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Space-Time Codes

Context

Transmission and reception simultaneously on several antennas.

Higher data capacity and lower error probability for not much increase in
power usage.

First studied in mid-90’s, but already 2-transmit antenna systems are
common.
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Space-Time Codes

Bare-Bones Definition

A space-time code is a set of R-linearly independent invertible matrices A1,
. . . , A2l in Mn(C), for some l ≤ n2.

The integer l is called the rate of the code.
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Space-Time Codes

Usage

Let S = {−2K − 1,−2K + 1, . . . ,−1,1, . . . ,2K − 1,2K + 1} for some
K ≥ 0.

The data to be transmitted is first coded as 2l-tuples from S.

As s = (s1, . . . , s2l ) varies in S2l , form the matrix

X (s) =
2l∑

i=1

siAi

Each column of X (s) is transmitted simultaneously from n transmit
antennas, and after n columns are transmitted, receive antennas process
received data and try to recover s.

Data received at the n receive antennas during the n transmissions is
modeled by

Y = HX + N,
where Y , H and N are n × n matrices. Y contains the received data, H
contains multiplicative noise and N contains additive noise.
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Fast Decodability

Definition of Mutual Orthogonality

Two matrices A and B in Mn(C) are said to be mutually orthogonal if
AB∗ + BA∗ = 0.

The following are easy to see:

If A and B are mutually orthogonal, so are MA and MB for any
M ∈ Mn(C).

If A1, . . . , Ak are mutually orthogonal, then A−1
1 A2, . . . , A−1

1 Ak are
skew-Hermitian and pairwise skew commute (XY + YX = 0).
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Fast Decodability

Fast Decodability

The space-time code {A1, . . . ,A2l} in Mn(C) is said to be fast decodable if

For g ≥ 2,

there exist a partition of {1, . . . ,2l}:

Γ1, . . . , Γg , Γg+1, with Γg+1 possibly empty,

of cardinalities n1, . . . , ng , ng+1 respectively,

such that for all u ∈ Γi and v ∈ Γj (1 ≤ i < j ≤ g), the generating matrices
Au,Av are mutually orthogonal.

B.A. Sethuraman (joint with Gregory Berhuy and Nadya Markin) (CSUN)Fast Decodability of Space-Time Block Codes June 5, 2014 7 / 19



Fast Decodability

Motivation for Fast Decodability Definition

The definition is chosen because, a key matrix in the decoding process that
depends on the Ai and the multiplicative noise matrix H has the following
block form for all choices of noise matrix H:



B1 N1
B2 N2

. . .
...

Bg Ng
Ng+1


(1)

for some matrices B1, . . . , Bg , and N1, . . . , Ng+1. Here, all empty spaces are
filled by zeros, the Bi are of size ni × ni and Ng+1 is of size ng+1 × ng+1.
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Fast Decodability

Consequences of Fast Decodability

When key matrix has form in Equation 1, can fix guesses for data symbols in
the (g + 1)-th block, and independently decode the first g blocks in (parallel).

Decoding complexity reduces from |S|2l to |S|ng+1+max ni (i = 1, . . . ,g).

When Γg+1 is empty, i.e, matrices N1, . . . , Ng+1 are not present in Equation 1
and matrix is block diagonal, code is said to be g-group decodable. Decoding
in this case proceeds in parallel in each of the g group without having to
condition another set of data symbols.
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Fast Decodability

Some Questions

For full rate codes (l = n2), what is the lowest decoding complexity
possible?

For full rate codes, what is the highest number g such that code is g
group decodable?

Possibly sacrificing full rate property, what is the maximum number of
groups g possible?

B.A. Sethuraman (joint with Gregory Berhuy and Nadya Markin) (CSUN)Fast Decodability of Space-Time Block Codes June 5, 2014 10 / 19



Decoding Complexity for Full Rate Codes

Full Rate Codes

Recall that a full rate code is one where l = n2. Using very elementary
arguments, we show the following:

Theorem
The decoding complexity for a full rate code cannot be made better than
|S|n2+1.

Theorem
A full rate code does not admit g-group decodability for any g.

Typical argument: There can be at most n2 − 1 R-linearly independent
matrices in Mn(C) that are both skew-Hermitian and pairwise mutually
orthogonal.
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Maximum Number of Groups and Azumaya Algebras

Maximum Number of Groups

For arbitrary rate l ≤ n2, we study how many groups possible in a space-time
code, i.e, how many disjoint subsets Γ1, . . . , Γg of {A1, . . . ,A2l} such that
AuA∗v + Av A∗u = 0 for all Au and Av in distinct Γi .

Pick one matrix Ai from each Γi , and then consider the matrices A−1
1 Ai , for

i = 2, . . . ,g. These matrices are skew-Hermitian and skew-commute. So, we
have g − 1 skew commuting n × n complex matrices, and we ask for
maximum g − 1.
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Maximum Number of Groups and Azumaya Algebras

Maximum Number of Skew-Commuting Elements in
Central Simple Algebras

For performance reasons, space-time codes are typically chosen from some
division algebra D of index n with center Q[ı], embedded into Mn(C). This
therefore leads us to the following more general question:

Question: Given a central simple algebra A with center a number field k , how
many elements u1, . . . , ur can we find in A∗ that pairwise skew-commute?
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Maximum Number of Groups and Azumaya Algebras

Algebra Generated by ui

Given u1, . . . , ur in A∗ that pairwise skew-commute, consider the subring

R = k [u2
1 ,u
−2
1 , . . . ,u2

r ,u
−2
r ].

The relation uiuj + ujui = 0 shows that ui and u2
j commute, and hence R is a

commutative ring.

Quaternion Algebra over R: If R is any commutative ring of characteristic not
2, and if a and b are in R∗, we can define the quaternion algebra (a,b)R as
follows: i2 = a, j2 = b, ij = −ji. This is an Azumaya algebra over R.

B.A. Sethuraman (joint with Gregory Berhuy and Nadya Markin) (CSUN)Fast Decodability of Space-Time Block Codes June 5, 2014 14 / 19



Maximum Number of Groups and Azumaya Algebras

Azumaya Algebras

Given a commutative ring R, an Azumaya algebra over R is an R-algebra A
that is a finitely generate R-module and is such that A/mA is a central simple
algebra over R/m for all maximal ideals m of R.

Azumaya algebras “globalize” central simple algebras over fields.

Tensor products of Azumaya algebras over R are also Azumaya algebras.

R-algebra maps f : A 7→ B, where B is any R algebra, are necessarily
injective.
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Maximum Number of Groups and Azumaya Algebras

Azumaya Algebras

Theorem
Let u1, . . . , ur be skew commuting elements of A∗, where A is a central
simple algebra over a number field k. Let R = k [u2

1 ,u
−2
1 , . . . ,u2

r ,u
−2
r ] as

above. Write r = 2s or r = 2s + 1 as appropriate. Then, the k-subalgebra of
A generated by the ui is an Azumaya algebra over R isomorphic to

(a1,b1)R ⊗R · · · ⊗R (as,bs)R

for suitable ai , bi , i = 1, . . . , s.
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Maximum Number of Groups and Azumaya Algebras

Hauptsatz

Theorem
Let u1, . . . , ur be skew commuting elements of A∗, where A is a central
simple algebra over a number field k. For any integer t, we write ν2(t) for the
2-adic value of t, i.e., the highest power of 2 that divides t. Then we have

r ≤ 2ν2

(
deg(A)

ind(A)

)
+ 2 if r is even

and

r ≤ 2ν2

(
deg(A)

ind(A)

)
+ 3 if r is odd.
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Maximum Number of Groups and Azumaya Algebras

Corollaries

Corollary

When our space-time codes come from a division algebra, then g ≤ 4. The
best decoding complexity of any space-time code from a division algebra
cannot be better than |S|dl/2e.

Corollary

When the r skew-commuting invertible matrices are not restricted to be in any
sub algebra of Mn(C), then r ≤ 2ν2(n) + 3.
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Hurwitz-Radon-Eckmann Bounds

Hurwitz-Radon-Eckmann Bound

The Hurwitz-Radon-Eckmann result concerns the maximum number of
(invertible) matrices Ai in Mn(C) that satisfy the following:

1 AiAj + AjAi = 0 for all i 6= j ,

2 A2
i = −In, and

3 AiA∗i = In
The HRE bound is that the maximum number is 2ν2(n) + 1.

For comparison, our bound is 2ν2(n) + 3. Note however that we do not require
conditions 2 and 3 in our space-time code considerations. Also, we consider
the more general case where our matrices arise from a k -central simple
algebra embedded in Mn(C).
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