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Notation

H the skew field of real quaternions

x = a0 + a1i + a2j + a3k ∈ H, a0, a1, a2, a3 ∈ R

Then

R(x) = a0,

V(x) = a1i + a2j + a3k

x∗ = a0 − a1i− a2j− a3k

|x| =
√
a20 + a21 + a22 + a23

A = [ai,j] ∈ Hm×n, then

A∗ = [a∗j,i] ∈ Hn×m
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Numerical ranges with respect to

conjugation

The set

WH
∗ (A) :=

{
x∗Ax : x∗x = 1, x ∈ Hn×1} ⊂ H

is known as the (quaternion) numerical range of

A ∈ Hn×n

with respect to the conjugation.

Elementary properties:

(1) WH
∗ (A) is compact and connected

(2) If y1 ∈ WH
∗ (A) and y2 ∈ H is such that Ry2 = Ry1

and |Vy2| = |Vy1|, then also y2 ∈ WH
∗ (A)

(3) WH
∗ (A) = {0} if and only if A = 0

(4) WH
∗ (A) ⊂ R if and only if A = A∗

(5) R(WH
∗ (A)) = {0} if and only if A = −A∗
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(6) for A ∈ Hn×n, unitary U ∈ Hn×n, and real a, we

have

WH
∗ (U ∗AU) = WH

∗ (A),

WH
∗ (A + aI) = a + WH

∗ (A),

WH
∗ (aA) = aWH

∗ (A).

The quaternion numerical ranges are generally non-

convex:
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Example

Let

A =

[
λ 0
0 A0

]
, n ≥ 2,

where λ ∈ H \ {0} has zero real part, and A0 ∈

H(n−1)×(n−1) is hermitian and either positive or neg-

ative definite. Clearly, λ ∈ WH
∗ (A), and, therefore,

also −λ ∈ WH
∗ (A) (because −λ is congruent to λ).

But one easily checks that

0 =
1

2
λ +

1

2
(−λ)

does not belong to WH
∗ (A). Indeed, if we had

x∗λx+ y∗A0y = 0, for some x ∈ H, y ∈ H(n−1)×1,

then, since R (x∗λx) = 0 and V (y∗A0y) = 0, we must

have

x∗λx = y∗A0y = 0,

which yields x = 0 and y = 0.
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So, Thompson (1996): Intersection of WH
∗ (A) with

closed upper complex half plane is convex

Open Problem

Prove (or disprove) that a convex set S ⊆ H

has the property that WH
∗ (A)∩S is convex for every

A ∈ Hn×n if and only if there is no nonreal λ ∈ S

such that λ ∈ S

Open Problem

Identify classes of matrices for which convexity

of the numerical range holds true
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Joint numerical ranges

For a p-tuple of hermitian matrices

A1, . . . , Ap ∈ Hn×n,

the H-joint numerical range is defined by

WJH
∗ (A1, . . . , Ap)

:=
{

(x∗A1x, . . . , x
∗Apx) ∈ Rp : x∗x = 1, x ∈ Hn×1}

Subset of Rp.

Basic convexity result:

Theorem

(1) If n 6= 2 and A1, . . . , A5 ∈ Hn×n are hermitian,

then WJH
∗ (A1, . . . , A5) is convex.

(2) If A1, . . . , A4 ∈ Hn×n are hermitian, then

WJH
∗ (A1, . . . , A4)

is convex.
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(3) Let A1, . . . , A5 ∈ H2×2 be hermitian. Then

WJH
∗ (A1, . . . , A5)

is convex if and only if the 6-tuple of matrices

{A1, . . . , A5, I2} is linearly dependent over the

reals.

Parts (1) and (2): Au-Yeung, Poon (1979)

Global vs local geometry of numerical ranges

A subset D of Rk will be called a d-dimensional

halfspace if there exist d linearly independent vectors

v1, . . . , vd ∈ Rk and a nonzero vector v0 ∈ span {v1, . . . , vd}

such that

D = {v ∈ span {v1, . . . , vd} : 〈v, v0〉 ≤ 0.}

F = R, F = C, or F = H

Theorem.

The following statements are equivalent for a
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pair of hermitian matrices

(A1, A2), Aj ∈ Fn×n.

(a) WJF
∗ (A1, A2) is contained in a 2-dimensional half-

space.

(b) WJF
∗ (X∗A1X,X

∗A2X) is contained in

a 2-dimensional halfspace

for every isometry X into Fn.

(c) There is m ≥ 2 such that WJF
∗ (X∗A1X,X

∗A2X)

is contained in

a 2-dimensional halfspace

for every isometry X : Fm −→ Fn.

(d) WJF
∗ (X∗A1X,X

∗A2X) is contained in

a 2-dimensional halfspace

for every isometry X : F2 −→ Fn.
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Holds also for selfadjoint operators in infinite dimen-

sional Hilbert space

Cheung, Li, R. (2007), R. (2008)
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Extend to k-tuples:

Conjecture

The following statements are equivalent for a k-

tuple of n×n hermitian matrices A = (A1, . . . , Ak),

and for a fixed integer d, 0 ≤ d ≤ k:

(a) WJF
∗ (A) is contained in a d-dimensional halfs-

pace.

(b) WJF
∗ (X∗AX) is contained in a d-dimensional

halfspace for every isometry X into Fn.

(c) There is m ≥ d such that WJF
∗ (X∗AX) is con-

tained in a 2-dimensional halfspace for every isom-

etry X : Fm −→ Fn.

(d) WJF
∗ (X∗AX) is contained in a d-dimensional

halfspace for every isometry X : Fd −→ Fn.
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Numerical ranges: other involutions

A map φ : H −→ H is called an antiendomor-

phism if

φ(xy) = φ(y)φ(x) ∀ x, y ∈ H,

and

φ(x + y) = φ(x) + φ(y) ∀ x, y ∈ H.

An antiendomorphism φ is called an involution if

φ(φ(x)) = x ∀ x ∈ H.

Ex.: φ(x) = x∗

Other examples:

φ(a0 + a1i + a2j + a3k) = a0 + a1i + a2j− a3k
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In general: If φ is an involution different from the

conjugation, then φ is real linear and

φ =

[
1 0
0 T

]
with respect to the real basis {1, i, j, k}, where T is

3×3 real orthogonal symmetric matrix with eigenvalues

1, 1,−1

There is v ∈ H, |v| = 1, unique up to negation, such

that φ(v) = −v

Inv (φ) = {x ∈ H : φ(x) = x}

3-dimensional real subspace of H

A = [ai,j]
m,n
i=1,j=1 ∈ Hm×n then

Aφ = [φ(aj,i] ∈ Hn×m

14



Numerical ranges

A ∈ Hn×n

fixed α ∈ Inv (φ):

W
(α)
φ (A) := {xφAx : xφx = α, x ∈ Hn×1}.

Writing α = γφγ for some γ ∈ H we see that

W
(α)
φ (A) = γφW

(1)
φ (A)γ,

assuming α 6= 0. Thus, we can focus on

W
(1)
φ (A) and W

(0)
φ (A).

To avoid trivialities, in the latter case n ≥ 2 will be

assumed.
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Elementary properties:

Proposition If A,U ∈ Hn×n, where U is φ-unitary,

and if a ∈ R, then

W
(α)
φ (UφAU) = W

(α)
φ (A),

W
(α)
φ (A + aI) = W

(α)
φ (A) + aα,

W
(α)
φ (aA) = aW

(α)
φ (A)

for every α ∈ Inv (φ).

W
(α)
φ (A) is connected but not necessarily bounded
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Open Problem Identify those α ∈ Inv (φ) and

A ∈ Hn×n for which W
(α)
φ (A) is bounded.

A complete answer is available for the case α = 0:

Theorem

The numerical range W
(0)
φ (A), where A ∈ Hn×n,

n ≥ 2, is bounded if and only if n ≥ 3 and A = aI

for some real a, or n = 2 and A has the form

A =

[
a0 + a1β a2 + a3β
−a2 + a3β a0 − a1β

]
for some a0, a1, a2, a3 ∈ R
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Proposition

Let A ∈ Hn×n. Then:

(1) W
(α)
φ (A) = {0} for some (equivalently, for all)

α ∈ Inv (φ) \ {0} if and only if A = 0;

(2) W
(α)
φ (A) ⊆ Inv (φ) for some (equivalently, for

all) α ∈ Inv (φ) \ {0} if and only if A = Aφ;

(3) W
(α)
φ (A) is contained in the real span of β for

some (equivalently, for all) α ∈ Inv (φ) \ {0} if

and only if A = −Aφ.
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This result is false for α = 0:

Example

Let β ∈ H be such that |β| = 1 and φ(β) = −β.

Let A =

[
β 0
0 −β

]
.

We claim that

W
(0)
φ (A) = {0}.

Indeed, for x =

[
b
c

]
∈ H2×1, where b, c ∈ H, the

condition xφx = 0 amounts to bφb + cφc = 0, which,

in turn, implies |b| = |c| (because φ is an isometry on

H). On the other hand, we have bφβb = β|b|2; hence,

xφAx = bφβb− cφβc = β(|b|2 − |c|2),

which is equal to zero as long as |b| = |c|.
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Theorem.

Let A ∈ Hn×n, n ≥ 2.

(1) W
(0)
φ (A) = {0} if and only if either n = 2 and A

has the form

A =

[
a0 + a1β a2 + a3β
−a2 + a3β a0 − a1β

]
for some a0, a1, a2, a3 ∈ R, or n ≥ 3 and A = aI

for some real a.

(2) W
(0)
φ (A) ⊆ Inv (φ) if and only if n ≥ 3 and A is

φ-hermitian (Aφ = A) or n = 2 and A has the

form

A =

[
a1β a2 + a3β

−a2 + a3β −a1β

]
+ B,

for some a1, a2, a3 ∈ R and some φ-hermitian

matrix B.

(3) W
(0)
φ (A) is contained in the real span of β if and

only if A has the form A = aI+B, where a ∈ R

and B is φ-skewhermitian.
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Joint numerical ranges: other involutions

Fix an involution φ other than conjugation

Fix α ∈ Inv (φ)

For a p-tuple of φ-hermitian matrices

A1, . . . , Ap ∈ Hn×n,

let

WJ
(α)
φ (A1, . . . , Ap)

:= {(xφA1x, . . . , xφApx) : xφx = α, x ∈ Hn×1},

be the joint φ-numerical range of A1, . . . , Ap.

WJ
(α)
φ (A1, . . . , Ap) ⊆ (Inv (φ))p

Open Problem.

Study geometric properties of joint φ-numerical

ranges versus algebraic properties of the constituent

matrices.
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For φ-skewhermitian matrices: Aφ = −A

another version of joint numerical ranges:

p-tuple of φ-skewhermitian n×n quaternion matrices

(A1, . . . , Ap)

Define the joint φ-numerical range

WJφ(A1, . . . , Ap) := {(xφA1x, xφA2x, . . . , xφApx) :

x ∈ Hn, ‖x‖ = 1} ⊆ Hp.

Since φ(xφAx) = −xφAx, we clearly have that

WJφ(A1, . . . , Ap) ⊆ {(y1β), . . . , ypβ)

: y1, y2, . . . , yp ∈ R}.
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Theorem

(1) If n 6= 2, then

WJφ(A1, A2, A3, A4, A5)

is convex for every 5-tuple of φ-skewhermitian ma-

trices A1, . . . , A5.

(2) If n = 2, then WJφ(A1, A2, A3, A4) is con-

vex for every 4-tuple of φ-skewhermitian matrices

A1, . . . , A4.

(3) If n = 2, then WJφ(A1, A2, A3, A4, A5) is con-

vex for a 5-tuple of φ-skewhermitian matrices A1, . . . , A5

if and only if the 6-tuple of φ-skewhermitian matri-

ces (A1, . . . , A5, βI) is linearly dependent over the

reals.
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Numerical range in a halfplane

We identify here R2β with R2.

Theorem.

The following statements are equivalent for a pair

of φ-skewhermitian n× n matrices (A,B):

(1) WJφ(A,B) is contained in a half-plane bounded

by a line passing through the origin;

(2) the pencil A + tB is φ-congruent to a pencil of

the form βA′ + tβB′, where A′ and B′ are real

symmetric matrices such that some linear com-

bination (sinµ)A′ + (cosµ)B′, 0 ≤ µ < 2π is

positive semidefinite.

φ-congruence:

A + tB −→ SφAS + tSφBS,

where S ∈ Hn×n is invertible.
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