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I. Subspace lattices

• H is a complex Hilbert space; B(H) is the set of bounded linear
operators on H

• projection P in B(H)

P2 = P and P∗ = P

• P,Q projections

P ≤ Q if PQ = P (= QP)

• The set of projections together with the partial order relation
“ ≤ ” is a complete lattice.



I. Subspace lattices

• Nest N - a totally ordered family of projections N ⊆ B(H)
containing 0 and the identity I

• Complete nest N - if N is a complete sublattice of the lattice
of projections in B(H)

• Nest algebra T (N )

all operators T ∈ B(H) such that, for all P ∈ N ,

T (P(H)) ⊆ P(H)

equivalently P⊥TP = 0 (with P⊥ = I − P)
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I. Subspace lattices

Examples

Upper triangular n × n complex matrices

Block upper triangular n × n complex matrices

Volterra nest algebra
H = L2[0, 1] (Lebesgue measure)
Pt projection onto the space of functions f such that f = 0
a.e. on [t, 1]

N = {Pt : 0 ≤ t ≤ 1}
T (N ) is called the Volterra nest algebra
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I. Subspace lattices

• P ∈ N
P− =

∨
{Q ∈ N : Q < P}

• Continuous nest N

P− = P for all P ∈ N

• Continuous nest algebra T (N ) – nest N is continuous

The Volterra nest algebra is a continuous nest algebra.
The nest algebras of the other examples are not continuous.
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I. Subspace lattices A density theorem

Finite rank operators are decomposable (Ringrose ’65)

Lemma
Every finite rank operator in a nest algebra can be written as a
finite sum of rank 1 operators lying in the nest algebra.

Finite rank operators are dense (J.A. Erdos ’68)

Theorem
The set of finite rank operators lying in the unit ball of a nest
algebra is dense in the ball for the strong operator topology.
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II. Ideals

• Ideal I
complex subspace I of the nest algebra T (N ) s. t.

T (N ) I ⊆ I and I T (N ) ⊆ I

• homomorphism ϕ : N → N

∀P,Q ∈ N P ≤ Q =⇒ ϕ(P) ≤ ϕ(Q)

• left order continuous homomorphism
IfM⊆ N , then

ϕ(
∨
M) =

∨
ϕ(M)
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II. Ideals

I weakly closed ideal
1o Finite rank operators in I are decomposable (Erdos, Power ’82)
2o (Erdos, Power ’82)

Theorem
T (N ) nest algebra, I weakly closed ideal. Then

I = {T ∈ B(H) : P̃⊥TP = 0},

where P 7→ P̃ is a left order continuous homomorphism on the nest
N such that P̃ ≤ P for each P ∈ N .

P̃ is the projection onto span
(⋃

T∈I TP(H)
)‖·‖

(Proof uses Erdos’ density theorem and decomposability (cf. 1o).)
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II. Ideals

Nest algebra T (N ) with product

T ◦ S =
1
2

(TS + ST )

Complex subspace J
Jordan ideal

J ◦ T (N ) ⊆ J



II. Ideals

Nest algebra T (N ) with product

T ◦ S =
1
2

(TS + ST ) [T , S ]= TS − ST

Complex subspace J
Jordan ideal

J ◦ T (N ) ⊆ J

Complex subspace L
Lie ideal

[L, T (N )] ⊆ L



III. Finite rank operators

rank 1 operator x ⊗ y : H → H

z 7→ 〈z , x〉y x , y , z ∈ H

(Ringrose ’65)
x ⊗ y ∈ T (N ) iff P−x = 0 and Py = y (P ∈ N )

where
P =

∧
{Q ∈ N : Qy = y}

Consequence:
If the nest N is continuous, then x ⊥ y
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III. Finite rank operators

Projections associated to x ⊗ y

P̂x =
∨
{Q ∈ N : Qx = 0}

Py =
∧
{Q ∈ N : Qy = y}

Pyy = y and P̂xx = 0

When the nest is continuous:
1 x ⊗ y ∈ T (N ) iff Py ≤ P̂x

2 x ⊗ y ∈ T (N ) ⇒ Pyx = 0
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III. Finite rank operators

Theorem

T (N ) nest algebra (respectively, continuous nest algebra)
M norm closed Jordan ideal (respectively, Lie ideal)

x ⊗ y ∈M and w ⊗ z ∈ B(H) satisfying

P̂x ≤ P̂w and Pz ≤ Py .

Then, w ⊗ z ∈M.

The “corner” of x ⊗ y


0 PyT (N )P̂⊥x

0 0


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III. Finite rank operators

Proposition

T (N ) nest algebra (respectively, continuous nest algebra)
M norm closed Jordan ideal (respectively, Lie ideal),
Let, for all P ∈ N ,

P ′ =
∨{

Py ∈ N : x ⊗ y ∈M ∧ P̂x < P
}

(1)

Then
the mapping P 7→ P ′ is a left order continuous homomorphism

P ′ ≤ P for all P ∈ N



III. Finite rank operators

Characterisation of the rank 1 operators inM

Lemma

T (N ) nest algebra (respectively, continuous nest algebra)
M norm closed Jordan ideal (respectively, Lie ideal),

Then
x ⊗ y ∈M if and only if, for all projections P ∈ N ,

P ′⊥(x ⊗ y)P = 0

Here P 7→ P ′ is the left order continuous homomorphism defined above.



III. Finite rank operators

Decomposability of the finite rank operators in L

Theorem

T (N ) continuous nest algebra, L norm closed Lie ideal
T ∈ L finite rank operator

Then

T can be written as a finite sum of rank one operators lying in L.



III. Finite rank operators
P 7→ P′ =

∨{
Py ∈ N : x ⊗ y ∈ J ∧ P̂x < P

}

Characterisation of the finite rank operators in L

Theorem

T (N ) continuous nest algebra, L norm closed Lie ideal,
T finite rank operator

Then
T ∈ L if and only if, for all projections P ∈ N ,

P ′⊥TP = 0



III. Finite rank operators
P 7→ P′ =

∨{
Py ∈ N : x ⊗ y ∈ J ∧ P̂x < P

}

Proof. Consequence of the decomposability of the finite rank
operators and the characterisation of rank 1 operators in L.

recall the lemma

x ⊗ y ∈ L iff P ′⊥(x ⊗ y)P = 0



III. Finite rank operators Example

Continuity of the nest is important

Let
N - nest such that

∃P∈N dim(P − P−)(H) ≥ 2.

L - norm closed subspace generated by the projection P − P−
and

{
S ∈ T (N ) : S = P−SP⊥− + (P − P−)SP⊥

}
(associative ideal)
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III. Finite rank operators Example

1 L is a norm closed Lie ideal and does not contain any (finite
rank) operator T satisfying

T = (P − P−)T (P − P−),

apart from those operators lying in the span of P − P−.

2 Hence none of the results presented for the finite rank
operators apply to the norm closed Lie ideal L.
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III. Finite rank operators

Question: Does the decomposability of the finite rank operators
still hold if the nest has only atoms of dimension one?

Answer: No.

Counter-example:
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


︸ ︷︷ ︸

T (N )

L = span{I}
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III. Jordan ideals
P 7→ P′ =

∨{
Py ∈ N : x ⊗ y ∈ J ∧ P̂x < P

}

(Lu–Yu; O.)

Theorem
T (N ) nest algebra, J weakly closed subspace
The following assertions are equivalent:

1 J is a weakly closed Jordan ideal
2 There exists a left order continuous homomorfism P 7→ P ′ on
N such that

J = {T ∈ B(H) : P ′⊥TP = 0 for all P ∈ N}

3 J is a weakly closed (associative) ideal



V. Lie ideals

T (N ) nest algebra

diagonal of T (N ) D(N ) = T (N ) ∩ T (N )∗

(Hudson, Marcoux, Sourour ’98)

Theorem
L weakly closed Lie ideal
Then, there exist
K(L) weakly closed associative ideal
DK(L) von Neumann subalgebra of the diagonal
such that

K(L) ⊆ L ⊆ K(L) +DK(L)



V. Lie ideals

K(L) = span{PTP⊥ : T ∈ L, P ∈ N}
w

K(L) is constructed starting with diagonal disjoint
building blocks and, in some situations, K(L) is itself
diagonal disjoint.

DK(L) = {D ∈ D(N ) : ∀P ∈ N0 ∃λ ∈ C D(P − P̃) = λ(P − P̃)}

with
P 7→ P̃ homomorphism associated with K(L) (Erdos and Power)
and

N0 = {P ∈ N : P̃ < P−}
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V. Lie ideals joint work with J. Almeida

Definition

L Lie ideal P ∈ N
1 condition I (P − P−)T (N )(P − P−) ⊆ L

define

P ′′ =
∨
{Py : ∃x∈H x ⊗ y ∈ L ∧ P̂x < P}

2 condition II otherwise
define

P ′′ =
∨
{Py : ∃x∈H x ⊗ y ∈ L ∧ P̂x < P ∧ Py ≤ P−}
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V. Lie ideals

Proposition

L Lie ideal P 7→ P ′′ left order continuous homomorphism

Definition

L Lie ideal

J (L) = {X ∈ B(H) : (I − P ′′)XP = 0 for all P in N}

FACT: J (L) associative ideal
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Then
J (L) is the largest weakly closed associative ideal contained in L

K(L) ⊆ J (L) ⊆ L
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V. Lie ideals

Example. J (L) might be strictly larger than K(L)
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗


︸ ︷︷ ︸

T (N )


0 ∗ ∗ ∗
0 α ∗ ∗
0 ∗ −α ∗
0 0 0 ∗


︸ ︷︷ ︸

L
0 ∗ ∗ ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 ∗


︸ ︷︷ ︸

J (L)


0 ∗ ∗ ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 0


︸ ︷︷ ︸

K(L)



V. Lie ideals

L weakly closed Lie ideal

Definition

Define DL as the projection onto the subspace
∨

P∈N (P − P ′′)(H).

Definition

D̆(L) = {D ∈ DJ (L) : D(I − DL) = 0}

Proposition

D̆(L) is
weakly closed ∗-subalgebra of DJ (L)

unital algebra, with unit DL
associative ideal of DJ (L).
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V. Lie ideals

Theorem

L weakly closed Lie ideal
Then

J (L) ⊆ L ⊆ J (L)⊕ D̆(L)

K(L) ⊆ J (L) ⊆ L ⊆ J (L)⊕ D̆(L) = K(L) +DK(L) .


