Fast Decodability of Space-Time Block Codes, Skew-Hermitian Matrices, and Azumaya Algebras

B.A. Sethuraman (joint with Gregory Berhuy and Nadya Markin)

Department of Mathematics California State University Northridge

June 5, 2014

- Space-Time Codes
- Past Decodability
- Obecoding Complexity for Full Rate Codes
 - 4 Maximum Number of Groups and Azumaya Algebras
- 5 Hurwitz-Radon-Eckmann Bounds

Context

- Transmission and reception simultaneously on several antennas.
- Higher data capacity and lower error probability for not much increase in power usage.
- First studied in mid-90's, but already 2-transmit antenna systems are common.

Image: A matrix

Bare-Bones Definition

A space-time code is a set of \mathbb{R} -linearly independent invertible matrices A_1 , ..., A_{2l} in $M_n(\mathbb{C})$, for some $l \leq n^2$.

The integer *I* is called the rate of the code.

Usage

- Let $S = \{-2K 1, -2K + 1, \dots, -1, 1, \dots, 2K 1, 2K + 1\}$ for some $K \ge 0$.
- The data to be transmitted is first coded as 2/-tuples from S.
- As $\mathbf{s} = (s_1, \dots, s_{2l})$ varies in S^{2l} , form the matrix

$$X(\mathbf{s}) = \sum_{i=1}^{2l} s_i A_i$$

- Each column of X(s) is transmitted simultaneously from n transmit antennas, and after n columns are transmitted, receive antennas process received data and try to recover s.
- Data received at the n receive antennas during the n transmissions is modeled by

$$Y=HX+N,$$

where *Y*, *H* and *N* are $n \times n$ matrices. *Y* contains the received data, *H* contains multiplicative noise and *N* contains additive noise.

Definition of Mutual Orthogonality

Two matrices A and B in $M_n(\mathbb{C})$ are said to be mutually orthogonal if $AB^* + BA^* = 0$.

The following are easy to see:

- If *A* and *B* are mutually orthogonal, so are *MA* and *MB* for any $M \in M_n(\mathbb{C})$.
- If A_1, \ldots, A_k are mutually orthogonal, then $A_1^{-1}A_2, \ldots, A_1^{-1}A_k$ are skew-Hermitian and pairwise skew commute (XY + YX = 0).

・ロト ・同ト ・ヨト ・ヨト

Fast Decodability

The space-time code $\{A_1, \ldots, A_{2l}\}$ in $M_n(\mathbb{C})$ is said to be fast decodable if

- For *g* ≥ 2,
- there exist a partition of {1,...,2/}:
- $\Gamma_1, \ldots, \Gamma_g, \Gamma_{g+1}$, with Γ_{g+1} possibly empty,
- of cardinalities $n_1, \ldots, n_g, n_{g+1}$ respectively,
- such that for all $u \in \Gamma_i$ and $v \in \Gamma_j$ $(1 \le i < j \le g)$, the generating matrices A_u, A_v are mutually orthogonal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Motivation for Fast Decodability Definition

The definition is chosen because, a key matrix in the decoding process that depends on the A_i and the multiplicative noise matrix H has the following block form for all choices of noise matrix H:

$$\begin{pmatrix} B_{1} & & N_{1} \\ & B_{2} & & N_{2} \\ & & \ddots & & \vdots \\ & & & B_{g} & N_{g} \\ & & & & N_{g+1} \end{pmatrix}$$
(1)

for some matrices B_1, \ldots, B_g , and N_1, \ldots, N_{g+1} . Here, all empty spaces are filled by zeros, the B_i are of size $n_i \times n_i$ and N_{g+1} is of size $n_{g+1} \times n_{g+1}$.

Consequences of Fast Decodability

- When key matrix has form in Equation 1, can fix guesses for data symbols in the (g + 1)-th block, and independently decode the first *g* blocks in (parallel).
- Decoding complexity reduces from $|S|^{2l}$ to $|S|^{n_{g+1}+\max n_i}$ (i = 1, ..., g).
- When Γ_{g+1} is empty, i.e, matrices N_1, \ldots, N_{g+1} are not present in Equation 1 and matrix is block diagonal, code is said to be *g*-group decodable. Decoding in this case proceeds in parallel in each of the *g* group without having to condition another set of data symbols.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Some Questions

- For full rate codes $(l = n^2)$, what is the lowest decoding complexity possible?
- For full rate codes, what is the highest number *g* such that code is *g* group decodable?
- Possibly sacrificing full rate property, what is the maximum number of groups g possible?

Full Rate Codes

Recall that a full rate code is one where $l = n^2$. Using very elementary arguments, we show the following:

Theorem

The decoding complexity for a full rate code cannot be made better than $|S|^{n^2+1}$.

Theorem

A full rate code does not admit g-group decodability for any g.

Typical argument: There can be at most $n^2 - 1$ \mathbb{R} -linearly independent matrices in $M_n(\mathbb{C})$ that are both skew-Hermitian and pairwise mutually orthogonal.

Maximum Number of Groups

For arbitrary rate $l \le n^2$, we study how many groups possible in a space-time code, i.e, how many disjoint subsets $\Gamma_1, \ldots, \Gamma_g$ of $\{A_1, \ldots, A_{2l}\}$ such that $A_u A_v^* + A_v A_u^* = 0$ for all A_u and A_v in distinct Γ_i .

Pick one matrix A_i from each Γ_i , and then consider the matrices $A_1^{-1}A_i$, for i = 2, ..., g. These matrices are skew-Hermitian and skew-commute. So, we have g - 1 skew commuting $n \times n$ complex matrices, and we ask for maximum g - 1.

Maximum Number of Skew-Commuting Elements in Central Simple Algebras

For performance reasons, space-time codes are typically chosen from some division algebra *D* of index *n* with center $\mathbb{Q}[i]$, embedded into $M_n(\mathbb{C})$. This therefore leads us to the following more general question:

Question: Given a central simple algebra A with center a number field k, how many elements u_1, \ldots, u_r can we find in A^* that pairwise skew-commute?

Algebra Generated by u_i

Given u_1, \ldots, u_r in \mathcal{A}^* that pairwise skew-commute, consider the subring

$$R = k[u_1^2, u_1^{-2}, \dots, u_r^2, u_r^{-2}].$$

The relation $u_i u_j + u_j u_i = 0$ shows that u_i and u_j^2 commute, and hence *R* is a commutative ring.

Quaternion Algebra over *R*: If *R* is *any* commutative ring of characteristic not 2, and if *a* and *b* are in R^* , we can define the quaternion algebra $(a, b)_R$ as follows: $\mathbf{i}^2 = a$, $\mathbf{j}^2 = b$, $\mathbf{ij} = -\mathbf{ji}$. This is an Azumaya algebra over *R*.

Azumaya Algebras

Given a commutative ring *R*, an Azumaya algebra over *R* is an *R*-algebra \mathcal{A} that is a finitely generate *R*-module and is such that $\mathcal{A}/m\mathcal{A}$ is a central simple algebra over R/m for all maximal ideals *m* of *R*.

- Azumaya algebras "globalize" central simple algebras over fields.
- Tensor products of Azumaya algebras over *R* are also Azumaya algebras.
- *R*-algebra maps $f : A \mapsto B$, where *B* is any *R* algebra, are necessarily injective.

Azumaya Algebras

Theorem

Let u_1, \ldots, u_r be skew commuting elements of \mathcal{A}^* , where \mathcal{A} is a central simple algebra over a number field k. Let $R = k[u_1^2, u_1^{-2}, \ldots, u_r^2, u_r^{-2}]$ as above. Write r = 2s or r = 2s + 1 as appropriate. Then, the k-subalgebra of \mathcal{A} generated by the u_i is an Azumaya algebra over R isomorphic to

$$(a_1, b_1)_R \otimes_R \cdots \otimes_R (a_s, b_s)_R$$

for suitable a_i , b_i , $i = 1, \ldots, s$.

Hauptsatz

Theorem

Let u_1, \ldots, u_r be skew commuting elements of \mathcal{A}^* , where \mathcal{A} is a central simple algebra over a number field k. For any integer t, we write $\nu_2(t)$ for the 2-adic value of t, i.e., the highest power of 2 that divides t. Then we have

$$r \leq 2
u_2 \left(rac{\mathsf{deg}(\mathcal{A})}{\mathsf{ind}(\mathcal{A})}
ight) + 2 ext{ if } r ext{ is even}$$

and

$$r \leq 2\nu_2\left(rac{\deg(\mathcal{A})}{\operatorname{ind}(\mathcal{A})}
ight) + 3 \ \textit{if } r \ \textit{is odd}.$$

Image: Image:

Corollaries

Corollary

When our space-time codes come from a division algebra, then $g \le 4$. The best decoding complexity of any space-time code from a division algebra cannot be better than $|S|^{\lceil l/2\rceil}$.

Corollary

When the r skew-commuting invertible matrices are not restricted to be in any sub algebra of $M_n(\mathbb{C})$, then $r \leq 2\nu_2(n) + 3$.

Hurwitz-Radon-Eckmann Bound

The Hurwitz-Radon-Eckmann result concerns the maximum number of (invertible) matrices A_i in $M_n(\mathbb{C})$ that satisfy the following:

•
$$A_iA_j + A_jA_i = 0$$
 for all $i \neq j$,

2
$$A_i^2 = -I_n$$
, and

$$A_i A_i^* = I_n$$

The HRE bound is that the maximum number is $2\nu_2(n) + 1$.

For comparison, our bound is $2\nu_2(n) + 3$. Note however that we do not require conditions 2 and 3 in our space-time code considerations. Also, we consider the more general case where our matrices arise from a *k*-central simple algebra embedded in $M_n(\mathbb{C})$.