Patterns of symmetric matrices that allow all the eigenvalue multiplicities to be even

Helena Šmigoc (University College Dublin) Joint work with Polona Oblak (University of Ljubljana).

Ljubljana 2014

Graph

A (simple undirected) graph G = (V(G), E(G)) consists of:

- vertices $V(G) = \{1, 2, ..., n\},\$
- edges E(G)

An edge is two element subset of V(G).

$\mathcal{S}(G)$

 S_n : the set of all symmetric matrices in $M_n(\mathbb{R})$

 $S(G) = \{A \in S_{|G|}; \text{ for } i \neq j, a_{ij} \neq 0 \text{ if and only if } \{i, j\} \in E(G)\}.$ (No conditions on the diagonal entries of $A \in S(G)$.) Example

$$A = \begin{pmatrix} 1 & -2 & 0.7 & 11 \\ -2 & 0 & 0 & 0 \\ 0.7 & 0 & -3 & -0.3 \\ 11 & 0 & -0.3 & 0 \end{pmatrix} \in \mathcal{S}(G)$$

▲ ≣ ▶ Ξ シ ۹ (ペ 3 / 31

The inverse eigenvalue problem

Let G = (V(G), E(G)) be a graph on *n* vertices.

- When is a list of real numbers {λ₁,...,λ_n} the spectrum of a matrix A ∈ S(G)?
- ► What are possible multiplicity lists for the eigenvalues of A ∈ S(G)?
- What is the maximum possible multiplicity of an eigenvalue λ of $A \in \mathcal{S}(G)$?

Minimum Rank Problem

The minimum rank of a graph *G* is:

$$\operatorname{mr}(G) = \min{\operatorname{rank}(A); A \in \mathcal{S}(G)}.$$

Maximum possible multiplicity = |G| - mr(G)

Bibliography

There exists extensive literature on minimum rank problem.

Fallat, Hogben (2007) and Fallat, Hogben (2013): two survey papers with more than 100 further recent references on the problem.

For which graphs *G* does there exists $A \in S(G)$ with all its eigenvalue multiplicities even?

- ► The multiplicities of all the eigenvalues of *A* are even.
- det $(xI_n A) = q(x)^2$, where $q(x) \in \mathbb{R}[x]$
- det $(xI_n A) \ge 0$ for all $x \in \mathbb{R}$.

G allows a square characteristic polynomial, if there exists $A \in S(G)$ satisfying conditions above.

◆ □ →
◆ 三 →
● 三 →
○ へ ○
7 / 31

Johnson, Leal Duarte (2002): Let *G* be a tree, then the largest and the smallest eigenvalue of any matrix $A \in S(G)$ has multiplicity 1.

Let *G* be a tree, then a matrix $A \in S(G)$ doesn't have the characteristic polynomial a square.

Minimum number of distinct eigenvalues

q(G)- minimum number of distinct eigenvalues of a graph G.

Ahmadi, Alinaghipour, Cavers, Fallat, Meagher, Nasserasr (2013): If there are vertices u, v in a connected graph G at distance d and the path of length d from u to v is unique, then $q(G) \ge d + 1$.

G, |G| = 2n, allows square characteristic polynomial, then $q(G) \le n$.

Theorem Let A be a matrix of the form

$$A = \begin{pmatrix} d & b^T & c^T \\ b & B & 0 \\ c & 0 & D \end{pmatrix} \in M_{2n}(\mathbb{R}),$$
(1)

where $d \in \mathbb{R}$, $B \in M_2(\mathbb{R})$ and $D \in M_{2n-3}(\mathbb{R})$ diagonal matrix and $b \in \mathbb{R}^2$ and $c \in \mathbb{R}^{2n-3}$ are vectors with all its components nonzero. Then the characteristic polynomial of A is not a square.

◆ □ →
◆ 三 →
● 三 →
● 三 →
● ○ へ ○
10 / 31

Vector Space

Theorem Let V_{2n} be a set of symmetric matrices of the form

$$\begin{pmatrix} A & S \\ -S & A \end{pmatrix},$$

such that $A \in M_n(\mathbb{R})$ is a symmetric matrix, and $S \in M_n(\mathbb{R})$ a skew symmetric matrix.

 V_{2n} is a vector space in which the characteristic polynomial of every matrix is a square.

11/31

Proof

The characteristic polynomial of $M = \begin{pmatrix} A & S \\ -S & A \end{pmatrix}$ is a square.

$$\begin{pmatrix} I_n & iI_n \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A & S \\ -S & A \end{pmatrix} \begin{pmatrix} I_n & -iI_n \\ 0 & I_n \end{pmatrix} = \begin{pmatrix} A+iS & 0 \\ -S & A-iS \end{pmatrix}.$$

Since $(A + iS)^T = A - iS$, the spectrum of A + iS is equal to the spectrum of A - iS.

Cycles

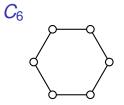
Corollary

There exists $M \in S(C_{2n})$, such that the characteristic polynomial of M is a square.

Proof.

$$M = \begin{pmatrix} A & S \\ -S & A \end{pmatrix}$$
, where
 $S = E_{n1} - E_{1n} \in M_n(\mathbb{R})$ and $A = \sum_{|i-j|=1} E_{i,j} \in M_n(\mathbb{R})$

4		•					
	ð	Þ					
	æ	Þ					
4	3	Þ					
	æ						
9	9	C					
13/31							

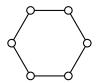


$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, S = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$M = \begin{pmatrix} A & S \\ -S & A \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ -1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\det{(x I_6 - M)} = x^2 (x^2 - 3)^2.$$

Example

Graphs on 6 vertices that are covered by vectors space V_6 :



・ 回・ ・ 15 / 31

Products of graphs

- ► G: a graph on *n* vertices with the adjacency matrix A.
- H: a graph on m vertices with the adjacency matrix B.

Tensor product of graphs

 $G \times H = (V(G \times H), E(G \times H))$:

$$\blacktriangleright V(G \times H) = V(G) \times V(H)$$

►
$$((u, u'), (v, v')) \in E(G \times H) \Leftrightarrow (u, u') \in E(G)$$
 and $(v, v') \in E(H)$

The adjacency matrix of $G \times H$: $A \otimes B$

Kronecker product $A \otimes B$ has eigenvalues

$$\lambda_i \mu_j, i = 1, \ldots, n, j = 1, \ldots, m$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of *A* and μ, \ldots, μ_m are the eigenvalues of *B*.

- Let $A \in S_{2n}(G)$ have the characteristic polynomial a square. Then $A \otimes B$ has the characteristic polynomial a square for any $B \in S_m$.
- We do not control the pattern of the diagonal elements of $A \in S(G)$ with characteristic polynomial a square, but we can make them all nonzero by adding a scalar.

The Cartesian product of graphs

$G\Box H = (V(G\Box H), E(G\Box H)):$

- $\blacktriangleright V(G\Box H) = V(G) \times V(H)$
- ► $((u_1, u_2), (v_1, v_2)) \in E(G \square H)$ if and only if either $u_1 = v_1$ and $(u_2, v_2) \in E(H)$ or $u_2 = v_2$ and $(u_1, v_1) \in E(G)$.

The adjacency matrix of $G \Box H$: $(I_m \otimes A) + (B \otimes I_n)$ (the *Kronecker sum* of A and B)

 $(I_m \otimes A) + (B \otimes I_n)$ has eigenvalues $\lambda_i + \mu_j$, i = 1, 2, ..., n, j = 1, 2, ..., m, where $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of $A \in M_n(\mathbb{R})$ and $\mu_1, \mu_2, ..., \mu_m$ are the eigenvalues of $B \in M_m(\mathbb{R})$.

Theorem

Let G be a graph that allows a square characteristic polynomial. Then the Cartesian product $G\Box H$ allows a square characteristic polynomial for any graph H.

The strong product $G \boxtimes H$ of graphs

 $G \boxtimes H = (V(G \boxtimes H), E(G \boxtimes H))$:

 $\blacktriangleright V(G \boxtimes H) = V(G) \times V(H)$

• $((u_1, u_2), (v_1, v_2)) \in E(G \boxtimes H)$ if and only if either $u_1 = v_1$ and $(u_2, v_2) \in E(H)$ or $u_2 = v_2$ and $(u_1, v_1) \in E(G)$ or $(u_1, v_1) \in E(G)$ and $(u_2, v_2) \in E(H)$.

The adjacency matrix of $G \boxtimes H$: $((A + I_n) \otimes (B + I_m)) - I_{mn}$.

The matrix $((A + I_n) \otimes (B + I_m)) - I_{mn}$ has eigenvalues $(\lambda_i + 1)(\mu_j + 1) - 1, i = 1, 2, ..., n, j = 1, 2, ..., m$, where $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of $A \in M_n(\mathbb{R})$ and $\mu_1, \mu_2, ..., \mu_m$ are the eigenvalues of $B \in M_m(\mathbb{R})$.

◆ □ →
◆ 三 →
◆ 三 →
● 三 →
○ へ ○
21 / 31

Theorem

Let G be a graph that allows square characteristic polynomial. Then the strong product $G \boxtimes H$ allows square characteristic polynomial for any graph H.

Construction

Lemma

Let B be a symmetric $m \times m$ matrix with eigenvalues $\mu_1, \mu_2, \ldots, \mu_m$, and let u an eigenvector corresponding to μ_1 normalized so that $u^T u = 1$. Let A be an $n \times n$ symmetric matrix with a diagonal element μ_1 :

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{A}_1 & \boldsymbol{b} \\ \boldsymbol{b}^T & \boldsymbol{\mu}_1 \end{pmatrix}.$$
 (2)

and eigenvalues $\lambda_1, \ldots, \lambda_n$. Then the matrix

$$C = \begin{pmatrix} A_1 & bu^T \\ ub^T & B \end{pmatrix}$$

has eigenvalues $\lambda_1, \ldots, \lambda_n, \mu_2, \ldots, \mu_m$.

●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

Theorem

Let G be a graph that allows a square characteristic polynomial. Let v be a vertex in G. Let G_{2m+1} be a graph constructed from G in the following way: vertex v is replaced by a clique K_{2m+1} , and every vertex in K_{2m+1} has the same neighbours in the rest of the graph as v has in G. Then G_{2m+1} can be realized by a matrix whose characteristic polynomial is a square.

$$A = \begin{pmatrix} A_1 & b \\ b^T & 2m+1 \end{pmatrix} \in S(G), \ \det(xI - A) = p(x)^2.$$
 (3)

$$C = \begin{pmatrix} A_1 & be^T \\ eb^T & J \end{pmatrix}$$
, $\det(xI - C) = x^{2m}p(x)^2$

Lemma Let

$$A = \begin{pmatrix} A_1 & a \\ a^T & 2 \end{pmatrix} \in S_n$$

have the characteristic polynomial p(x), and let

$$m{B} = egin{pmatrix} m{B}_1 & m{b} \ m{b}^T & m{0} \end{pmatrix} \in m{S}_m$$

have the characteristic polynomial q(x). Then

$$C = \begin{pmatrix} B_1 & 0 & \frac{\sqrt{2}}{2}b & -\frac{\sqrt{2}}{2}b \\ 0 & A_1 & \frac{\sqrt{2}}{2}a & \frac{\sqrt{2}}{2}a \\ \frac{\sqrt{2}}{2}b^T & \frac{\sqrt{2}}{2}a^T & 1 & 1 \\ -\frac{\sqrt{2}}{2}b^T & \frac{\sqrt{2}}{2}a^T & 1 & 1 \end{pmatrix}$$

has the characteristic polynomial p(x)q(x).

Corollary

Let G_A and G_B be graphs that allow characteristic polynomial a square. Let $v_A \in V(G_A)$ and $v_B \in V(G_B)$. Let G_C be a graph constructed by adding the following edges to $G_A \cup G_B$:

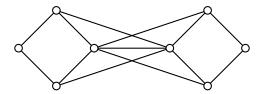
$$\blacktriangleright (v_A, v_B) \in E(G_C)$$

- v_A has the same edges to the rest of G_B as v_B
- v_B has the same edges to the rest of G_A as v_A .

Then G allows a square characteristic polynomial.

Example

If $G_1 = G_2 = C_4$, then graph G:



allows a square characteristic polynomial.

Inverse eigenvalue problem of a complete graph

Theorem

For any given list of real numbers $\sigma = (\lambda_1, \lambda_2, ..., \lambda_n)$, $\lambda_1 \neq \lambda_2$, there exists $A_n \in S(K_n)$ with the spectrum σ .

Furthermore, given any zero-nonzero pattern of a vector in \mathbb{R}^n that contains at least two nonzero elements, A_n can be chosen in such a way that there exist an eigenvector corresponding to λ_1 with the given pattern.

27/31

Join with a complete graph

Corollary

For every graph G on n-1 vertices there exists $A \in S(G \vee K_{n+1})$ with the characteristic polynomial a square.

Proof.

•
$$A_1 \in \mathcal{S}(G), b \in \mathbb{R}^{n-1}$$
 with only nonzero entries, $\mu_1 \in \mathbb{R}$.
 $A = \begin{pmatrix} A_1 & b \\ b^T & \mu_1 \end{pmatrix}$. Eigenvalues of $A: \lambda_1, \dots, \lambda_n$.

Let B ∈ S(K_{n+1}) have eigenvalues μ₁, λ₁,..., λ_n and an eigenvector u corresponding to μ₁ with only nonzero entries.

28/31

$$\begin{pmatrix} A_1 & bu^T \\ ub^T & B \\ \lambda_1, \lambda_1, \dots, \lambda_n, \lambda_n. \end{pmatrix} \in \mathcal{S}(A_1 \vee K_{n+1}) \text{ has eigenvalues}$$

Rank 2

 $\operatorname{mr}_+(G) = \min\{\operatorname{rank}(A); A \in \mathcal{S}(G), A \text{ positive semidefinite }\}.$

Barrett, van der Holst, Loewy (2004) A characterisation of graphs with $mr_+(G) \le 2$.

Theorem

Let G be a graph on n vertices. Then there exist a matrix $A \in S(G)$ with the characteristic polynomial $p(x) = x^{n-2}(x-a)^2$ if and only if G^c has the form

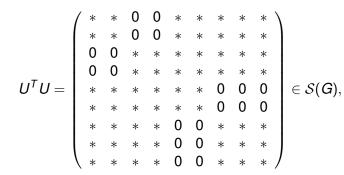
$$(K_{p_1,q_1}\cup K_{p_2,q_2}\cup\ldots\cup K_{p_k,q_k})\vee K_r$$
(4)

Example							_			
$U = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$	$\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$	2	$\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$	2	$\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$	2	$\sqrt{2}$ $\frac{1}{\sqrt{2}}$	$\sqrt{\frac{1}{\sqrt{2}}}$	2	$ \begin{array}{ccc} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{2}{\sqrt{3}} & -\frac{2}{\sqrt{3}} & -\frac{2}{\sqrt{3}} \end{array} \right) $
	/ *	*	0	0	*	*	*	*	* `	N
	*	*	ñ	ñ	*	*	*	*	* * *	
	^ ^	~	U	U	Ŧ	Ŧ	T	*	*	
	0	0	*	*	*	*	*	*	*	
	0	0	*	*	*	*	*	*	*	(7, 0)
$U^T U =$	(* * 0 * *	*	*	*	*	*	0	0	0	$\left , UU^{T} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \right .$
	*	*	*	*	*	*	0	0	0	
	*	*	*	*	0	0	*	*	*	
	*	*	*	*	0	0	*	*	*	
	* \	*	*	*	0	0	*	*	* ,	/

▲ 重
 → Q (~
 30 / 31

< ⊡ > < ≣ >

Example



where $G^{c} = K_{2,2} \cup K_{2,3}$.

・ 一下・
・ 「下・
・ 「下・
・ 「下・
・ 「下・
・ 」
・ つ へ ()・
31 / 31