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Definition

Let T ∈ B(X ). A vector x ∈ X is called irregular if
supn ‖T nx‖ = ∞ and infn ‖T nx‖ = 0.

Example

(Beauzamy) There exists T ∈ B(H) such that each non-zero
vector is irregular.
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Proposition

Let T ∈ B(X ). The following statements are equivalent:

(i) supn ‖T n‖ = ∞;
(ii) there exists x ∈ X such that supn ‖T nx‖ = ∞;
(iii) there exists a residual subset X1 ⊂ X consisting of vectors
with unbounded orbits.

Proposition

Let T ∈ B(X ). Suppose that there exist a dense subset X0 ⊂ X
such that infn ‖T nx‖ = 0 for all x ∈ X0.
Then the set {x ∈ X : infn ‖T nx‖ = 0} is residual.
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Corollary

Let T ∈ B(X ). If the set of all irregular vectors is dense then it is
residual.
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Definition

Let M be a metric space, A continuous mapping f : M → M is
called Li-Yorke chaotic

if there exists an uncountable set Γ ⊂ M
such that for all x , y ∈ Γ, x 6= y we have

lim inf
n

dist{f n(x), f n(y)} = 0

and
lim sup

n
dist{f n(x), f n(y)} > 0.

Such a pair x , y is called a Li-Yorke pair.

Theorem

Let T ∈ B(X ). The following statements are equivalent:
(i) there exists a Li-Yorke pair for T ;
(ii) T is Li-Yorke chaotic;
(iii) there exists an irregular vector.
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Theorem

Let T ∈ B(X ). Suppose that the set {x ∈ X : infn ‖T nx‖ = 0} is
dense. The following statements are equivalent:

(i) there exists a Li-Yorke pair for T ;
(ii) T is Li-Yorke chaotic;
(iii) there exists an irregular vector.
(iv) the set of all irregular vectors is residual;
(v) there exists a dense subspace Y ⊂ X consisting of irregular
vectors (up to 0).
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Corollary

Let T ∈ B(X ), let x ∈ X be a cyclic vector satisfying
inf ‖T nx‖ = 0.

Let sup ‖T n‖ = ∞. Then there exists a dense
linear manifold consisting of irregular vectors.
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Definition

Let T ∈ B(X ). A vector x ∈ X is called distributionally irregular
for T if there exist subsets A, B ⊂ N with densA = 1, densB = 1,

lim
n→∞,n∈A

‖T nx‖ = 0

and
lim

n→∞,n∈B
‖T nx‖ = ∞.
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Theorem

Let T ∈ B(X ). The following statements are equivalent:

(i) there exists a vector with distributionally unbounded orbit;
(ii) the set of all vectors with distributionally unbounded orbits is
residual;
(iii) for every k there exists yk ∈ X, ‖yk‖ = 1 and nk such that

card{n ≤ nk : ‖T nyk‖ > k} ≥ nk (1− k−1);

(iv) there exists ε > 0, such that for every k there exists yk ∈ X,
‖yk‖ = 1 and nk such that

card{n ≤ nk : ‖T nyk‖ > k} ≥ εnk .
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Theorem

Let T1 ∈ B(X ). Suppose that the set of all vectors with orbits
distributionally unbounded away from 0 is dense.

Then this set
is residual.

Corollary

Let T ∈ B(X ). If the set of all distributionally irregular vectors is
dense then it is residual.
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Definition

Let M be a metric space. A continuous mapping f : M → M is
called distributionally chaotic if there exists an uncountable set
Γ ⊂ M and ε > 0 such that for all x , y ∈ Γ, x 6= y there exist
subsets A, B ⊂ N with upper density 1 such that

lim
n∈A

dist{f n(x), f n(y)} = 0

and
lim inf

n∈B
dist{f n(x), f n(y)} > ε.

Such a pair x , y is called distributionally chaotic pair.
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Theorem

Let T ∈ B(X ). The following statements are equivalent:

(i) there exists a distributionally chaotic pair for T ;
(ii) T is distributionally chaotic;
(iii) there exists a distributionally irregular vector.
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Theorem

Let T ∈ B(X ). Suppose that X0 ⊂ X is a dense subset such
that limn→∞ ‖T nx‖ = 0 (x ∈ X0).

The following statements
are equivalent:
(i) there exists a vector x ∈ X with distributionally unbounded
orbit;
(ii) there exists a dense linear manifold consisting (up to 0) from
distributionally irregular vectors.
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