots, x_n, 0)\|_{n+1} = \|(x_1, \ldots, x_n)\|_n$ (A3) $\|(\alpha_1 x_1, \ldots, \alpha_n x_n)\|_n \le \max |\alpha_i| \cdot \|(x_1, \ldots, x_n)\|_n$ (A4) $\|(x_1, \ldots, x_{n-1}, x_n, x_n)\|_{n+1} = \|(x_1, \ldots, x_{n-1}, x_n)\|_n$ Such a sequence of norms is called a **multinorm** on X. Example

Let X be a normed space. Put $||(x_1,\ldots,x_n)|| := \max ||x_i||$.

Example

Let
$$X = L_p(\mu)$$
. Put $\|(x_1, \dots, x_n)\| := \|\bigvee_{i=1}^n |x_i|\|$.
 $\left(\bigvee_{i=1}^n |x_i|\right)(t) = \max_{1 \le i \le n} |x_i(t)|$

Given a vector space X. For each *n*, given a norm $\|\cdot\|_n$ on X^n such that (A1) $\|(x_{\sigma(1)}, \ldots, x_{\sigma(n)})\|_n = \|(x_1, \ldots, x_n)\|_n$ (A2) $\|(x_1, \ldots, x_n, 0)\|_{n+1} = \|(x_1, \ldots, x_n)\|_n$ (A3) $\|(\alpha_1 x_1, \ldots, \alpha_n x_n)\|_n \le \max |\alpha_i| \cdot \|(x_1, \ldots, x_n)\|_n$ (A4) $\|(x_1, \ldots, x_{n-1}, x_n, x_n)\|_{n+1} = \|(x_1, \ldots, x_{n-1}, x_n)\|_n$ Such a sequence of norms is called a **multinorm** on X. Example

Let X be a normed space. Put $||(x_1,\ldots,x_n)|| := \max ||x_i||$.

Example

Let
$$X = L_p(\mu)$$
. Put $||(x_1, \dots, x_n)|| := ||\bigvee_{i=1}^n |x_i|||$.
 $\left(\bigvee_{i=1}^n |x_i|\right)(t) = \max_{1 \le i \le n} |x_i(t)|$

The only multinorm on \mathbb{R} is the ℓ_{∞} -norm.

A sequence of norms on X^n is a **1-multimorm** if it satisfies (A1) $||(x_{\sigma(1)}, ..., x_{\sigma(n)})||_n = ||(x_1, ..., x_n)||_n$ (A2) $||(x_1, ..., x_n, 0)||_{n+1} = ||(x_1, ..., x_n)||_n$ (A3) $||(\alpha_1 x_1, ..., \alpha_n x_n)||_n \le \max |\alpha_i| \cdot ||(x_1, ..., x_n)||_n$ (A4') $||(x_1, ..., x_{n-1}, x_n, x_n)||_{n+1} = ||(x_1, ..., x_{n-1}, 2x_n)||_n$.

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 - のへの

A sequence of norms on X^n is a **1-multimorm** if it satisfies (A1) $||(x_{\sigma(1)}, ..., x_{\sigma(n)})||_n = ||(x_1, ..., x_n)||_n$ (A2) $||(x_1, ..., x_n, 0)||_{n+1} = ||(x_1, ..., x_n)||_n$ (A3) $||(\alpha_1 x_1, ..., \alpha_n x_n)||_n \le \max |\alpha_i| \cdot ||(x_1, ..., x_n)||_n$ (A4') $||(x_1, ..., x_{n-1}, x_n, x_n)||_{n+1} = ||(x_1, ..., x_{n-1}, 2x_n)||_n$.

Example

Let X be a normed space. Put $\|(x_1,\ldots,x_n)\| := \sum_{i=1}^n \|x_i\|$.

A sequence of norms on X^n is a **1-multimorm** if it satisfies (A1) $||(x_{\sigma(1)}, ..., x_{\sigma(n)})||_n = ||(x_1, ..., x_n)||_n$ (A2) $||(x_1, ..., x_n, 0)||_{n+1} = ||(x_1, ..., x_n)||_n$ (A3) $||(\alpha_1 x_1, ..., \alpha_n x_n)||_n \le \max |\alpha_i| \cdot ||(x_1, ..., x_n)||_n$ (A4') $||(x_1, ..., x_{n-1}, x_n, x_n)||_{n+1} = ||(x_1, ..., x_{n-1}, 2x_n)||_n$.

Example

Let X be a normed space. Put $\|(x_1,\ldots,x_n)\| := \sum_{i=1}^n \|x_i\|$.

Example

Let
$$X = L_p(\mu)$$
. Put $||(x_1, ..., x_n)|| := ||\sum_{i=1}^n |x_i|||$.

A sequence of norms on X^n is a **1-multimorm** if it satisfies (A1) $||(x_{\sigma(1)}, ..., x_{\sigma(n)})||_n = ||(x_1, ..., x_n)||_n$ (A2) $||(x_1, ..., x_n, 0)||_{n+1} = ||(x_1, ..., x_n)||_n$ (A3) $||(\alpha_1 x_1, ..., \alpha_n x_n)||_n \le \max |\alpha_i| \cdot ||(x_1, ..., x_n)||_n$ (A4') $||(x_1, ..., x_{n-1}, x_n, x_n)||_{n+1} = ||(x_1, ..., x_{n-1}, 2x_n)||_n$.

Example

Let X be a normed space. Put $\|(x_1,\ldots,x_n)\| := \sum_{i=1}^n \|x_i\|$.

Example

Let
$$X = L_p(\mu)$$
. Put $||(x_1, ..., x_n)|| := ||\sum_{i=1}^n |x_i|||$.

The only 1-multinorm on \mathbb{R} is the ℓ_1 -norm.

A sequence of norms is a multinorm iff $\|A\bar{x}\|_m \leq \|A\| \|\bar{x}\|_n$ for every $\bar{x} \in X^n$ and every $A \in M_{m,n}$; where $(A\bar{x})_i = \sum_{j=1}^n a_{ij}x_j$ and $\|A\| = \|A: \ell_{\infty}^n \to \ell_{\infty}^m\|$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A sequence of norms is a multinorm iff $\|A\bar{x}\|_m \leq \|A\| \|\bar{x}\|_n$ for every $\bar{x} \in X^n$ and every $A \in M_{m,n}$; where $(A\bar{x})_i = \sum_{j=1}^n a_{ij}x_j$ and $\|A\| = \|A: \ell_{\infty}^n \to \ell_{\infty}^m\|$

Theorem

A sequence of norms is a 1-multinorm iff $\|A\bar{x}\|_m \leq \|A: \ell_1^n \to \ell_1^m\| \cdot \|\bar{x}\|_n$ for every $\bar{x} \in X^n$ and $A \in M_{m,n}$.

A sequence of norms is a multinorm iff $\|A\bar{x}\|_m \leq \|A\| \|\bar{x}\|_n$ for every $\bar{x} \in X^n$ and every $A \in M_{m,n}$; where $(A\bar{x})_i = \sum_{j=1}^n a_{ij}x_j$ and $\|A\| = \|A: \ell_\infty^n \to \ell_\infty^m\|$

Theorem

A sequence of norms is a 1-multinorm iff $\|A\bar{x}\|_m \leq \|A: \ell_1^n \to \ell_1^m\| \cdot \|\bar{x}\|_n$ for every $\bar{x} \in X^n$ and $A \in M_{m,n}$.

Definition

Given $1 \leq p \leq \infty$, we say that a sequence of norms on X^n is a *p*-multinorm if $||A\bar{x}||_m \leq ||A: \ell_p^n \to \ell_p^m|| \cdot ||\bar{x}||_n$ for every $\bar{x} \in X^n$ and $A \in M_{m,n}$.

A sequence of norms is a multinorm iff $\|A\bar{x}\|_m \leq \|A\| \|\bar{x}\|_n$ for every $\bar{x} \in X^n$ and every $A \in M_{m,n}$; where $(A\bar{x})_i = \sum_{j=1}^n a_{ij}x_j$ and $\|A\| = \|A: \ell_{\infty}^n \to \ell_{\infty}^m\|$

Theorem

A sequence of norms is a 1-multinorm iff $\|A\bar{x}\|_m \leq \|A: \ell_1^n \to \ell_1^m\| \cdot \|\bar{x}\|_n$ for every $\bar{x} \in X^n$ and $A \in M_{m,n}$.

Definition

Given $1 \leq p \leq \infty$, we say that a sequence of norms on X^n is a *p*-multinorm if $||A\bar{x}||_m \leq ||A: \ell_p^n \to \ell_p^m|| \cdot ||\bar{x}||_n$ for every $\bar{x} \in X^n$ and $A \in M_{m,n}$.

 $multinorm = \infty\text{-multinorm}$

A sequence of norms is a multinorm iff $\|A\bar{x}\|_m \leq \|A\| \|\bar{x}\|_n$ for every $\bar{x} \in X^n$ and every $A \in M_{m,n}$; where $(A\bar{x})_i = \sum_{j=1}^n a_{ij}x_j$ and $\|A\| = \|A: \ell_\infty^n \to \ell_\infty^m\|$

Theorem

A sequence of norms is a 1-multinorm iff $\|A\bar{x}\|_m \leq \|A: \ell_1^n \to \ell_1^m\| \cdot \|\bar{x}\|_n$ for every $\bar{x} \in X^n$ and $A \in M_{m,n}$.

Definition

Given $1 \leq p \leq \infty$, we say that a sequence of norms on X^n is a *p*-multinorm if $||A\bar{x}||_m \leq ||A: \ell_p^n \to \ell_p^m|| \cdot ||\bar{x}||_n$ for every $\bar{x} \in X^n$ and $A \in M_{m,n}$.

 $multinorm = \infty\text{-multinorm}$

p-multinorms satisfy (A1), (A2), and (A3).

Subspaces and quotients

Let X be a p-multinormed space and Y be a linear subspace of X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let X be a p-multinormed space and Y be a linear subspace of X. Then Y is p-multinormed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Subspaces and quotients

Let X be a p-multinormed space and Y be a linear subspace of X. Then Y is p-multinormed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

X/Y is *p*-multinormed under

- Let X be a p-multinormed space and Y be a linear subspace of X. Then Y is p-multinormed.
- X/Y is *p*-multinormed under

$$\left\| (x_1 + Y, \dots, x_n + Y) \right\| := \inf_{y_1, \dots, y_n \in Y} \left\| (x_1 + y_1, \dots, x_n + y_n) \right\|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Identify $(X^*)^n$ with $(X^n)^*$ as follows

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Identify $(X^*)^n$ with $(X^n)^*$ as follows $\overline{f} = (f_1, \dots, f_n) \quad f_1, \dots, f_n \in X^*$

Identify
$$(X^*)^n$$
 with $(X^n)^*$ as follows
 $\overline{f} = (f_1, \dots, f_n) \quad f_1, \dots, f_n \in X^*$
 $\langle \overline{f}, \overline{x} \rangle = \sum_{i=1}^n \langle f_i, x_i \rangle$

Identify
$$(X^*)^n$$
 with $(X^n)^*$ as follows
 $\overline{f} = (f_1, \dots, f_n) \quad f_1, \dots, f_n \in X^*$
 $\langle \overline{f}, \overline{x} \rangle = \sum_{i=1}^n \langle f_i, x_i \rangle$

This induces a norm on $(X^*)^n$ for every *n*.

Identify
$$(X^*)^n$$
 with $(X^n)^*$ as follows
 $\overline{f} = (f_1, \dots, f_n) \quad f_1, \dots, f_n \in X^*$
 $\langle \overline{f}, \overline{x} \rangle = \sum_{i=1}^n \langle f_i, x_i \rangle$

This induces a norm on $(X^*)^n$ for every *n*.

$$\|\bar{f}\|_n = \sup_{\|\bar{x}\|_n \leqslant 1} \langle \bar{f}, \bar{x} \rangle$$

Identify
$$(X^*)^n$$
 with $(X^n)^*$ as follows
 $\overline{f} = (f_1, \dots, f_n) \quad f_1, \dots, f_n \in X^*$
 $\langle \overline{f}, \overline{x} \rangle = \sum_{i=1}^n \langle f_i, x_i \rangle$

This induces a norm on $(X^*)^n$ for every *n*.

$$\|ar{f}\|_n = \sup_{\|ar{x}\|_n \leqslant 1} \langle ar{f}, ar{x}
angle$$

This is a *q*-multinorm on X^* , where $q = p^*$.

A linear operator $T: X \to Y$ between two *p*-multinormed spaces is **multibounded** if $\exists C > 0$ such that

A linear operator $T: X \to Y$ between two *p*-multinormed spaces is **multibounded** if $\exists C > 0$ such that

$$\|(Tx_1,\ldots,Tx_n)\| \leq C \|(x_1,\ldots,x_n)\|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

for any $x_1, \ldots, x_n \in X$.

A linear operator $T: X \to Y$ between two *p*-multinormed spaces is **multibounded** if $\exists C > 0$ such that

$$\|(Tx_1,\ldots,Tx_n)\| \leq C \|(x_1,\ldots,x_n)\|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

for any $x_1, \ldots, x_n \in X$.

The least such C is denoted $||T||_{mb}$.

A linear operator $T: X \to Y$ between two *p*-multinormed spaces is **multibounded** if $\exists C > 0$ such that

$$\left\| (Tx_1,\ldots,Tx_n) \right\| \leqslant C \left\| (x_1,\ldots,x_n) \right\|$$

for any $x_1, \ldots, x_n \in X$.

The least such C is denoted $||T||_{mb}$.

 $\label{eq:multibounded} \mathsf{multibounded} \Rightarrow \mathsf{bounded}, \qquad \| \, \mathcal{T} \| \leqslant \| \, \mathcal{T} \|_{\mathrm{mb}}.$
Operators

A linear operator $T: X \to Y$ between two *p*-multinormed spaces is **multibounded** if $\exists C > 0$ such that

$$\left\| (Tx_1,\ldots,Tx_n) \right\| \leqslant C \left\| (x_1,\ldots,x_n) \right\|$$

for any $x_1, \ldots, x_n \in X$.

The least such C is denoted $||T||_{mb}$.

 $\label{eq:multibounded} \mathsf{multibounded} \Rightarrow \mathsf{bounded}, \qquad \| \, \mathcal{T} \| \leqslant \| \, \mathcal{T} \|_{\mathrm{mb}}.$

T is a **multiisometry** if

$$\left\|(Tx_1,\ldots,Tx_n)\right\|=\left\|(x_1,\ldots,x_n)\right\|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for any $x_1, \ldots, x_n \in X$.

Operators

A linear operator $T: X \to Y$ between two *p*-multinormed spaces is **multibounded** if $\exists C > 0$ such that

$$\left\| (Tx_1,\ldots,Tx_n) \right\| \leqslant C \left\| (x_1,\ldots,x_n) \right\|$$

for any $x_1, \ldots, x_n \in X$.

The least such C is denoted $||T||_{mb}$.

 $\label{eq:multibounded} \mathsf{multibounded} \Rightarrow \mathsf{bounded}, \qquad \| \, \mathcal{T} \| \leqslant \| \, \mathcal{T} \|_{\mathrm{mb}}.$

T is a **multiisometry** if

$$\left\|(Tx_1,\ldots,Tx_n)\right\|=\left\|(x_1,\ldots,x_n)\right\|$$

for any $x_1, \ldots, x_n \in X$.

X and Y are **multiisometric** if there is a surjective multiisometry from X onto Y.

<ロ>

A *p*-multinorm on X can be viewed as a norm on $c_{00}(X)$,

A *p*-multinorm on X can be viewed as a norm on $c_{00}(X)$, the space of sequences of elements of X that are eventually zero.

A *p*-multinorm on X can be viewed as a norm on $c_{00}(X)$, the space of sequences of elements of X that are eventually zero.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $c_{00}=c_{00}(\mathbb{R})$

A *p*-multinorm on X can be viewed as a norm on $c_{00}(X)$, the space of sequences of elements of X that are eventually zero.

 $c_{00} = c_{00}(\mathbb{R})$ (e_i) the standard basis of c_{00}

A *p*-multinorm on X can be viewed as a norm on $c_{00}(X)$, the space of sequences of elements of X that are eventually zero.

 $c_{00} = c_{00}(\mathbb{R})$ (e_i) the standard basis of c_{00}

$$c_{00}(X)=c_{00}\otimes X$$

A *p*-multinorm on X can be viewed as a norm on $c_{00}(X)$, the space of sequences of elements of X that are eventually zero.

 $c_{00} = c_{00}(\mathbb{R})$ (e_i) the standard basis of c_{00}

$$c_{00}(X) = c_{00} \otimes X$$
 $(x_i) \mapsto \sum_{i=1}^n e_i \otimes x_i$

A *p*-multinorm on X can be viewed as a norm on $c_{00}(X)$, the space of sequences of elements of X that are eventually zero.

 $c_{00} = c_{00}(\mathbb{R})$ (e_i) the standard basis of c_{00}

$$c_{00}(X) = c_{00} \otimes X$$
 $(x_i) \mapsto \sum_{i=1}^n e_i \otimes x_i$

This induces a norm on $c_{00} \otimes X$ via

$$\left\|\sum_{i=1}^n e_i \otimes x_i\right\| = \left\|(x_1,\ldots,x_n)\right\|.$$

A *p*-multinorm on X can be viewed as a norm on $c_{00}(X)$, the space of sequences of elements of X that are eventually zero.

 $c_{00} = c_{00}(\mathbb{R})$ (e_i) the standard basis of c_{00}

$$c_{00}(X) = c_{00} \otimes X$$
 $(x_i) \mapsto \sum_{i=1}^n e_i \otimes x_i$

This induces a norm on $c_{00} \otimes X$ via

$$\Bigl\|\sum_{i=1}^n e_i \otimes x_i\Bigr\| = \bigl\|(x_1,\ldots,x_n)\bigr\|.$$

Which tensor norms on $c_{00} \otimes X$ arise in this way?

A *p*-multinorm on X can be viewed as a norm on $c_{00}(X)$, the space of sequences of elements of X that are eventually zero.

 $c_{00} = c_{00}(\mathbb{R})$ (e_i) the standard basis of c_{00}

$$c_{00}(X) = c_{00} \otimes X$$
 $(x_i) \mapsto \sum_{i=1}^n e_i \otimes x_i$

This induces a norm on $c_{00} \otimes X$ via

$$\Bigl\|\sum_{i=1}^n e_i \otimes x_i\Bigr\| = \bigl\|(x_1,\ldots,x_n)\bigr\|.$$

Which tensor norms on $c_{00} \otimes X$ arise in this way?

Conversely, a norm on $c_{00} \otimes X$ induces a sequence of norms on X^n . When is this sequence a *p*-multinorm?

There is a one-to-one correspondence between

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ the p-multinorms on X;

There is a one-to-one correspondence between

- ▶ the p-multinorms on X;
- the cross-norms on c₀₀ ⊗ X such that ||A ⊗ I_X || ≤ ||A|| for every matrix A viewed as an operator A: ℓ_p → ℓ_p;

There is a one-to-one correspondence between

- the p-multinorms on X;
- the cross-norms on c₀₀ ⊗ X such that ||A ⊗ I_X || ≤ ||A|| for every matrix A viewed as an operator A: ℓ_p → ℓ_p;

Cross norm: $||x \otimes y|| \leq ||x|| ||y||$

There is a one-to-one correspondence between

- the p-multinorms on X;
- the cross-norms on c₀₀ ⊗ X such that ||A ⊗ I_X || ≤ ||A|| for every matrix A viewed as an operator A: ℓ_p → ℓ_p;

Cross norm: $||x \otimes y|| \leq ||x|| ||y||$

$$(A \otimes I_X) \Big(\sum_{i=1}^k u_i \otimes x_i\Big) = \Big(\sum_{i=1}^k A u_i \otimes x_i\Big)$$

There is a one-to-one correspondence between

- the p-multinorms on X;
- the cross-norms on c₀₀ ⊗ X such that ||A ⊗ I_X || ≤ ||A|| for every matrix A viewed as an operator A: ℓ_p → ℓ_p;
- the cross-norms on l_p ⊗ X such that ||T ⊗ I_X || ≤ ||T|| for every operator T: l_p → l_p.

Cross norm: $||x \otimes y|| \leq ||x|| ||y||$

$$(A \otimes I_X) \Big(\sum_{i=1}^k u_i \otimes x_i \Big) = \Big(\sum_{i=1}^k A u_i \otimes x_i \Big)$$

There is a one-to-one correspondence between

- the p-multinorms on X;
- the cross-norms on c₀₀ ⊗ X such that ||A ⊗ I_X || ≤ ||A|| for every matrix A viewed as an operator A: ℓ_p → ℓ_p;
- the cross-norms on l_p ⊗ X such that ||T ⊗ I_X|| ≤ ||T|| for every (compact) operator T: l_p → l_p.

Cross norm: $||x \otimes y|| \leq ||x|| ||y||$

$$(A \otimes I_X) \Big(\sum_{i=1}^k u_i \otimes x_i \Big) = \Big(\sum_{i=1}^k A u_i \otimes x_i \Big)$$

There is a one-to-one correspondence between

- the p-multinorms on X;
- the cross-norms on c₀₀ ⊗ X such that ||A ⊗ I_X || ≤ ||A|| for every matrix A viewed as an operator A: ℓ_p → ℓ_p;
- the cross-norms on l_p ⊗ X such that ||T ⊗ I_X|| ≤ ||T|| for every (compact) operator T: l_p → l_p.

Cross norm: $||x \otimes y|| \leq ||x|| ||y||$

$$(A \otimes I_X) \Big(\sum_{i=1}^k u_i \otimes x_i \Big) = \Big(\sum_{i=1}^k A u_i \otimes x_i \Big)$$

(In case $p = \infty$ we use c_0 instead of ℓ_{∞} .)

Banach lattice = Banach space + order

 $\mathsf{Banach}\ \mathsf{lattice} = \mathsf{Banach}\ \mathsf{space} + \mathsf{order}$

the order is compatible with the linear structure:

 $\mathsf{Banach}\ \mathsf{lattice} = \mathsf{Banach}\ \mathsf{space} + \mathsf{order}$

the order is compatible with the linear structure:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $x \leqslant y \quad \Rightarrow \quad x + z \leqslant y + z$

 $\mathsf{Banach}\ \mathsf{lattice} = \mathsf{Banach}\ \mathsf{space} + \mathsf{order}$

the order is compatible with the linear structure:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{array}{ll} x \leqslant y & \Rightarrow & x+z \leqslant y+z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$

Banach lattice = Banach space + order

the order is compatible with the linear structure:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{array}{ll} x \leqslant y & \Rightarrow & x+z \leqslant y+z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$

The order is a lattice order:

Banach lattice = Banach space + order

the order is compatible with the linear structure:

$$\begin{array}{ll} x \leqslant y & \Rightarrow & x + z \leqslant y + z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$$

The order is a lattice order: $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$ exist for all x, y

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Banach lattice = Banach space + order

the order is compatible with the linear structure:

$$\begin{array}{ll} x \leqslant y & \Rightarrow & x + z \leqslant y + z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$$

The order is a lattice order: $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$ exist for all x, y $|x| := x \lor (-x)$

Banach lattice = Banach space + order

the order is compatible with the linear structure:

$$\begin{array}{ll} x \leqslant y & \Rightarrow & x + z \leqslant y + z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$$

The order is a lattice order: $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$ exist for all x, y $|x| := x \lor (-x)$

The order is compatible with the norm:

Banach lattice = Banach space + order

the order is compatible with the linear structure:

 $\begin{array}{ll} x \leqslant y & \Rightarrow & x+z \leqslant y+z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$

The order is a lattice order: $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$ exist for all x, y $|x| := x \lor (-x)$

The order is compatible with the norm: $0 \leq x \leq y \Rightarrow ||x|| \leq ||y||$

Banach lattice = Banach space + order

the order is compatible with the linear structure:

 $\begin{array}{ll} x \leqslant y & \Rightarrow & x+z \leqslant y+z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$

The order is a lattice order: $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$ exist for all x, y $|x| := x \lor (-x)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The order is compatible with the norm:

$$0 \leq x \leq y \implies ||x|| \leq ||y||$$

$$||x||| = ||x||.$$

 $\mathsf{Banach}\ \mathsf{lattice} = \mathsf{Banach}\ \mathsf{space} + \mathsf{order}$

the order is compatible with the linear structure:

 $\begin{array}{ll} x \leqslant y & \Rightarrow & x+z \leqslant y+z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$

The order is a lattice order: $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$ exist for all x, y $|x| := x \lor (-x)$

The order is compatible with the norm:

$$0 \leq x \leq y \Rightarrow ||x|| \leq ||y||$$

$$||x||| = ||x||.$$

Example

 ℓ_p , $L_p(\mu)$ $(1 \leqslant p \leqslant \infty)$, c_0 , C(K), Orlicz and Lorentz spaces.

Banach lattice = Banach space + order

the order is compatible with the linear structure:

$$\begin{array}{ll} x \leqslant y & \Rightarrow & x + z \leqslant y + z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$$

The order is a lattice order: $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$ exist for all x, y $|x| := x \lor (-x)$

The order is compatible with the norm:

$$0 \leq x \leq y \Rightarrow ||x|| \leq ||y||$$

$$||x||| = ||x||.$$

Example

 ℓ_p , $L_p(\mu)$ $(1 \leqslant p \leqslant \infty)$, c_0 , C(K), Orlicz and Lorentz spaces.

 $T: X \to Y$ is **positive**, $T \ge 0$, if $Tx \ge 0$ whenever $x \ge 0$.

 $\mathsf{Banach}\ \mathsf{lattice} = \mathsf{Banach}\ \mathsf{space} + \mathsf{order}$

the order is compatible with the linear structure:

$$\begin{array}{ll} x \leqslant y & \Rightarrow & x + z \leqslant y + z \\ x \leqslant y, \ 0 \leqslant \lambda \in \mathbb{R} & \Rightarrow & \lambda x \leqslant \lambda y \end{array}$$

The order is a lattice order: $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$ exist for all x, y $|x| := x \lor (-x)$

The order is compatible with the norm:

$$0 \leq x \leq y \Rightarrow ||x|| \leq ||y||$$

$$||x||| = ||x||.$$

Example

 ℓ_p , $L_p(\mu)$ $(1 \leqslant p \leqslant \infty)$, c_0 , C(K), Orlicz and Lorentz spaces.

 $T: X \to Y$ is **positive**, $T \ge 0$, if $Tx \ge 0$ whenever $x \ge 0$. $T \ge S$ if $T - S \ge 0$.

Given a Banach lattice X and a subspace $Y \subseteq X$.

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an **order ideal** provided that

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and if $x \in Y$ and $-x \leq y \leq x \in Y$ then $y \in Y$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and if $x \in Y$ and $-x \leq y \leq x \in Y$ then $y \in Y$. Example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$X = L_{
ho}(\mu), \; Y = ig\{f \in X \; : \; \operatorname{supp} f \subseteq Aig\}$$

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and if $x \in Y$ and $-x \leq y \leq x \in Y$ then $y \in Y$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

$$X = L_p(\mu), Y = \left\{ f \in X : \operatorname{supp} f \subseteq A \right\}$$
$$X = \ell_p, Y = \operatorname{span}_{i \in A} e_i$$

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and if $x \in Y$ and $-x \leq y \leq x \in Y$ then $y \in Y$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

$$X = L_p(\mu), Y = \{f \in X : \operatorname{supp} f \subseteq A\}$$
$$X = \ell_p, Y = \operatorname{span} e_i$$
$$Given \ 0 \leq e \in X.$$

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and if $x \in Y$ and $-x \leq y \leq x \in Y$ then $y \in Y$.

Example

$$X = L_p(\mu), Y = \{f \in X : \text{supp } f \subseteq A\}$$
$$X = \ell_p, Y = \text{span } e_i$$
$$i \in A$$

Given $0 \leq e \in X$. The ideal generated by it:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and if $x \in Y$ and $-x \leq y \leq x \in Y$ then $y \in Y$.

Example

$$X = L_p(\mu), Y = \{f \in X : \operatorname{supp} f \subseteq A\}$$
$$X = \ell_p, Y = \operatorname{span}_{i \in A} e_i$$

Given $0 \leq e \in X$. The ideal generated by it:

$$I_e = \{x \in X : |x| \leqslant \lambda e, \ \lambda \in \mathbb{R}_+\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and if $x \in Y$ and $-x \leq y \leq x \in Y$ then $y \in Y$.

Example

$$X = L_p(\mu), Y = \left\{ f \in X : \operatorname{supp} f \subseteq A \right\}$$
$$X = \ell_p, Y = \operatorname{span}_{i \in A} e_i$$

Given $0 \leq e \in X$. The ideal generated by it:

$$I_e = \{x \in X : |x| \leq \lambda e, \ \lambda \in \mathbb{R}_+\}.$$

For $x \in I_e$, define $||x||_e = \inf \{\lambda > 0 \ : \ |x| \leqslant \lambda e \}$.

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and if $x \in Y$ and $-x \leq y \leq x \in Y$ then $y \in Y$.

Example

$$X = L_p(\mu), Y = \left\{ f \in X : \operatorname{supp} f \subseteq A \right\}$$
$$X = \ell_p, Y = \operatorname{span}_{i \in A} e_i$$

Given $0 \leq e \in X$. The ideal generated by it:

$$I_e = \{x \in X : |x| \leqslant \lambda e, \ \lambda \in \mathbb{R}_+\}.$$

For $x \in I_e$, define $||x||_e = \inf \{\lambda > 0 : |x| \leq \lambda e \}$. Fact: $(I_e, ||\cdot||_e)$ is a Banach lattice.

Given a Banach lattice X and a subspace $Y \subseteq X$. Y is an order ideal provided that if $x \in Y$ then $|x| \in Y$, and if $x \in Y$ and $-x \leq y \leq x \in Y$ then $y \in Y$.

Example

$$X = L_p(\mu), Y = \left\{ f \in X : \operatorname{supp} f \subseteq A \right\}$$
$$X = \ell_p, Y = \operatorname{span}_{i \in A} e_i$$

Given $0 \leq e \in X$. The ideal generated by it:

$$I_e = \{x \in X : |x| \leqslant \lambda e, \ \lambda \in \mathbb{R}_+\}.$$

For $x \in I_e$, define $||x||_e = \inf \{\lambda > 0 \ : \ |x| \leqslant \lambda e \}.$

Fact: $(I_e, \|\cdot\|_e)$ is a Banach lattice. It is lattice isometric to C(K) for a compact topological space K.

Given x_1, \ldots, x_n in a Banach lattice X.

<□ > < @ > < E > < E > E のQ @

Given x_1, \ldots, x_n in a Banach lattice X. Choose e so that $x_1, \ldots, x_n \in I_e$ (e.g., take $e = \bigvee_{i=1}^n |x_i|$), then we may think of x_1, \ldots, x_n as elements of some C(K).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given x_1, \ldots, x_n in a Banach lattice X. Choose e so that $x_1, \ldots, x_n \in I_e$ (e.g., take $e = \bigvee_{i=1}^n |x_i|$), then we may think of x_1, \ldots, x_n as elements of some C(K).

Hence, for every continuous $f : \mathbb{R}^n \to \mathbb{R}$, we can view $f(x_1, \ldots, x_n)$ as a function in C(K) via

$$f(x_1,\ldots,x_n)(t)=f(x_1(t),\ldots,x_n(t)).$$

So we can view $f(x_1, \ldots, x_n)$ as an element of I_e , hence of E.

Given x_1, \ldots, x_n in a Banach lattice X. Choose e so that $x_1, \ldots, x_n \in I_e$ (e.g., take $e = \bigvee_{i=1}^n |x_i|$), then we may think of x_1, \ldots, x_n as elements of some C(K).

Hence, for every continuous $f : \mathbb{R}^n \to \mathbb{R}$, we can view $f(x_1, \ldots, x_n)$ as a function in C(K) via

$$f(x_1,\ldots,x_n)(t)=f(x_1(t),\ldots,x_n(t)).$$

So we can view $f(x_1, ..., x_n)$ as an element of I_e , hence of E. Problem: not well defined; the result depends on the choice of e.

Given x_1, \ldots, x_n in a Banach lattice X. Choose e so that

 $x_1, \ldots, x_n \in I_e$ (e.g., take $e = \bigvee_{i=1}^n |x_i|$), then we may think of x_1, \ldots, x_n as elements of some C(K).

Hence, for every continuous $f : \mathbb{R}^n \to \mathbb{R}$, we can view $f(x_1, \ldots, x_n)$ as a function in C(K) via

$$f(x_1,\ldots,x_n)(t)=f(x_1(t),\ldots,x_n(t)).$$

So we can view $f(x_1, ..., x_n)$ as an element of I_e , hence of E. Problem: not well defined; the result depends on the choice of e. Fact: well defined provided that f is **positively homogeneous**:

Given x_1, \ldots, x_n in a Banach lattice X. Choose e so that

 $x_1, \ldots, x_n \in I_e$ (e.g., take $e = \bigvee_{i=1}^n |x_i|$), then we may think of x_1, \ldots, x_n as elements of some C(K).

Hence, for every continuous $f : \mathbb{R}^n \to \mathbb{R}$, we can view $f(x_1, \ldots, x_n)$ as a function in C(K) via

$$f(x_1,\ldots,x_n)(t)=f(x_1(t),\ldots,x_n(t)).$$

So we can view $f(x_1, ..., x_n)$ as an element of I_e , hence of E. Problem: not well defined; the result depends on the choice of e. Fact: well defined provided that f is **positively homogeneous**:

$$f(\lambda t_1, \dots, \lambda t_n) = \lambda f(t_1, \dots, t_n)$$
 for all $t_1, \dots, t_n \in \mathbb{R}$ and $\lambda > 0$

Given x_1, \ldots, x_n in a Banach lattice X. Choose e so that

 $x_1, \ldots, x_n \in I_e$ (e.g., take $e = \bigvee_{i=1}^n |x_i|$), then we may think of x_1, \ldots, x_n as elements of some C(K).

Hence, for every continuous $f : \mathbb{R}^n \to \mathbb{R}$, we can view $f(x_1, \ldots, x_n)$ as a function in C(K) via

$$f(x_1,\ldots,x_n)(t)=f(x_1(t),\ldots,x_n(t)).$$

So we can view $f(x_1, ..., x_n)$ as an element of I_e , hence of E. Problem: not well defined; the result depends on the choice of e. Fact: well defined provided that f is **positively homogeneous**:

$$f(\lambda t_1, \dots, \lambda t_n) = \lambda f(t_1, \dots, t_n)$$
 for all $t_1, \dots, t_n \in \mathbb{R}$ and $\lambda > 0$

Example: $\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}$.

Given x_1, \ldots, x_n in a Banach lattice X. Choose e so that

 $x_1, \ldots, x_n \in I_e$ (e.g., take $e = \bigvee_{i=1}^n |x_i|$), then we may think of x_1, \ldots, x_n as elements of some C(K).

Hence, for every continuous $f : \mathbb{R}^n \to \mathbb{R}$, we can view $f(x_1, \ldots, x_n)$ as a function in C(K) via

$$f(x_1,\ldots,x_n)(t)=f(x_1(t),\ldots,x_n(t)).$$

So we can view $f(x_1, ..., x_n)$ as an element of I_e , hence of E. Problem: not well defined; the result depends on the choice of e. Fact: well defined provided that f is **positively homogeneous**:

$$f(\lambda t_1, \dots, \lambda t_n) = \lambda f(t_1, \dots, t_n)$$
 for all $t_1, \dots, t_n \in \mathbb{R}$ and $\lambda > 0$

Example: $\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}$. $1 \leq p \leq \infty$.

Given x_1, \ldots, x_n in a Banach lattice X. Choose e so that

 $x_1, \ldots, x_n \in I_e$ (e.g., take $e = \bigvee_{i=1}^n |x_i|$), then we may think of x_1, \ldots, x_n as elements of some C(K).

Hence, for every continuous $f : \mathbb{R}^n \to \mathbb{R}$, we can view $f(x_1, \ldots, x_n)$ as a function in C(K) via

$$f(x_1,\ldots,x_n)(t)=f(x_1(t),\ldots,x_n(t)).$$

So we can view $f(x_1, ..., x_n)$ as an element of I_e , hence of E. Problem: not well defined; the result depends on the choice of e. Fact: well defined provided that f is **positively homogeneous**:

$$f(\lambda t_1, \dots, \lambda t_n) = \lambda f(t_1, \dots, t_n)$$
 for all $t_1, \dots, t_n \in \mathbb{R}$ and $\lambda > 0$

Example: $\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}$. $1 \leq p \leq \infty$. If $p = \infty$, use $\bigvee_{i=1}^{n} |x_i|$.

Every Banach lattice can locally be represented as C(K) space.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Corollary

Given any inequality or identity which involves finitely many variables and algebraic and lattice operations.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

Given any inequality or identity which involves finitely many variables and algebraic and lattice operations. If it is valid in $\mathbb R$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

Given any inequality or identity which involves finitely many variables and algebraic and lattice operations. If it is valid in \mathbb{R} then it is also valid in every Banach lattice.

Corollary

Given any inequality or identity which involves finitely many variables and algebraic and lattice operations. If it is valid in \mathbb{R} then it is also valid in every Banach lattice.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

$$n^{-\frac{1}{q}}\sum_{i=1}^{n}|x_{i}| \leq \left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}} \leq \sum_{i=1}^{n}|x_{i}|, \text{ where } q = p^{*}.$$

Given a Banach lattice E.

Given a Banach lattice E.

$$\|(x_1,\ldots,x_n)\| = \left\|\bigvee_{i=1}^n |x_i|\right\|$$
 is an ∞ -multinorm

Given a Banach lattice E.

$$\|(x_1, \dots, x_n)\| = \left\|\bigvee_{i=1}^n |x_i|\right\| \text{ is an } \infty\text{-multinorm}$$
$$\|(x_1, \dots, x_n)\| = \left\|\sum_{i=1}^n |x_i|\right\| \text{ is a 1-multinorm}$$

Given a Banach lattice E.

$$\|(x_1, \dots, x_n)\| = \left\|\bigvee_{i=1}^n |x_i|\right\| \text{ is an } \infty\text{-multinorm}$$
$$\|(x_1, \dots, x_n)\| = \left\|\sum_{i=1}^n |x_i|\right\| \text{ is a 1-multinorm}$$
$$\|(x_1, \dots, x_n)\| = \left\|\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}\right\| \text{ is a } p\text{-multinorm}$$

Given a Banach lattice E.

$$\|(x_1, \dots, x_n)\| = \left\|\bigvee_{i=1}^n |x_i|\right\| \text{ is an } \infty\text{-multinorm}$$
$$\|(x_1, \dots, x_n)\| = \left\|\sum_{i=1}^n |x_i|\right\| \text{ is a 1-multinorm}$$
$$\|(x_1, \dots, x_n)\| = \left\|\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}\right\| \text{ is a } p\text{-multinorm}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

— the **canonical** *p*-multinorm on a Banach lattice *E*.

For an operator $T: E \to F$ between two Banach lattices, we say that T is *p*-multibounded if it is multibounded w.r.t. the canonical *p*-multinorms on *E* and *F*.

For an operator $T: E \to F$ between two Banach lattices, we say that T is *p*-multibounded if it is multibounded w.r.t. the canonical *p*-multinorms on E and F. That is, there exists C > 0 such that $\|(Tx_1, \ldots, Tx_n)\| \leq C \|(x_1, \ldots, x_n)\|$ for any $x_1, \ldots, x_n \in X$.

$$\left\|\left(\sum_{i=1}^{n}|Tx_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leqslant C \left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\| \text{ for any } x_{1},\ldots,x_{n}\in X.$$

For an operator $T: E \to F$ between two Banach lattices, we say that T is *p*-multibounded if it is multibounded w.r.t. the canonical *p*-multinorms on E and F. That is, there exists C > 0 such that $\|(Tx_1, \ldots, Tx_n)\| \leq C \|(x_1, \ldots, x_n)\|$ for any $x_1, \ldots, x_n \in X$.

$$\left\|\left(\sum_{i=1}^{n}|Tx_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leqslant C \left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\| \text{ for any } x_{1},\ldots,x_{n}\in X.$$

 $\|T\|_{p-\mathrm{mb}}:=\|T\|_{\mathrm{mb}}$

For an operator $T: E \to F$ between two Banach lattices, we say that T is *p*-multibounded if it is multibounded w.r.t. the canonical *p*-multinorms on E and F. That is, there exists C > 0 such that $\|(Tx_1, \ldots, Tx_n)\| \leq C \|(x_1, \ldots, x_n)\|$ for any $x_1, \ldots, x_n \in X$.

$$\left\|\left(\sum_{i=1}^{n}|Tx_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leqslant C \left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\| \text{ for any } x_{1},\ldots,x_{n}\in X.$$

 $\|T\|_{p-\mathrm{mb}} := \|T\|_{\mathrm{mb}}$

Easy fact: if
$$T \ge 0$$
 then $\left(\sum_{i=1}^{n} |Tx_i|^p\right)^{\frac{1}{p}} \leqslant T\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}$.

For an operator $T: E \to F$ between two Banach lattices, we say that T is *p*-multibounded if it is multibounded w.r.t. the canonical *p*-multinorms on E and F. That is, there exists C > 0 such that $\|(Tx_1, \ldots, Tx_n)\| \leq C \|(x_1, \ldots, x_n)\|$ for any $x_1, \ldots, x_n \in X$.

$$\left\|\left(\sum_{i=1}^{n}|Tx_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leqslant C \left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\| \text{ for any } x_{1},\ldots,x_{n}\in X.$$

 $\|T\|_{p-\mathrm{mb}} := \|T\|_{\mathrm{mb}}$

Easy fact: if $T \ge 0$ then $\left(\sum_{i=1}^{n} |Tx_i|^p\right)^{\frac{1}{p}} \leqslant T\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}$. So

$$\left\| \left(\sum_{i=1}^{n} |Tx_{i}|^{p} \right)^{\frac{1}{p}} \right\| \leq \|T\| \left\| \left(\sum_{i=1}^{n} |x_{i}|^{p} \right)^{\frac{1}{p}} \right\|$$

For an operator $T: E \to F$ between two Banach lattices, we say that T is *p*-multibounded if it is multibounded w.r.t. the canonical *p*-multinorms on E and F. That is, there exists C > 0 such that $\|(Tx_1, \ldots, Tx_n)\| \leq C \|(x_1, \ldots, x_n)\|$ for any $x_1, \ldots, x_n \in X$.

$$\left\|\left(\sum_{i=1}^{n}|Tx_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leqslant C \left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\| \text{ for any } x_{1},\ldots,x_{n}\in X.$$

$$\|T\|_{p-\mathrm{mb}} := \|T\|_{\mathrm{mb}}$$

Easy fact: if $T \ge 0$ then $\left(\sum_{i=1}^{n} |Tx_i|^p\right)^{\frac{1}{p}} \le T\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}$. So $\left\|\left(\sum_{i=1}^{n} |Tx_i|^p\right)^{\frac{1}{p}}\right\| \le \|T\| \left\|\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}\right\|$

Hence T is p-multibounded and $||T||_{p-mb} = ||T||_{p-mb} = ||T||_{p-mb}$

Regular operators

So every positive operator is *p*-multibounded.
So every positive operator is *p*-multibounded.

It follows immediately that every **regular** operator is *p*-multibounded.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

So every positive operator is *p*-multibounded.

It follows immediately that every **regular** operator is *p*-multibounded.

Recall: T is regular if T = U - V for some positive U and V.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

So every positive operator is *p*-multibounded.

It follows immediately that every **regular** operator is *p*-multibounded.

Recall: T is regular if T = U - V for some positive U and V.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equivalently, if $-R \leq T \leq R$ for some positive operator R.

So every positive operator is *p*-multibounded.

It follows immediately that every **regular** operator is *p*-multibounded.

Recall: T is regular if T = U - V for some positive U and V. Equivalently, if $-R \leq T \leq R$ for some positive operator R.

$$||T||_r = \inf\{||R|| : -R \leqslant T \leqslant R, \ R \ge 0\},\$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

the regular norm of T.

So every positive operator is *p*-multibounded.

It follows immediately that every **regular** operator is *p*-multibounded.

Recall: T is regular if T = U - V for some positive U and V. Equivalently, if $-R \leq T \leq R$ for some positive operator R.

$$||T||_r = \inf\{||R|| : -R \leqslant T \leqslant R, \ R \ge 0\},\$$

the regular norm of T.

If T is regular then T^* is regular.

So every positive operator is *p*-multibounded.

It follows immediately that every **regular** operator is *p*-multibounded.

Recall: T is regular if T = U - V for some positive U and V. Equivalently, if $-R \leq T \leq R$ for some positive operator R.

$$||T||_r = \inf\{||R|| : -R \leqslant T \leqslant R, \ R \ge 0\},\$$

the regular norm of T.

If T is regular then T^* is regular.

The converse is false in general.

Theorem

- TFAE:
 - ► T is ∞-multibounded
 - T is 1-multibounded

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► T^{*} is regular.

Theorem *TFAE*:

- ► T is ∞-multibounded
- T is 1-multibounded
- T* is regular.

In this case, $\|T\|_{\infty-mb} = \|T\|_{1-mb} = \|T^*\|_r$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem *TFAE*:

- ► T is ∞-multibounded
- T is 1-multibounded
- ► T^{*} is regular.

In this case, $\|T\|_{\infty-mb} = \|T\|_{1-mb} = \|T^*\|_r$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What happens for other values of p?

For p = 2, every operator is 2-multibounded.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For p = 2, every operator is 2-multibounded.

This immediately follows from Krivine's Theorem:

Theorem

For every operator $T: E \to F$ and any $x_1, \ldots, x_n \in E$,

$$\left\|\left(\sum_{i=1}^{n}|Tx_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leq K_{G}\|T\|\left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For p = 2, every operator is 2-multibounded.

This immediately follows from Krivine's Theorem:

Theorem

For every operator $T: E \to F$ and any $x_1, \ldots, x_n \in E$,

$$\left\|\left(\sum_{i=1}^{n}|Tx_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leq K_{G}\|T\|\left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 K_G the Grothendieck constant

For p = 2, every operator is 2-multibounded.

This immediately follows from Krivine's Theorem:

Theorem

For every operator $T: E \to F$ and any $x_1, \ldots, x_n \in E$,

$$\left\|\left(\sum_{i=1}^{n}|Tx_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leq K_{G}\|T\|\left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 K_G the Grothendieck constant

It follows also that $||T||_{2-mb} \leq K_G ||T||$.

Theorem

Every multinormed space is multiisometric to a subspace of a Banach lattice (with the canonical multinorm).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Every multinormed space is multiisometric to a subspace of a Banach lattice (with the canonical multinorm).

That is, for every multinormed space X there exists a Banach lattice E and a linear map $T: X \to E$ such that

$$\left\|(x_1,\ldots,x_n)\right\| = \left\|\bigvee_{i=1}^n |Tx_i|\right\|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for any $x_1, \ldots, x_n \in X$.

Theorem

Every multinormed space is multiisometric to a subspace of a Banach lattice (with the canonical multinorm).

That is, for every multinormed space X there exists a Banach lattice E and a linear map $T: X \to E$ such that

$$\left\| (x_1,\ldots,x_n) \right\| = \left\| \bigvee_{i=1}^n |Tx_i| \right\|$$

for any $x_1, \ldots, x_n \in X$.

That is, there is a one-to-one correspondence between multinorms on X and embeddings of X into Banach lattices as a subspace.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 ∽��?

Theorem

Every 1-multinormed space is multiisometric to a quotient of a Banach lattice (with the canonical 1-multinorm).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Theorem

Every 1-multinormed space is multiisometric to a quotient of a Banach lattice (with the canonical 1-multinorm).

That is, for every 1-multinormed space \boldsymbol{X} there exists a Banach lattice \boldsymbol{E}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Every 1-multinormed space is multiisometric to a quotient of a Banach lattice (with the canonical 1-multinorm).

That is, for every 1-multinormed space X there exists a Banach lattice E (with the canonical 1-multinorm),

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Every 1-multinormed space is multiisometric to a quotient of a Banach lattice (with the canonical 1-multinorm).

That is, for every 1-multinormed space X there exists a Banach lattice E (with the canonical 1-multinorm), a subspace Y of E and a linear map $T: X \to E/Y$ such that T is a multiisometry.

Theorem

Every 1-multinormed space is multiisometric to a quotient of a Banach lattice (with the canonical 1-multinorm).

That is, for every 1-multinormed space X there exists a Banach lattice E (with the canonical 1-multinorm), a subspace Y of E and a linear map $T: X \to E/Y$ such that T is a multiisometry.

1-multinormed spaces = quotients of Banach lattices

Partial success.

Partial success.

Need some additional assumptions on the *p*-multinorm: it has to be **strong** and **convex**.

Partial success.

Need some additional assumptions on the *p*-multinorm: it has to be **strong** and **convex**.

Theorem

Every convex strong p-multinormed space is multiisometric to a subspace of a Banach lattice with the canonical p-multinorm.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Partial success.

Need some additional assumptions on the *p*-multinorm: it has to be **strong** and **convex**.

Theorem

Every convex strong p-multinormed space is multiisometric to a subspace of a Banach lattice with the canonical p-multinorm.

Without extra assumptions, there are examples of *p*-multinormed spaces which cannot be embedded into a Banach lattice with the canonical *p*-multinorm (as a subspace).

Convex *p*-multinorms

A *p*-multinorm is **convex** if

$$\|(x_1,...,x_n)\|^p \leq \|(x_1,...,x_k)\|^p + \|(x_{k+1},...,x_n)\|^p$$

for any $x_1, \ldots, x_n \in X$ and $k \leq n$.

Convex *p*-multinorms

A *p*-multinorm is **convex** if

$$\|(x_1,\ldots,x_n)\|^p \leq \|(x_1,\ldots,x_k)\|^p + \|(x_{k+1},\ldots,x_n)\|^p$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

for any $x_1, \ldots, x_n \in X$ and $k \leq n$.

If p = 1, trivial.

Definition

A sequence of norms on powers of X is called a **strong** p-multinorm if the following condition is satisfied.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A sequence of norms on powers of X is called a **strong** *p*-multinorm if the following condition is satisfied. Given $\bar{x} \in X^n$ and $\bar{y} \in X^m$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A sequence of norms on powers of X is called a **strong** *p*-multinorm if the following condition is satisfied. Given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_p^n} \leq \|f(\bar{y})\|_{\ell_p^m}$ for every $f \in X^*$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A sequence of norms on powers of X is called a **strong** *p*-multinorm if the following condition is satisfied. Given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_p^n} \leq \|f(\bar{y})\|_{\ell_p^m}$ for every $f \in X^*$

 $f(\bar{x}) = (f(x_1), \ldots, f(x_n))$

Definition

A sequence of norms on powers of X is called a **strong** *p*-multinorm if the following condition is satisfied. Given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_p^n} \leq \|f(\bar{y})\|_{\ell_p^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{y}\|_m$.

 $f(\bar{x}) = (f(x_1), \ldots, f(x_n))$

Definition

A sequence of norms on powers of X is called a **strong** *p*-multinorm if the following condition is satisfied. Given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_p^n} \leq \|f(\bar{y})\|_{\ell_p^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{y}\|_m$.

$$f(\bar{x}) = (f(x_1), \ldots, f(x_n))$$

Fact: strong *p*-multinorm \Rightarrow *p*-multinorm.
Strong *p*-multinorms

Definition

A sequence of norms on powers of X is called a **strong** *p*-multinorm if the following condition is satisfied. Given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_p^n} \leq \|f(\bar{y})\|_{\ell_p^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{y}\|_m$.

$$f(\bar{x}) = (f(x_1), \ldots, f(x_n))$$

Fact: strong *p*-multinorm \Rightarrow *p*-multinorm.

The converse is true when $p = \infty$ or p = 2.

Strong *p*-multinorms

Definition

A sequence of norms on powers of X is called a **strong** *p*-multinorm if the following condition is satisfied. Given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_p^n} \leq \|f(\bar{y})\|_{\ell_p^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{y}\|_m$.

$$f(\bar{x}) = (f(x_1), \ldots, f(x_n))$$

Fact: strong *p*-multinorm \Rightarrow *p*-multinorm.

The converse is true when $p = \infty$ or p = 2.

Fact: The canonical *p*-multinorm on a Banach lattice is strong.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof. Given a *p*-multinorm; $p = \infty$ or p = 2.

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_p^n} \leq \|f(\bar{y})\|_{\ell_p^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{x}\|_m$.

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_p^n} \leq \|f(\bar{y})\|_{\ell_p^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{x}\|_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}$.

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_p^n} \leq \|f(\bar{y})\|_{\ell_p^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{x}\|_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}$. Z is a subspace of \mathbb{R}^m .

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $||f(\bar{x})||_{\ell_p^n} \leq ||f(\bar{y})||_{\ell_p^m}$ for every $f \in X^*$ then $||\bar{x}||_n \leq ||\bar{x}||_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}$. Z is a subspace of \mathbb{R}^m . Define $T: Z \to \mathbb{R}^n$ via $f(\bar{y}) \mapsto f(\bar{x})$.

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $||f(\bar{x})||_{\ell_p^n} \leq ||f(\bar{y})||_{\ell_p^m}$ for every $f \in X^*$ then $||\bar{x}||_n \leq ||\bar{x}||_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}$. Z is a subspace of \mathbb{R}^m . Define $T : Z \to \mathbb{R}^n$ via $f(\bar{y}) \mapsto f(\bar{x})$. By assumption, T is well defined and $||T : Z \subseteq \ell_p^m \to \ell_p^m|| \leq 1$.

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $||f(\bar{x})||_{\ell_p^n} \leq ||f(\bar{y})||_{\ell_p^m}$ for every $f \in X^*$ then $||\bar{x}||_n \leq ||\bar{x}||_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}$. Z is a subspace of \mathbb{R}^m . Define $T : Z \to \mathbb{R}^n$ via $f(\bar{y}) \mapsto f(\bar{x})$. By assumption, T is well defined and $||T : Z \subseteq \ell_p^m \to \ell_p^m|| \leq 1$. Since $p = \infty$ or p = 2, T extends to a contraction $\ell_p^m \to \ell_p^n$.

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $||f(\bar{x})||_{\ell_p^n} \leq ||f(\bar{y})||_{\ell_p^m}$ for every $f \in X^*$ then $||\bar{x}||_n \leq ||\bar{x}||_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}$. Z is a subspace of \mathbb{R}^m . Define $T: Z \to \mathbb{R}^n$ via $f(\bar{y}) \mapsto f(\bar{x})$. By assumption, T is well defined and $||T: Z \subseteq \ell_p^m \to \ell_p^m|| \leq 1$. Since $p = \infty$ or p = 2, T extends to a contraction $\ell_p^m \to \ell_p^n$. We may view T as a matrix.

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_n^n} \leq \|f(\bar{y})\|_{\ell_n^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{x}\|_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}.$ Z is a subspace of \mathbb{R}^m . Define $T: Z \to \mathbb{R}^n$ via $f(\bar{y}) \mapsto f(\bar{x})$. By assumption, T is well defined and $||T: Z \subseteq \ell_p^m \to \ell_p^m|| \leq 1$. Since $p = \infty$ or p = 2, T extends to a contraction $\ell_p^m \to \ell_p^n$. We may view T as a matrix. For every $f \in X^*$, we have $f(\bar{x}) = Tf(\bar{y})$

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_n^n} \leq \|f(\bar{y})\|_{\ell_n^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{x}\|_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}.$ Z is a subspace of \mathbb{R}^m . Define $T: Z \to \mathbb{R}^n$ via $f(\bar{y}) \mapsto f(\bar{x})$. By assumption, T is well defined and $||T: Z \subseteq \ell_p^m \to \ell_p^m|| \leq 1$. Since $p = \infty$ or p = 2, T extends to a contraction $\ell_p^m \to \ell_p^n$. We may view T as a matrix. For every $f \in X^*$, we have $f(\bar{x}) = Tf(\bar{y}) = f(T\bar{y})$.

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_n^n} \leq \|f(\bar{y})\|_{\ell_n^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{x}\|_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}.$ Z is a subspace of \mathbb{R}^m . Define $T: Z \to \mathbb{R}^n$ via $f(\bar{y}) \mapsto f(\bar{x})$. By assumption, T is well defined and $||T: Z \subseteq \ell_p^m \to \ell_p^m|| \leq 1$. Since $p = \infty$ or p = 2, T extends to a contraction $\ell_p^m \to \ell_p^n$. We may view T as a matrix. For every $f \in X^*$, we have $f(\bar{x}) = Tf(\bar{y}) = f(T\bar{y})$. $\bar{x} = T\bar{y}$.

Proof.

Given a *p*-multinorm; $p = \infty$ or p = 2. To prove: given $\bar{x} \in X^n$ and $\bar{y} \in X^m$, if $\|f(\bar{x})\|_{\ell_n^n} \leq \|f(\bar{y})\|_{\ell_n^m}$ for every $f \in X^*$ then $\|\bar{x}\|_n \leq \|\bar{x}\|_m$. Let $Z = \{f(\bar{y}) : f \in X^*\}.$ Z is a subspace of \mathbb{R}^m . Define $T: Z \to \mathbb{R}^n$ via $f(\bar{y}) \mapsto f(\bar{x})$. By assumption, T is well defined and $||T: Z \subseteq \ell_p^m \to \ell_p^m|| \leq 1$. Since $p = \infty$ or p = 2, T extends to a contraction $\ell_p^m \to \ell_p^n$. We may view T as a matrix. For every $f \in X^*$, we have $f(\bar{x}) = Tf(\bar{y}) = f(T\bar{y})$. $\bar{x} = T\bar{y}$. $\|\bar{x}\| \leq \|T: \ell_p^n \to \ell_p^m\| \|\bar{y}\| \leq \|\bar{y}\|.$

Let X be a space with a convex strong p-multinorm.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let X be a space with a convex strong p-multinorm.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 $j: X \hookrightarrow C(K)$ where $K = B_{X^*}; j: x \mapsto \hat{x}$.

Let X be a space with a convex strong p-multinorm.

 $j: X \hookrightarrow C(K)$ where $K = B_{X^*}; j: x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K),

Let X be a space with a convex strong p-multinorm.

 $j: X \hookrightarrow C(K)$ where $K = B_{X^*}; j: x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K), $j: X \to V$

Let X be a space with a convex strong p-multinorm.

$$j: X \hookrightarrow C(K)$$
 where $K = B_{X^*}; j: x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K), $j: X \to V$

$$\varphi \in V \quad \Leftrightarrow \quad |\varphi| \leqslant \sum_{i=1}^n |\hat{x}_i| \text{ for some } x_1, \dots, x_n \in X$$

Let X be a space with a convex strong p-multinorm.

$$j: X \hookrightarrow C(K)$$
 where $K = B_{X^*}; j: x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K), $j: X \to V$

$$\varphi \in V \quad \Leftrightarrow \quad |\varphi| \leqslant \sum_{i=1}^{n} |\hat{x}_i| \text{ for some } x_1, \dots, x_n \in X$$
$$\Leftrightarrow \quad |\varphi| \leqslant \left(\sum_{i=1}^{n} |\hat{x}_i|^p\right)^{\frac{1}{p}} \text{ for some } x_1, \dots, x_n \in X$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let X be a space with a convex strong p-multinorm.

$$j \colon X \hookrightarrow C(K)$$
 where $K = B_{X^*}; j \colon x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K), $j: X \to V$

$$\varphi \in V \quad \Leftrightarrow \quad |\varphi| \leqslant \sum_{i=1}^{n} |\hat{x}_i| \text{ for some } x_1, \dots, x_n \in X$$
$$\Leftrightarrow \quad |\varphi| \leqslant \left(\sum_{i=1}^{n} |\hat{x}_i|^p\right)^{\frac{1}{p}} \text{ for some } x_1, \dots, x_n \in X$$
$$\rho(\varphi) := \inf \left\{ \left\| (x_1, \dots, x_n) \right\| \ : \ |\varphi| \leqslant \left(\sum_{i=1}^{n} |\hat{x}_i|^p\right)^{\frac{1}{p}} \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let X be a space with a convex strong p-multinorm.

$$j: X \hookrightarrow C(K)$$
 where $K = B_{X^*}; j: x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K), $j: X \to V$

$$\varphi \in V \quad \Leftrightarrow \quad |\varphi| \leq \sum_{i=1}^{n} |\hat{x}_{i}| \text{ for some } x_{1}, \dots, x_{n} \in X$$
$$\Rightarrow \quad |\varphi| \leq \left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \text{ for some } x_{1}, \dots, x_{n} \in X$$
$$\rho(\varphi) := \inf \left\{ \left\| (x_{1}, \dots, x_{n}) \right\| \ : \ |\varphi| \leq \left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \right\}$$
$$\text{lattice seminorm, } \quad \rho\left(\left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \right) = \left\| (x_{1}, \dots, x_{n}) \right\|$$

Let X be a space with a convex strong p-multinorm.

$$j: X \hookrightarrow C(K)$$
 where $K = B_{X^*}; j: x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K), $j: X \to V$

$$\varphi \in V \quad \Leftrightarrow \quad |\varphi| \leqslant \sum_{i=1}^{n} |\hat{x}_i| \text{ for some } x_1, \dots, x_n \in X$$
$$\Leftrightarrow \quad |\varphi| \leqslant \left(\sum_{i=1}^{n} |\hat{x}_i|^p\right)^{\frac{1}{p}} \text{ for some } x_1, \dots, x_n \in X$$
$$\rho(\varphi) := \inf \left\{ \left\| (x_1, \dots, x_n) \right\| \ : \ |\varphi| \leqslant \left(\sum_{i=1}^{n} |\hat{x}_i|^p\right)^{\frac{1}{p}} \right\}$$
$$\text{lattice seminorm,} \quad \rho\left(\left(\sum_{i=1}^{n} |\hat{x}_i|^p\right)^{\frac{1}{p}} \right) = \left\| (x_1, \dots, x_n) \right\|$$

Put $E = \overline{V/\ker\rho}$.

Let X be a space with a convex strong p-multinorm.

$$j \colon X \hookrightarrow C(K)$$
 where $K = B_{X^*}; j \colon x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K), $j: X \to V$

$$\varphi \in V \quad \Leftrightarrow \quad |\varphi| \leq \sum_{i=1}^{n} |\hat{x}_{i}| \text{ for some } x_{1}, \dots, x_{n} \in X$$
$$\Leftrightarrow \quad |\varphi| \leq \left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \text{ for some } x_{1}, \dots, x_{n} \in X$$
$$\rho(\varphi) := \inf \left\{ \left\| (x_{1}, \dots, x_{n}) \right\| : |\varphi| \leq \left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \right\}$$
$$\text{lattice seminorm,} \quad \rho\left(\left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \right) = \left\| (x_{1}, \dots, x_{n}) \right\|$$

Put $E = V / \ker \rho$. Put $T \colon X \to E$

Let X be a space with a convex strong p-multinorm.

$$j: X \hookrightarrow C(K)$$
 where $K = B_{X^*}; j: x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K), $j: X \to V$

$$\varphi \in V \quad \Leftrightarrow \quad |\varphi| \leq \sum_{i=1}^{n} |\hat{x}_{i}| \text{ for some } x_{1}, \dots, x_{n} \in X$$
$$\Leftrightarrow \quad |\varphi| \leq \left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \text{ for some } x_{1}, \dots, x_{n} \in X$$
$$\rho(\varphi) := \inf \left\{ \left\| (x_{1}, \dots, x_{n}) \right\| : |\varphi| \leq \left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \right\}$$
$$\text{lattice seminorm,} \quad \rho\left(\left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \right) = \left\| (x_{1}, \dots, x_{n}) \right\|$$

Put $E = V / \ker \rho$. Put $T: X \to E$ via $Tx = \hat{x} + \ker \rho$.

Put

Let X be a space with a convex strong p-multinorm.

$$j: X \hookrightarrow C(K)$$
 where $K = B_{X^*}; j: x \mapsto \hat{x}$.

Let V be the order ideal generated by j(X) in C(K), $j: X \to V$

$$\varphi \in V \quad \Leftrightarrow \quad |\varphi| \leqslant \sum_{i=1}^{n} |\hat{x}_{i}| \text{ for some } x_{1}, \dots, x_{n} \in X$$
$$\Leftrightarrow \quad |\varphi| \leqslant \left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \text{ for some } x_{1}, \dots, x_{n} \in X$$
$$\rho(\varphi) := \inf \left\{ \left\| (x_{1}, \dots, x_{n}) \right\| : |\varphi| \leqslant \left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \right\}$$
$$\text{lattice seminorm,} \quad \rho\left(\left(\sum_{i=1}^{n} |\hat{x}_{i}|^{p}\right)^{\frac{1}{p}} \right) = \left\| (x_{1}, \dots, x_{n}) \right\|$$
$$E = \overline{V/\ker \rho}. \text{ Put } T : X \to E \text{ via } Tx = \hat{x} + \ker \rho. \text{ Then}$$

$$\left\|\left(\sum_{i=1}^{p}|Tx_{i}|^{p}\right)^{\frac{1}{p}}\right\|=\left\|(x_{1},\ldots,x_{n})\right\|.$$