The total graphs of finite commutative (semi)rings

Polona Oblak

(joint work with David Dolžan)

University of Ljubljana, Slovenia

LAW'14, Ljubljana

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

 $\Gamma(S)$ is the zero-divisor graph of *S*, if:

 $\Gamma(S)$ is the zero-divisor graph of *S*, if:

• vertices: $x \in S$ zero-divisor, $x \neq 0$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $\Gamma(S)$ is the zero-divisor graph of *S*, if:

• vertices: $x \in S$ zero-divisor, $x \neq 0$

• x - y is an edge $\iff x \neq y$ and xy = 0 or yx = 0

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

 $\Gamma(S)$ is the zero-divisor graph of *S*, if:

- vertices: $x \in S$ zero-divisor, $x \neq 0$
- x y is an edge $\iff x \neq y$ and xy = 0 or yx = 0

Beck ['88]

 $\Gamma(S)$ is the zero-divisor graph of *S*, if:

- vertices: $x \in S$ zero-divisor, $x \neq 0$
- x y is an edge $\iff x \neq y$ and xy = 0 or yx = 0

Beck ['88], Akbari, Anderson, Badawi, DeMeyer, Livingston, Mohammadian, Mulay, Redmond, ... ['99-]

 $S \text{ semiring/ring} \longrightarrow \tau(S)$ $Z(S) \dots \text{ zero-divisors of } S$

Polona Oblak Total graphs of (semi)rings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

 $\begin{array}{rcl} S \text{ semiring/ring} & \longrightarrow & \tau(S) \\ Z(S) \dots \text{ zero-divisors of } S \end{array}$

 $\tau(S)$ is the total graph of *S*, if:

▲御▶ ▲理▶ ▲理▶ 二理

 $\begin{array}{rcl} S \text{ semiring/ring} & \longrightarrow & \tau(S) \\ Z(S) \dots \text{zero-divisors of } S \end{array}$

 $\tau(S)$ is the total graph of *S*, if:

• vertices: all elements $x \in S$

S semiring/ring $\longrightarrow \tau(S)$ Z(S)... zero-divisors of S

 $\tau(S)$ is the total graph of *S*, if:

• vertices: all elements $x \in S$

• x - y is an edge $\iff x \neq y$ and x + y is a zero-divisor.

 $2^{\circ} 0 0^{3}$ $0^{\circ} 0^{\circ} 1$ $\tau(\mathbb{Z}_{4})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Polona Oblak Total graphs of (semi)rings

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

F a field, $char(F) \neq 2$

$$\begin{array}{c}
2 \\
0 \\
0 \\
\tau(\mathbb{Z}_4) = 2K_2
\end{array}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

F a field, $char(F) \neq 2$

$$\begin{array}{c}2\\\\\\\\0\\\\\\\tau(\mathbb{Z}_{4})=2\mathcal{K}_{2}\end{array}$$

$$(0,1)$$

$$(0,0)$$

$$(1,1)$$

$$(1,0)$$

$$\tau(\mathbb{Z}_{2}\times\mathbb{Z}_{2})=C_{4}$$

F a field, $char(F) \neq 2$

F a field, char(F) = 2

◆□ → ◆御 → ◆臣 → ◆臣 → ○臣

$$\begin{array}{c} 2 \\ 0 \\ 0 \\ \tau(\mathbb{Z}_4) = 2K_2 \end{array}$$

$$(0,1) (1,1) (0,0) (1,0$$

$$0 \circ \int_{\tau(F)} \circ F_1 \cup K_2 \cup K_2 \cup \dots$$

F a field, $char(F) \neq 2$

F a field, char(F) = 2

$$Z(R) \triangleleft R$$
 $R - Z(R)$

$$Z(R) \triangleleft R$$
 $R - Z(R)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

Theorem (Anderson, Badawi, '08)

R commutative ring.

If $\tau(\mathbf{R})$ connected, then diam $(\tau(\mathbf{R})) = d(0, 1)$.

Theorem (Anderson, Badawi, '08)

R commutative ring. If $\tau(R)$ connected, then diam $(\tau(R)) = d(0, 1)$. If *R* finite, then diam $(\tau(R)) = 2$.

If F is a field and $n \ge 2$, then

 $\operatorname{diam}(\tau(M_n(F)) = 2$

If F is a field and $n \ge 2$, then

diam($\tau(M_n(F)) = 2$ and $\tau(M_n(F))$ is Hamiltonian.

If F is a field and $n \ge 2$, then

diam($\tau(M_n(F)) = 2$ and $\tau(M_n(F))$ is Hamiltonian.

If F is a field and $n \ge 2$, then

diam($\tau(M_n(F)) = 2$ and $\tau(M_n(F))$ is Hamiltonian.

If F is a field and $n \ge 2$, then

diam($\tau(M_n(F)) = 2$ and $\tau(M_n(F))$ is Hamiltonian.

$$R/J \cong M_{n_1}(F) \times M_{n_2}(F_2) \times \ldots \times M_{n_t}(F_t)$$

If F is a field and $n \ge 2$, then

diam($\tau(M_n(F)) = 2$ and $\tau(M_n(F))$ is Hamiltonian.

$$R/J \cong M_{n_1}(F) \times M_{n_2}(F_2) \times \ldots \times M_{n_t}(F_t)$$

Theorem

 $|R| < \infty$ $\tau(R)$ is Hamiltonian if and only if R is not local.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

$$\begin{array}{c} 2 \\ 0 \\ 0 \\ \tau(\mathbb{Z}_4) = 2K_2 \end{array}$$

$$(0,1) (1,1) (0,0) (1,0$$

$$0 \circ \int_{\tau(F)} \circ F_1 \cup K_2 \cup K_2 \cup \dots$$

F a field, $char(F) \neq 2$

F a field, char(F) = 2

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

- (S, +) is a commutative <u>monoid</u> with identity element 0,
- (S, \cdot) is a monoid with identity element 1,
- Operations + and · are connected by distributivity,
- 0 annihilates S.

- (S, +) is a commutative <u>monoid</u> with identity element 0,
- (S, \cdot) is a monoid with identity element 1,
- Operations + and · are connected by distributivity,
- 0 annihilates S.

Example

rings, positive cones of ordered rings ($\mathbb{R}^+, \mathbb{Z}^+, \ldots$),

- (S, +) is a commutative <u>monoid</u> with identity element 0,
- (S, \cdot) is a monoid with identity element 1,
- Operations + and · are connected by distributivity,
- 0 annihilates S.

Example

rings, positive cones of ordered rings (\mathbb{R}^+ , \mathbb{Z}^+ , ...), binary Boolean semiring \mathscr{B} ,

- (S, +) is a commutative <u>monoid</u> with identity element 0,
- (S, \cdot) is a monoid with identity element 1,
- Operations + and · are connected by distributivity,
- 0 annihilates S.

Example

rings, positive cones of ordered rings (\mathbb{R}^+ , \mathbb{Z}^+ , ...), binary Boolean semiring \mathscr{B} , distributive lattices,

- (S, +) is a commutative <u>monoid</u> with identity element 0,
- (S, \cdot) is a monoid with identity element 1,
- Operations + and · are connected by distributivity,
- 0 annihilates S.

Example

rings, positive cones of ordered rings (\mathbb{R}^+ , \mathbb{Z}^+ , ...), binary Boolean semiring \mathscr{B} , distributive lattices, max algebra $\mathbb{R}^+(\max,\cdot)$, tropical semiring $\mathbb{R} \cup \{-\infty\}(\max,+)$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- (S, +) is a commutative <u>monoid</u> with identity element 0,
- (S, \cdot) is a monoid with identity element 1,
- Operations + and · are connected by distributivity,
- 0 annihilates S.

Example

```
rings, positive cones of ordered rings (\mathbb{R}^+, \mathbb{Z}^+, ...),
binary Boolean semiring \mathscr{B},
distributive lattices,
max algebra \mathbb{R}^+(\max, \cdot), tropical semiring \mathbb{R} \cup \{-\infty\}(\max, +),
matrices over semirings,...
```


<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 $SP_4 = \{0, 1, 2, b\}$

+	0	1	2	b
0	0	1	2	b
1	1	2	1	2
2	2	1	2	1
b	b	2	1	0

•	0	1	2	b
0	0	0	0	0
1	0	1	2	b
2	0	2	2	0
b	0	b	0	b

 $SP_4 = \{0, 1, 2, b\}$

$$au(SP_4) = \begin{array}{ccc} 0 & 0 & 0 \\ 2 & 0 & b & 1 \end{array}$$

2 | b

b

0

b

0 0

2

2

 $SP_4 = \{0, 1, 2, b\}$

•	0	1	2	b
0	0	0	0	0
1	0	1	2	b
2	0	2	2	0
b	0	b	0	b

$$au(SP_4) = \begin{array}{ccc} 0 & -0 & -0 \\ 2 & 0 & b & 1 \end{array}$$

If S a finite commutative semiring and $4 \leq girth(\tau(S)) < \infty$, then $S \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

If *S* is a finite commutative semiring and $girth(\tau(S)) = \infty$, then

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

If *S* is a finite commutative semiring and $girth(\tau(S)) = \infty$, then

au(S)	S
ISIK.	S a field, $char(S) = 2$
$\frac{ S -1}{2}K_2\cup K_1$	S a field, $char(S) \neq 2$
$K_2 \cup mK_1$	
2 <i>K</i> ₂	$R\cong\mathbb{Z}_4$
$P_3 \cup nK_1, n \ge 1$	
P ₄	

If *S* is a finite commutative semiring and $girth(\tau(S)) = \infty$, then

au(S)	S
SK.	S a field, $char(S) = 2$
3 1	S is an antinegative entire semiring
$\frac{ S -1}{2}K_2\cup K_1$	S a field, $char(S) \neq 2$
<i>K</i> ₂ ∪ <i>mK</i> ₁	
2 <i>K</i> ₂	$R\cong\mathbb{Z}_4$
$P_3 \cup nK_1, n \ge 1$	
P ₄	

If *S* is a finite commutative semiring and $girth(\tau(S)) = \infty$, then

au(S)	S
SK.	S a field, $char(S) = 2$
0 N ₁	S is an antinegative entire semiring
$\frac{ S -1}{2}K_2\cup K_1$	S a field, char(S) \neq 2
<i>K</i> ₂ ∪ <i>mK</i> ₁	
2 <i>K</i> ₂	$R\cong\mathbb{Z}_4$
$P_3 \cup nK_1, n \ge 1$	S contains a subsemiring \cong DL ₄
P ₄	

If S is a finite commutative semiring and $girth(\tau(S)) = \infty$, then

au(S)	S
SK.	S a field, char $(S) = 2$
	S is an antinegative entire semiring
$\frac{ S -1}{2}K_2\cup K_1$	S a field, char(S) \neq 2
<i>K</i> ₂∪ <i>mK</i> ₁	
2 <i>K</i> ₂	$R\cong\mathbb{Z}_4$
$P_3 \cup nK_1, n \ge 1$	S contains a subsemiring \cong DL ₄
P ₄	$S \cong SP_4$

If S is a finite commutative semiring and $girth(\tau(S)) = \infty$, then

au(S)	S
<i>S</i> <i>K</i> ₁	S a field, $char(S) = 2$
	S is an antinegative entire semiring
$\frac{ S -1}{2}K_2\cup K_1$	S a field, char(S) \neq 2
	$S=T\cup\{a\},$
$K_2 \cup mK_1$	T antinegative entire semiring,
	$a^2 = 0$ and $ta = a$ for all $t \in T - \{0\}$
2 <i>K</i> ₂	$R\cong\mathbb{Z}_4$
$P_3 \cup nK_1, n \ge 1$	S contains a subsemiring \cong DL ₄
P ₄	$S \cong SP_4$