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Graph

A (simple undirected) graph G = (V (G),E(G)) consists of:
I vertices V (G) = {1,2, . . . ,n},
I edges E(G)

An edge is two element subset of V (G).
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S(G)

Sn: the set of all symmetric matrices in Mn(R)

S(G) = {A ∈ S|G|; for i 6= j , aij 6= 0 if and only if {i , j} ∈ E(G)}.

(No conditions on the diagonal entries of A ∈ S(G).)

Example

1

4 3

2

A =


1 −2 0.7 11
−2 0 0 0
0.7 0 −3 −0.3
11 0 −0.3 0

 ∈ S(G)
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The inverse eigenvalue problem

Let G = (V (G),E(G)) be a graph on n vertices.
I When is a list of real numbers {λ1, . . . , λn} the spectrum of

a matrix A ∈ S(G)?

I What are possible multiplicity lists for the eigenvalues of
A ∈ S(G)?

I What is the maximum possible multiplicity of an eigenvalue
λ of A ∈ S(G)?
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Minimum Rank Problem

The minimum rank of a graph G is:

mr(G) = min{rank(A); A ∈ S(G)}.

Maximum possible multiplicity = |G| −mr(G)
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Bibliography

There exists extensive literature on minimum rank problem.

Fallat, Hogben (2007) and Fallat, Hogben (2013): two survey
papers with more than 100 further recent references on the
problem.
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Even multiplicities

For which graphs G does there exists A ∈ S(G) with all its
eigenvalue multiplicities even?

I The multiplicities of all the eigenvalues of A are even.
I det(xIn − A) = q(x)2, where q(x) ∈ R[x ]
I det(xIn − A) ≥ 0 for all x ∈ R.

G allows a square characteristic polynomial, if there exists
A ∈ S(G) satisfying conditions above.
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Trees

Johnson, Leal Duarte (2002): Let G be a tree, then the largest
and the smallest eigenvalue of any matrix A ∈ S(G) has
multiplicity 1.

Let G be a tree, then a matrix A ∈ S(G) doesn’t have the
characteristic polynomial a square.
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Minimum number of distinct eigenvalues

q(G)- minimum number of distinct eigenvalues of a graph G.

Ahmadi, Alinaghipour, Cavers, Fallat, Meagher, Nasserasr
(2013): If there are vertices u, v in a connected graph G at
distance d and the path of length d from u to v is unique, then
q(G) ≥ d + 1.

G, |G| = 2n, allows square characteristic polynomial, then
q(G) ≤ n.
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Theorem
Let A be a matrix of the form

A =

d bT cT

b B 0
c 0 D

 ∈ M2n(R), (1)

where d ∈ R, B ∈ M2(R) and D ∈ M2n−3(R) diagonal matrix
and b ∈ R2 and c ∈ R2n−3 are vectors with all its components
nonzero. Then the characteristic polynomial of A is not a
square.
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Vector Space

Theorem
Let V2n be a set of symmetric matrices of the form(

A S
−S A

)
,

such that A ∈ Mn(R) is a symmetric matrix, and S ∈ Mn(R) a
skew symmetric matrix.

V2n is a vector space in which the characteristic polynomial of
every matrix is a square.
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Proof

The characteristic polynomial of M =

(
A S
−S A

)
is a square.

(
In iIn
0 In

)(
A S
−S A

)(
In −iIn
0 In

)
=

(
A + iS 0
−S A− iS

)
.

Since (A + iS)T = A− iS, the spectrum of A + iS is equal to the
spectrum of A− iS.
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Cycles

Corollary
There exists M ∈ S(C2n), such that the characteristic
polynomial of M is a square.

Proof.
M =

(
A S
−S A

)
, where

S = En1 − E1n ∈ Mn(R) and A =
∑
|i−j|=1

Ei,j ∈ Mn(R)
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C6

A =

 0 1 0
1 0 1
0 1 0

 , S =

 0 0 −1
0 0 0
1 0 0



M =

(
A S
−S A

)
=



0 1 0 0 0 −1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
−1 0 0 0 1 0


det (x I6 −M) = x2(x2 − 3)2.
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Example
Graphs on 6 vertices that are covered by vectors space V6:
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Products of graphs

I G: a graph on n vertices with the adjacency matrix A.
I H: a graph on m vertices with the adjacency matrix B.
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Tensor product of graphs

G × H = (V (G × H),E(G × H)):
I V (G × H) = V (G)× V (H)

I ((u,u′), (v , v ′)) ∈ E(G × H)⇔ (u,u′) ∈ E(G) and
(v , v ′) ∈ E(H)

The adjacency matrix of G × H: A⊗ B

Kronecker product A⊗ B has eigenvalues

λiµj , i = 1, . . . ,n, j = 1, . . . ,m

where λ1, . . . , λn are the eigenvalues of A and µ, . . . , µm are the
eigenvalues of B.
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Tensor product

Let A ∈ S2n(G) have the characteristic polynomial a square.
Then A⊗ B has the characteristic polynomial a square for any
B ∈ Sm.

We do not control the pattern of the diagonal elements of
A ∈ S(G) with characteristic polynomial a square, but we can
make them all nonzero by adding a scalar.
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The Cartesian product of graphs

G�H = (V (G�H),E(G�H)):
I V (G�H) = V (G)× V (H)

I ((u1,u2), (v1, v2)) ∈ E(G�H) if and only if either u1 = v1
and (u2, v2) ∈ E(H) or u2 = v2 and (u1, v1) ∈ E(G).

The adjacency matrix of G�H: (Im ⊗ A) + (B ⊗ In) (the
Kronecker sum of A and B )

(Im ⊗ A) + (B ⊗ In) has eigenvalues λi + µj , i = 1,2, . . . ,n,
j = 1,2, . . . ,m, where λ1, λ2, . . . , λn are the eigenvalues of
A ∈ Mn(R) and µ1, µ2, . . . , µm are the eigenvalues of
B ∈ Mm(R).
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Theorem
Let G be a graph that allows a square characteristic polynomial.
Then the Cartesian product G�H allows a square
characteristic polynomial for any graph H.
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The strong product G � H of graphs

G � H = (V (G � H),E(G � H)) :

I V (G � H) = V (G)× V (H)

I ((u1,u2), (v1, v2)) ∈ E(G � H) if and only if either u1 = v1
and (u2, v2) ∈ E(H) or u2 = v2 and (u1, v1) ∈ E(G) or
(u1, v1) ∈ E(G) and (u2, v2) ∈ E(H).

The adjacency matrix of G � H: ((A + In)⊗ (B + Im))− Imn.

The matrix ((A + In)⊗ (B + Im))− Imn has eigenvalues
(λi + 1)(µj + 1)− 1, i = 1,2, . . . ,n, j = 1,2, . . . ,m, where
λ1, λ2, . . . , λn are the eigenvalues of A ∈ Mn(R) and
µ1, µ2, . . . , µm are the eigenvalues of B ∈ Mm(R).
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Theorem
Let G be a graph that allows square characteristic polynomial.
Then the strong product G � H allows square characteristic
polynomial for any graph H.
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Construction

Lemma
Let B be a symmetric m ×m matrix with eigenvalues
µ1, µ2, . . . , µm, and let u an eigenvector corresponding to µ1
normalized so that uT u = 1. Let A be an n × n symmetric
matrix with a diagonal element µ1 :

A =

(
A1 b
bT µ1

)
. (2)

and eigenvalues λ1, . . . , λn. Then the matrix

C =

(
A1 buT

ubT B

)
has eigenvalues λ1, . . . , λn, µ2, . . . , µm.
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Theorem
Let G be a graph that allows a square characteristic polynomial.
Let v be a vertex in G. Let G2m+1 be a graph constructed from
G in the following way: vertex v is replaced by a clique K2m+1,
and every vertex in K2m+1 has the same neighbours in the rest
of the graph as v has in G. Then G2m+1 can be realized by a
matrix whose characteristic polynomial is a square.

A =

(
A1 b
bT 2m + 1

)
∈ S(G), det(xI − A) = p(x)2. (3)

C =

(
A1 beT

ebT J

)
, det(xI − C) = x2mp(x)2
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Lemma
Let

A =

(
A1 a
aT 2

)
∈ Sn

have the characteristic polynomial p(x), and let

B =

(
B1 b
bT 0

)
∈ Sm

have the characteristic polynomial q(x). Then

C =


B1 0

√
2

2 b −
√

2
2 b

0 A1

√
2

2 a
√

2
2 a√

2
2 bT

√
2

2 aT 1 1
−
√

2
2 bT

√
2

2 aT 1 1


has the characteristic polynomial p(x)q(x).
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Corollary
Let GA and GB be graphs that allow characteristic polynomial a
square. Let vA ∈ V (GA) and vB ∈ V (GB). Let GC be a graph
constructed by adding the following edges to GA ∪GB:
I (vA, vB) ∈ E(GC)

I vA has the same edges to the rest of GB as vB

I vB has the same edges to the rest of GA as vA.
Then G allows a square characteristic polynomial.

Example
If G1 = G2 = C4, then graph G:

allows a square characteristic polynomial.
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Inverse eigenvalue problem of a complete graph

Theorem
For any given list of real numbers σ = (λ1, λ2, . . . , λn), λ1 6= λ2,
there exists An ∈ S(Kn) with the spectrum σ.

Furthermore, given any zero-nonzero pattern of a vector in Rn

that contains at least two nonzero elements, An can be chosen
in such a way that there exist an eigenvector corresponding to
λ1 with the given pattern.
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Join with a complete graph

Corollary
For every graph G on n − 1 vertices there exists
A ∈ S(G ∨ Kn+1) with the characteristic polynomial a square.

Proof.
I A1 ∈ S(G), b ∈ Rn−1 with only nonzero entries, µ1 ∈ R.

A =

(
A1 b
bT µ1

)
. Eigenvalues of A: λ1, . . . , λn.

I Let B ∈ S(Kn+1) have eigenvalues µ1, λ1, . . . , λn and an
eigenvector u corresponding to µ1 with only nonzero
entries.

I

(
A1 buT

ubT B

)
∈ S(A1 ∨ Kn+1) has eigenvalues

λ1, λ1, . . . , λn, λn.
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Rank 2

mr+(G) = min{rank(A); A ∈ S(G), A positive semidefinite }.

Barrett, van der Holst, Loewy (2004) A characterisation of
graphs with mr+(G) ≤ 2.

Theorem
Let G be a graph on n vertices. Then there exist a matrix
A ∈ S(G) with the characteristic polynomial
p(x) = xn−2(x − a)2 if and only if Gc has the form

(Kp1,q1 ∪ Kp2,q2 ∪ . . . ∪ Kpk ,qk ) ∨ Kr (4)
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Example

U =

(
1√
2

1√
2

1√
2

1√
2

√
2
√

2 1√
3

1√
3

1√
3

1√
2

1√
2
− 1√

2
− 1√

2
1√
2

1√
2
− 2√

3
− 2√

3
− 2√

3

)

UT U =



∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗


, UUT =

(
7 0
0 7

)
.
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Example

UT U =



∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗


∈ S(G),

where Gc = K2,2 ∪ K2,3.
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