Identities on matrices

Špela Špenko

Institute of Mathematics, Physics and Mechanics

6th June 2014

Definition

A is commutative: ab - ba = 0 for every $a, b \in A$.

Definition

A is commutative: $xy - yx \in \mathbb{F}\langle x, y \rangle$ is a *polynomial identity* of A.

Definition

A is commutative: $xy - yx \in \mathbb{F}\langle x, y \rangle$ is a *polynomial identity* of A.

An element $f \in \mathbb{F}\langle x_1, \ldots, x_d \rangle$ is a *polynomial identity* of an algebra A if $f(a_1, \ldots, a_d) = 0$ for all $a_1, \ldots, a_d \in A$.

Polynomial identities $M_n(\mathbb{F})$

Standard polynomial: $S_d(x_1, \ldots, x_d) = \sum_{\sigma \in S_d} (-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(d)}$.

Polynomial identities $M_n(\mathbb{F})$

Standard polynomial: $S_d(x_1, \ldots, x_d) = \sum_{\sigma \in S_d} (-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(d)}$. S_{n^2+1} is a polynomial identity of $M_n(\mathbb{F})$ - obvious.

Polynomial identities $M_n(\mathbb{F})$

Standard polynomial: $S_d(x_1, \ldots, x_d) = \sum_{\sigma \in S_d} (-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(d)}$. S_{n^2+1} is a polynomial identity of $M_n(\mathbb{F})$ - obvious.

Amitsur-Levitzki 1950 S_{2n} is a polynomial identity of $M_n(\mathbb{F})$.

Specht problem

An ideal *I* in $\mathbb{F}\langle x_1, \ldots, x_d \rangle$ is a *T*- *ideal* if $f(g_1, \ldots, g_d) \in I$ for all $g_1, \ldots, g_d \in \mathbb{F}\langle x_1, \ldots, x_d \rangle$, $f \in I$.

Specht problem

An ideal *I* in $\mathbb{F}\langle x_1, \ldots, x_d \rangle$ is a *T*- *ideal* if $f(g_1, \ldots, g_d) \in I$ for all $g_1, \ldots, g_d \in \mathbb{F}\langle x_1, \ldots, x_d \rangle$, $f \in I$.

Kemer 1987 *T*-ideal of polynomial identities of $M_n(\mathbb{F})$ is finitely generated.

Definition

$$x^2 - \operatorname{tr}(x)x + \operatorname{det}(x)1 = 0$$
 on $M_2(\mathbb{F})$.

Definition

$$x^2 - tr(x)x + \frac{1}{2}(tr(x)^2 - tr(x^2))1 = 0$$
 on $M_2(\mathbb{F})$.

Definition

$$x^2 - \operatorname{tr}(x)x + \frac{1}{2}(\operatorname{tr}(x)^2 - \operatorname{tr}(x^2))1 = 0 \text{ on } M_2(\mathbb{F}).$$

A *trace polynomial* is a noncommutative polynomial that involves also traces.

Definition

$$x^2 - \operatorname{tr}(x)x + \frac{1}{2}(\operatorname{tr}(x)^2 - \operatorname{tr}(x^2))1 = 0 \text{ on } M_2(\mathbb{F}).$$

A *trace polynomial* is a noncommutative polynomial that involves also traces, e.g. $-2x_1x_2x_3 + tr(x_1^2)tr(x_2x_3)x_4 + tr(x_1)tr(x_2)tr(x_3)1$.

Definition

$$x^2 - \operatorname{tr}(x)x + \frac{1}{2}(\operatorname{tr}(x)^2 - \operatorname{tr}(x^2))1 = 0 \text{ on } M_2(\mathbb{F}).$$

A *trace polynomial* is a noncommutative polynomial that involves also traces, e.g. $-2x_1x_2x_3 + tr(x_1^2)tr(x_2x_3)x_4 + tr(x_1)tr(x_2)tr(x_3)1$.

A trace polynomial f is a *trace identity* of $M_n(\mathbb{F})$ if

$$f(a_1,\ldots,a_d)=0$$
 for all $a_1,\ldots,a_d\in M_n(\mathbb{F}).$

Description

The Cayley-Hamilton identity is a trace identity of $M_n(\mathbb{F})$.

Description

The Cayley-Hamilton identity is a trace identity of $M_n(\mathbb{F})$.

Procesi 1976, Razmyslov 1974

Every trace identity is a "consequence" of the Cayley-Hamilton identity.

Definition

A quasi-identity of $M_n(\mathbb{F})$ is an identity of the form

$$\sum_M \lambda_M(x_1,\ldots,x_d)M,$$

where $M \in \mathbb{F}\langle x_1, \ldots, x_d \rangle$ is a noncommutative monomial and $\lambda_M : M_n(\mathbb{F})^d \to \mathbb{F}$ is a polynomial function.

Definition

A quasi-identity of $M_n(\mathbb{F})$ is an identity of the form $\sum \lambda_M(x_1, \dots, x_d)M$,

$$\sum_{M} \lambda_M(x_1,\ldots,x_d) M,$$

where $M \in \mathbb{F}\langle x_1, \ldots, x_d \rangle$ is a noncommutative monomial and $\lambda_M : M_n(\mathbb{F})^d \to \mathbb{F}$ is a polynomial function.

 $\blacktriangleright \ \lambda_{M} = \lambda \in \mathbb{F} \rightsquigarrow \quad \text{polynomial identity}$

Definition

A quasi-identity of $M_n(\mathbb{F})$ is an identity of the form

$$\sum_M \lambda_M(x_1,\ldots,x_d)M,$$

where $M \in \mathbb{F}\langle x_1, \ldots, x_d \rangle$ is a noncommutative monomial and $\lambda_M : M_n(\mathbb{F})^d \to \mathbb{F}$ is a polynomial function.

- $\blacktriangleright \ \lambda_{M} = \lambda \in \mathbb{F} \rightsquigarrow \quad \text{polynomial identity}$
- λ_M induced by traces \rightsquigarrow trace identity

Example

Antisymmetrization of

$$x_{12}^{(1)} x_{21}^{(2)} \left(X_3 - tr(X_3)
ight) \left(X_4 - tr(X_4)
ight)$$

vanishes on $M_2(\mathbb{F})$.

Problem

Is every quasi-identity of $M_n(\mathbb{F})$ a consequence of the Cayley-Hamilton identity?

Problem

Is every quasi-identity of $M_n(\mathbb{F})$ a consequence of the Cayley-Hamilton identity?

Brešar, Procesi, Š. 2014 No.

Description

An element $f \in \mathbb{F}\langle x_1, \ldots, x_d \rangle$ is a *central polynomial* of $M_n(\mathbb{F})$ if $f(a_1, \ldots, a_d) \in \mathbb{F}1$ for all $a_1, \ldots, a_d \in M_n(\mathbb{F})$.

Description

An element $f \in \mathbb{F}\langle x_1, \ldots, x_d \rangle$ is a *central polynomial* of $M_n(\mathbb{F})$ if $f(a_1, \ldots, a_d) \in \mathbb{F}1$ for all $a_1, \ldots, a_d \in M_n(\mathbb{F})$.

Brešar, Procesi, Š. 2014

Let P be a quasi-identity of $M_n(\mathbb{F})$. For every central polynomial c of $M_n(\mathbb{F})$ with zero constant term there exists $m \in \mathbb{N}$ such that $c^m P$ is a consequence of the Cayley-Hamilton identity.

Description

An element $f \in \mathbb{F}\langle x_1, \ldots, x_d \rangle$ is a *central polynomial* of $M_n(\mathbb{F})$ if $f(a_1, \ldots, a_d) \in \mathbb{F}1$ for all $a_1, \ldots, a_d \in M_n(\mathbb{F})$.

Brešar, Procesi, Š. 2014

Let P be a quasi-identity of $M_n(\mathbb{F})$. For every central polynomial c of $M_n(\mathbb{F})$ with zero constant term there exists $m \in \mathbb{N}$ such that $c^m P$ is a consequence of the Cayley-Hamilton identity.

A T-ideal of quasi-identities is finitely generated.

Functional identities

Definition

A functional identity is an identity of the form

$$\sum_{k\in K} F_k(\overline{x}_d^k) x_k = \sum_{l\in L} x_l G_l(\overline{x}_d^l).$$

Functional identities

Examples

•
$$[Q_2(ax, by), cz] = 0$$
 on $M_2(\mathbb{F})$.

►
$$xF_1(y) + yF_2(x) = G_1(y)x + G_2(x)y$$
 has a standard solution
 $F_1(y) = ay + \lambda(y),$
 $F_2(x) = bx + \mu(x),$
 $G_1(y) = yb + \lambda(y),$
 $G_2(x) = xa + \mu(x).$

Functional identities

Description

Brešar, Š., 2014

Every one-sided functional identity of $M_n(\mathbb{F})$ is a consequence of the Cayley-Hamilton identity.

Every solution of a functional identity on $M_n(\mathbb{F})$ is standard modulo one-sided identities.