NUMERICAL RANGES OF QUATERNION MATRICES

Leiba RODMAN

Department of Mathematics The College of William and Mary Williamsburg, VA 23187–8795 e-mail: lxrodm@gmail.com

LAW

June 2014

Contents

- Notation
- Numerical ranges with respect to conjugation
- Joint numerical ranges
- Numerical ranges: other involutions
- Joint numerical ranges: other involutions

Notation

 ${\bf H}$ the skew field of real quaternions

 $x = a_0 + a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \in \mathbf{H}, \qquad a_0, a_1, a_2, a_3 \in \mathbf{R}$ Then

$$\begin{split} \Re(x) &= a_0, \\ \mathfrak{V}(x) &= a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \\ x^* &= a_0 - a_1 \mathbf{i} - a_2 \mathbf{j} - a_3 \mathbf{k} \\ |x| &= \sqrt{a_0^2 + a_1^2 + a_2^2 + a_3^2} \\ A &= [a_{i,j}] \in \mathbf{H}^{m \times n}, \text{ then} \\ A^* &= [a_{j,i}^*] \in \mathbf{H}^{n \times m} \end{split}$$

Numerical ranges with respect to conjugation

The set

 $W^{\mathbf{H}}_{*}(A) := \left\{ x^{*}Ax \ : \ x^{*}x = 1, \qquad x \in \mathbf{H}^{n \times 1} \right\} \subset \mathbf{H}$

is known as the (quaternion) numerical range of

$A \in \mathbf{H}^{n \times n}$

with respect to the conjugation.

Elementary properties:

(1) $W^{\mathbf{H}}_{*}(A)$ is compact and connected

- (2) If $y_1 \in W^{\mathbf{H}}_*(A)$ and $y_2 \in \mathbf{H}$ is such that $\Re y_2 = \Re y_1$ and $|\mathfrak{V}y_2| = |\mathfrak{V}y_1|$, then also $y_2 \in W^{\mathbf{H}}_*(A)$
- (3) $W_*^{\mathbf{H}}(A) = \{0\}$ if and only if A = 0
- (4) $W^{\mathbf{H}}_{*}(A) \subset \mathbf{R}$ if and only if $A = A^{*}$
- (5) $\Re(W^{\mathbf{H}}_{*}(A)) = \{0\}$ if and only if $A = -A^{*}$

(6) for $A \in \mathbf{H}^{n \times n}$, unitary $U \in \mathbf{H}^{n \times n}$, and real a, we have

$$\begin{split} W^{\mathbf{H}}_{*}(U^{*}AU) &= W^{\mathbf{H}}_{*}(A), \\ W^{\mathbf{H}}_{*}(A+aI) &= a + W^{\mathbf{H}}_{*}(A), \\ W^{\mathbf{H}}_{*}(aA) &= aW^{\mathbf{H}}_{*}(A). \end{split}$$

The quaternion numerical ranges are generally nonconvex:

Example

Let

$$A = \begin{bmatrix} \lambda & 0\\ 0 & A_0 \end{bmatrix}, \qquad n \ge 2,$$

where $\lambda \in \mathbf{H} \setminus \{0\}$ has zero real part, and $A_0 \in \mathbf{H}^{(n-1)\times(n-1)}$ is hermitian and either positive or negative definite. Clearly, $\lambda \in W^{\mathbf{H}}_{*}(A)$, and, therefore, also $-\lambda \in W^{\mathbf{H}}_{*}(A)$ (because $-\lambda$ is congruent to λ). But one easily checks that

$$0 = \frac{1}{2}\lambda + \frac{1}{2}(-\lambda)$$

does not belong to $W^{\mathbf{H}}_{*}(A)$. Indeed, if we had

 $x^*\lambda x + y^*A_0y = 0$, for some $x \in \mathbf{H}$, $y \in \mathbf{H}^{(n-1)\times 1}$, then, since $\Re(x^*\lambda x) = 0$ and $\mathfrak{V}(y^*A_0y) = 0$, we must have

$$x^*\lambda x = y^*A_0y = 0,$$

which yields x = 0 and y = 0.

So, Thompson (1996): Intersection of $W^{\mathbf{H}}_{*}(A)$ with closed upper complex half plane is convex

Open Problem

Prove (or disprove) that a convex set $S \subseteq \mathbf{H}$ has the property that $W^{\mathbf{H}}_*(A) \cap S$ is convex for every $A \in \mathbf{H}^{n \times n}$ if and only if there is no nonreal $\lambda \in S$ such that $\overline{\lambda} \in S$

Open Problem

Identify classes of matrices for which convexity of the numerical range holds true

Joint numerical ranges

For a p-tuple of hermitian matrices

 $A_1,\ldots,A_p\in\mathbf{H}^{n\times n},$

the **H**-joint numerical range is defined by

 $WJ^{\mathbf{H}}_{*}(A_{1},\ldots,A_{p})$:= $\{(x^{*}A_{1}x,\ldots,x^{*}A_{p}x)\in\mathbf{R}^{p}: x^{*}x=1, x\in\mathbf{H}^{n\times 1}\}$ Subset of \mathbf{R}^{p} .

Basic convexity result:

Theorem

(1) If $n \neq 2$ and $A_1, \ldots, A_5 \in \mathbf{H}^{n \times n}$ are hermitian, then $WJ^{\mathbf{H}}_*(A_1, \ldots, A_5)$ is convex.

(2) If $A_1, \ldots, A_4 \in \mathbf{H}^{n \times n}$ are hermitian, then

$$WJ^{\mathbf{H}}_{*}(A_1,\ldots,A_4)$$

is convex.

(3) Let $A_1, \ldots, A_5 \in \mathbf{H}^{2 \times 2}$ be hermitian. Then $WJ^{\mathbf{H}}_*(A_1, \ldots, A_5)$

is convex if and only if the 6-tuple of matrices $\{A_1, \ldots, A_5, I_2\}$ is linearly dependent over the reals.

Parts (1) and (2): Au-Yeung, Poon (1979)

Global vs local geometry of numerical ranges

A subset **D** of \mathbf{R}^k will be called a *d*-dimensional halfspace if there exist *d* linearly independent vectors $v_1, \ldots, v_d \in \mathbf{R}^k$ and a nonzero vector $v_0 \in \text{span} \{v_1, \ldots, v_d\}$ such that

 $\mathbf{D} = \{ v \in \operatorname{span} \{ v_1, \dots, v_d \} : \langle v, v_0 \rangle \le 0. \}$

 $\mathbf{F} = \mathbf{R}, \, \mathbf{F} = \mathbf{C}, \, \mathrm{or} \, \mathbf{F} = \mathbf{H}$

Theorem.

The following statements are equivalent for a

pair of hermitian matrices

 $(A_1, A_2), \qquad A_j \in \mathbf{F}^{n \times n}.$

- (a) $WJ_*^{\mathbf{F}}(A_1, A_2)$ is contained in a 2-dimensional halfspace.
- (b) $WJ^{\mathbf{F}}_{*}(X^{*}A_{1}X, X^{*}A_{2}X)$ is contained in a 2-dimensional halfspace for every isometry X into \mathbf{F}^{n} .
- (c) There is $m \ge 2$ such that $WJ_*^{\mathbf{F}}(X^*A_1X, X^*A_2X)$ is contained in

a 2-dimensional halfspace

for every isometry $X : \mathbf{F}^m \longrightarrow \mathbf{F}^n$.

(d) $WJ^{\mathbf{F}}_{*}(X^{*}A_{1}X, X^{*}A_{2}X)$ is contained in

a 2-dimensional halfspace

for every isometry $X : \mathbf{F}^2 \longrightarrow \mathbf{F}^n$.

Holds also for selfadjoint operators in infinite dimensional Hilbert space

Cheung, Li, R. (2007), R. (2008)

Extend to k-tuples:

Conjecture

The following statements are equivalent for a ktuple of $n \times n$ hermitian matrices $A = (A_1, \ldots, A_k)$, and for a fixed integer $d, 0 \leq d \leq k$:

- (a) $WJ_*^{\mathbf{F}}(A)$ is contained in a d-dimensional halfspace.
- (b) $WJ^{\mathbf{F}}_{*}(X^{*}AX)$ is contained in a d-dimensional halfspace for every isometry X into \mathbf{F}^{n} .
- (c) There is $m \ge d$ such that $WJ^{\mathbf{F}}_{*}(X^{*}AX)$ is contained in a 2-dimensional halfspace for every isometry $X : \mathbf{F}^{m} \longrightarrow \mathbf{F}^{n}$.
- (d) $WJ^{\mathbf{F}}_{*}(X^{*}AX)$ is contained in a d-dimensional halfspace for every isometry $X : \mathbf{F}^{d} \longrightarrow \mathbf{F}^{n}$.

Numerical ranges: other involutions

A map ϕ : $\mathbf{H} \longrightarrow \mathbf{H}$ is called an *antiendomor*phism if

$$\phi(xy) = \phi(y)\phi(x) \quad \forall \quad x, y \in \mathbf{H},$$

and

$$\phi(x+y) = \phi(x) + \phi(y) \quad \forall \quad x, y \in \mathbf{H}.$$

An antiendomorphism ϕ is called an *involution* if

$$\phi(\phi(x)) = x \quad \forall \quad x \in \mathbf{H}.$$

Ex.: $\phi(x) = x^*$

Other examples:

$$\phi(a_0 + a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) = a_0 + a_1 \mathbf{i} + a_2 \mathbf{j} - a_3 \mathbf{k}$$

In general: If ϕ is an involution different from the conjugation, then ϕ is real linear and

$$\phi = \begin{bmatrix} 1 & 0 \\ 0 & T \end{bmatrix}$$

with respect to the real basis $\{1, i, j, k\}$, where T is 3×3 real orthogonal symmetric matrix with eigenvalues 1, 1, -1

There is $v \in \mathbf{H}$, |v| = 1, unique up to negation, such that $\phi(v) = -v$

$$\operatorname{Inv}(\phi) = \{ x \in \mathbf{H} : \phi(x) = x \}$$

3-dimensional real subspace of \mathbf{H}

$$A = [a_{i,j}]_{i=1,j=1}^{m,n} \in \mathbf{H}^{m \times n} \text{ then}$$
$$A_{\phi} = [\phi(a_{j,i}] \in \mathbf{H}^{n \times m}$$

Numerical ranges

$$A \in \mathbf{H}^{n \times n}$$

fixed $\alpha \in \text{Inv}(\phi)$:
$$W_{\phi}^{(\alpha)}(A) := \{ x_{\phi}Ax \ : \ x_{\phi}x = \alpha, \quad x \in \mathbf{H}^{n \times 1} \}.$$

Writing $\alpha = \gamma_{\phi}\gamma$ for some $\gamma \in \mathbf{H}$ we see that
$$W_{\phi}^{(\alpha)}(A) = \gamma_{\phi}W_{\phi}^{(1)}(A)\gamma,$$

assuming $\alpha \neq 0$. Thus, we can focus on

$$W_{\phi}^{(1)}(A)$$
 and $W_{\phi}^{(0)}(A)$.

To avoid trivialities, in the latter case $n \ge 2$ will be assumed.

Elementary properties:

Proposition If $A, U \in \mathbf{H}^{n \times n}$, where U is ϕ -unitary, and if $a \in \mathbf{R}$, then

$$\begin{split} W_{\phi}^{(\alpha)}(U_{\phi}AU) &= W_{\phi}^{(\alpha)}(A), \\ W_{\phi}^{(\alpha)}(A+aI) &= W_{\phi}^{(\alpha)}(A) + a\alpha, \\ W_{\phi}^{(\alpha)}(aA) &= a \, W_{\phi}^{(\alpha)}(A) \end{split}$$

for every $\alpha \in \text{Inv}(\phi)$.

 $W_{\phi}^{(\alpha)}(A)$ is connected but not necessarily bounded

Open Problem Identify those $\alpha \in \text{Inv}(\phi)$ and $A \in \mathbf{H}^{n \times n}$ for which $W_{\phi}^{(\alpha)}(A)$ is bounded.

A complete answer is available for the case $\alpha = 0$:

Theorem

The numerical range $W_{\phi}^{(0)}(A)$, where $A \in \mathbf{H}^{n \times n}$, $n \geq 2$, is bounded if and only if $n \geq 3$ and A = aIfor some real a, or n = 2 and A has the form

$$A = \begin{bmatrix} a_0 + a_1\beta & a_2 + a_3\beta \\ -a_2 + a_3\beta & a_0 - a_1\beta \end{bmatrix}$$

for some $a_0, a_1, a_2, a_3 \in \mathbf{R}$

Proposition

Let $A \in \mathbf{H}^{n \times n}$. Then:

- (1) $W_{\phi}^{(\alpha)}(A) = \{0\}$ for some (equivalently, for all) $\alpha \in \operatorname{Inv}(\phi) \setminus \{0\}$ if and only if A = 0;
- (2) $W_{\phi}^{(\alpha)}(A) \subseteq \operatorname{Inv}(\phi)$ for some (equivalently, for all) $\alpha \in \operatorname{Inv}(\phi) \setminus \{0\}$ if and only if $A = A_{\phi}$;
- (3) $W_{\phi}^{(\alpha)}(A)$ is contained in the real span of β for some (equivalently, for all) $\alpha \in \text{Inv}(\phi) \setminus \{0\}$ if and only if $A = -A_{\phi}$.

This result is false for $\alpha = 0$:

Example

Let $\beta \in \mathbf{H}$ be such that $|\beta| = 1$ and $\phi(\beta) = -\beta$. Let $A = \begin{bmatrix} \beta & 0 \\ 0 & -\beta \end{bmatrix}$. We claim that

 $W_{\phi}^{(0)}(A) = \{0\}.$ Indeed, for $x = \begin{bmatrix} b \\ c \end{bmatrix} \in \mathbf{H}^{2 \times 1}$, where $b, c \in \mathbf{H}$, the condition $x_{\phi}x = 0$ amounts to $b_{\phi}b + c_{\phi}c = 0$, which, in turn, implies |b| = |c| (because ϕ is an isometry on **H**). On the other hand, we have $b_{\phi}\beta b = \beta |b|^2$; hence,

$$x_{\phi}Ax = b_{\phi}\beta b - c_{\phi}\beta c = \beta(|b|^2 - |c|^2),$$

which is equal to zero as long as |b| = |c|.

Theorem.

Let $A \in \mathbf{H}^{n \times n}$, $n \ge 2$.

(1) $W_{\phi}^{(0)}(A) = \{0\}$ if and only if either n = 2 and A has the form

$$A = \begin{bmatrix} a_0 + a_1\beta & a_2 + a_3\beta \\ -a_2 + a_3\beta & a_0 - a_1\beta \end{bmatrix}$$

for some $a_0, a_1, a_2, a_3 \in \mathbf{R}$, or $n \ge 3$ and A = aIfor some real a.

(2) $W_{\phi}^{(0)}(A) \subseteq \text{Inv}(\phi)$ if and only if $n \ge 3$ and A is ϕ -hermitian $(A_{\phi} = A)$ or n = 2 and A has the form

$$A = \begin{bmatrix} a_1\beta & a_2 + a_3\beta \\ -a_2 + a_3\beta & -a_1\beta \end{bmatrix} + B,$$

for some $a_1, a_2, a_3 \in \mathbf{R}$ and some ϕ -hermitian matrix B.

(3) $W_{\phi}^{(0)}(A)$ is contained in the real span of β if and only if A has the form A = aI + B, where $a \in \mathbf{R}$ and B is ϕ -skewhermitian.

Joint numerical ranges: other involutions

Fix an involution ϕ other than conjugation

Fix $\alpha \in \text{Inv}(\phi)$

For a *p*-tuple of ϕ -hermitian matrices

$$A_1,\ldots,A_p\in\mathbf{H}^{n\times n},$$

let

$$WJ_{\phi}^{(\alpha)}(A_{1},\ldots,A_{p})$$

:= { $(x_{\phi}A_{1}x,\ldots,x_{\phi}A_{p}x)$: $x_{\phi}x = \alpha, \quad x \in \mathbf{H}^{n \times 1}$ },
be the *joint* ϕ -numerical range of A_{1},\ldots,A_{p} .

$$WJ_{\phi}^{(\alpha)}(A_1,\ldots,A_p) \subseteq (\operatorname{Inv}(\phi))^p$$

Open Problem.

Study geometric properties of joint ϕ -numerical ranges versus algebraic properties of the constituent matrices. For ϕ -skewhermitian matrices: $A_{\phi} = -A$ another version of joint numerical ranges: p-tuple of ϕ -skewhermitian $n \times n$ quaternion matrices (A_1, \ldots, A_p)

Define the joint ϕ -numerical range

$$WJ_{\phi}(A_1,\ldots,A_p) := \{ (x_{\phi}A_1x, x_{\phi}A_2x, \ldots, x_{\phi}A_px) :$$
$$x \in \mathbf{H}^n, \ \|x\| = 1 \} \subseteq \mathbf{H}^p.$$

Since $\phi(x_{\phi}Ax) = -x_{\phi}Ax$, we clearly have that

$$WJ_{\phi}(A_1, \dots, A_p) \subseteq \{(y_1\beta), \dots, y_p\beta\}$$

: $y_1, y_2, \dots, y_p \in \mathbf{R}\}.$

Theorem

(1) If $n \neq 2$, then

$$WJ_{\phi}(A_1, A_2, A_3, A_4, A_5)$$

is convex for every 5-tuple of ϕ -skewhermitian matrices A_1, \ldots, A_5 .

(2) If n = 2, then $WJ_{\phi}(A_1, A_2, A_3, A_4)$ is convex for every 4-tuple of ϕ -skewhermitian matrices A_1, \ldots, A_4 .

(3) If n = 2, then $WJ_{\phi}(A_1, A_2, A_3, A_4, A_5)$ is convex for a 5-tuple of ϕ -skewhermitian matrices A_1, \ldots, A_5 if and only if the 6-tuple of ϕ -skewhermitian matrices $(A_1, \ldots, A_5, \beta I)$ is linearly dependent over the reals.

Numerical range in a halfplane

We identify here $\mathbf{R}^2\beta$ with \mathbf{R}^2 .

Theorem.

The following statements are equivalent for a pair of ϕ -skewhermitian $n \times n$ matrices (A, B):

- (1) $WJ_{\phi}(A, B)$ is contained in a half-plane bounded by a line passing through the origin;
- (2) the pencil A + tB is φ-congruent to a pencil of the form βA' + tβB', where A' and B' are real symmetric matrices such that some linear combination (sin μ)A' + (cos μ)B', 0 ≤ μ < 2π is positive semidefinite.

 ϕ -congruence:

$$A + tB \longrightarrow S_{\phi}AS + tS_{\phi}BS,$$

where $S \in \mathbf{H}^{n \times n}$ is invertible.