Median Eigenvalues of Graphs

Bojan Mohar

Simon Fraser University (Canada) and IMFM (Slovenia)

(partly joint work with Behruz Tayfeh-Rezaie)

June 2014

Graph eigenvalues

G graph vertex-set V = V(G), edge-set E = E(G), n = |V|

Adjacency matrix: $A = A(G) = (a_{uv})_{u,v \in V}$

where $a_{uv} = 1$ if $u \sim v$ and $a_{uv} = 0$ if $u \not\sim v$.

Graph eigenvalues

G graph vertex-set V = V(G), edge-set E = E(G), n = |V|

Adjacency matrix: $A = A(G) = (a_{uv})_{u,v \in V}$

where $a_{uv} = 1$ if $u \sim v$ and $a_{uv} = 0$ if $u \not\sim v$.

Eigenvalue of G: eigenvalue of A = A(G); $Ax = \lambda x$ ($x \neq 0$)

All eigenvalues are real

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$

and
$$\sum_{i=1}^{n} \lambda_i = 0$$
 (since $tr(A) = 0$).

Hückel theory

Hückel Theory: Eigenvalues of a molecular graph correspond to energy levels of electrons (two electrons per each energy level), and eigenvectors give descriptions of molecular orbitals.

Fowler & Pisanski (2010):

HL-index:
$$R(G) = \max\{|\lambda_H|, |\lambda_L|\}$$

where $H = \lfloor \frac{n+1}{2} \rfloor$ and $L = \lceil \frac{n+1}{2} \rceil$.

Question: What is the largest value of R(G) taken over all "chemically relevant graphs"?

Median eigenvalues of subcubic graphs

Subcubic graph: maximum degree ≤ 3

Theorem (M. 2012+) G subcubic
$$\Rightarrow R(G) \le \sqrt{2}$$

Proof by combinatorial techniques and interlacing.

Median eigenvalues of subcubic graphs

Subcubic graph: maximum degree ≤ 3

Theorem (M. 2012+) G subcubic
$$\Rightarrow$$
 $R(G) \leq \sqrt{2}$

Proof by combinatorial techniques and interlacing.

Heawood graph attains the maximum value, $R(H) = \sqrt{2}$.

Bipartite graphs

 $R(G) = \min |\lambda_i(G)|$

Bipartite graphs

 $R(G) = \min |\lambda_i(G)|$

Theorem (M. 2014) *G* (connected) subcubic bipartite and not isomorphic to Heawood $\Rightarrow \boxed{R(G) \le 1}$

Theorem (M. 2014) $\exists c > 0: \forall G$ connected subcubic bipartite and not isomorphic to Heawood \Rightarrow

G has $\lceil cn \rceil$ median eigenvalues in [-1,1]

Bipartite graphs

 $R(G) = \min |\lambda_i(G)|$

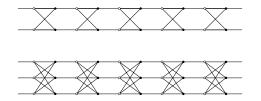
Theorem (M. 2014) G (connected) subcubic bipartite and not isomorphic to Heawood \Rightarrow $R(G) \leq 1$

Theorem (M. 2014) $\exists c > 0: \forall G$ connected subcubic bipartite and not isomorphic to Heawood \Rightarrow

G has $\lceil cn \rceil$ median eigenvalues in [-1, 1]

Theorem (Guo, M. 2013) \exists infinitely many connected cubic bipartite graphs with R(G) = 1

Examples



$$\sigma(Z_k) = \{-1,1\} \cup [k-1,k+1] \cup [-k-1,-k+1]$$

Two intervals, each with total spectral measure equal to $\frac{1}{2k}$ ± 1 , each have spectral measure equal to $\frac{1}{2} - \frac{1}{2k}$

Theorem (M., Tayfeh-Rezaie 2014+) G connected bipartite, max degree $\Delta \ge 3$. Then

$$R(G) \leq \sqrt{\Delta - 2}$$

except when G is the the incidence graph of a projective plane of order $\Delta - 1$, in which case $R(G) = \sqrt{\Delta - 1}$.

$$\blacktriangleright |V(G)| = 2n, \quad A(G) = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$

$$V(G)| = 2n, \quad A(G) = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$
$$R(G) > \sqrt{k-2} \quad \Rightarrow \quad \forall \lambda_i = \lambda_i(G) : \lambda_i^2 > k-2$$

- $|V(G)| = 2n, \quad A(G) = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$
- $R(G) > \sqrt{k-2} \quad \Rightarrow \quad \forall \lambda_i = \lambda_i(G) : \lambda_i^2 > k-2$
- If $E = BB^T kI$, then $\lambda_i(E) > -2 \implies E + 2I$ is PD
- ▶ Diagonal entries of E + 2I are 2 ⇒
 (by PD) all off-diagonal entries are 0 or 1

- $|V(G)| = 2n, \quad A(G) = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$
- $R(G) > \sqrt{k-2} \quad \Rightarrow \quad \forall \lambda_i = \lambda_i(G) : \lambda_i^2 > k-2$
- If $E = BB^T kI$, then $\lambda_i(E) > -2 \implies E + 2I$ is PD
- ▶ Diagonal entries of E + 2I are $2 \Rightarrow$ (by PD) all off-diagonal entries are 0 or $1 \Rightarrow$ E = A(H) and has min eigenvalue > -2

$$|V(G)| = 2n, \quad A(G) = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$

•
$$R(G) > \sqrt{k-2} \Rightarrow \forall \lambda_i = \lambda_i(G) : \lambda_i^2 > k-2$$

• If
$$E = BB^T - kI$$
, then $\lambda_i(E) > -2 \implies E + 2I$ is PD

- Diagonal entries of E + 2I are $2 \Rightarrow$ (by PD) all off-diagonal entries are 0 or $1 \Rightarrow$ E = A(H) and has min eigenvalue > -2
- Since $E\mathbf{j} = (BB^T kI)\mathbf{j} = (k^2 k)\mathbf{j}$, H is regular

$$|V(G)| = 2n, \quad A(G) = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$

•
$$R(G) > \sqrt{k-2} \Rightarrow \forall \lambda_i = \lambda_i(G) : \lambda_i^2 > k-2$$

▶ If
$$E = BB^T - kI$$
, then $\lambda_i(E) > -2 \implies E + 2I$ is PD

• Diagonal entries of
$$E + 2I$$
 are $2 \Rightarrow$
(by PD) all off-diagonal entries are 0 or $1 \Rightarrow$
 $E = A(H)$ and has min eigenvalue > -2

- Since $E\mathbf{j} = (BB^T kI)\mathbf{j} = (k^2 k)\mathbf{j}$, H is regular
- G connected \Rightarrow H is connected
- Known fact: a connected regular graph with least eigenvalue > -2 is either K_n or C_n (with n odd). If $H = C_n$, then it is 2-regular and from $k^2 k = 2$, we have k = 2, a contradiction. Hence, $H = K_n$

$$|V(G)| = 2n, \quad A(G) = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$

$$\mathsf{R}(G) > \sqrt{k-2} \quad \Rightarrow \quad \forall \lambda_i = \lambda_i(G) : \lambda_i^2 > k-2$$

▶ If
$$E = BB^T - kI$$
, then $\lambda_i(E) > -2 \implies E + 2I$ is PD

• Diagonal entries of
$$E + 2I$$
 are $2 \Rightarrow$
(by PD) all off-diagonal entries are 0 or $1 \Rightarrow$
 $E = A(H)$ and has min eigenvalue > -2

- Since $E\mathbf{j} = (BB^T kI)\mathbf{j} = (k^2 k)\mathbf{j}$, H is regular
- G connected \Rightarrow H is connected
- ▶ Known fact: a connected regular graph with least eigenvalue > -2 is either K_n or C_n (with *n* odd). If $H = C_n$, then it is 2-regular and from $k^2 - k = 2$, we have k = 2, a contradiction. Hence, $H = K_n$
- $H = K_n \Rightarrow G$ is the incidence graph of a projective plane of order k 1.

Construction by graph covers

Construction of graphs with "almost" extreme median eigenvalues: For any integer k for which k − 1 is a prime power, there exist infinitely many connected bipartite k-regular graphs G with √k − 2 − 1 < R(G) < √k − 1 − 1:</p>

Control of median eigenvalues among new eigenvalues

Construction by graph covers

Construction of graphs with "almost" extreme median eigenvalues: For any integer k for which k − 1 is a prime power, there exist infinitely many connected bipartite k-regular graphs G with √k − 2 − 1 < R(G) < √k − 1 − 1:</p>

Control of median eigenvalues among new eigenvalues

Recent breakthrough [A. Marcus, D.A. Spielman and N. Srivastava, Interlacing families I: Bipartite Ramanujan graphs of all degrees, arXiv:1304.4132]:
 and their proof of the Kadison-Singer Conjecture in Part II
 Control of λ₂ among new eigenvalues