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Introduction

A collection L ⊆Mn(C) of complex n × n matrices is said to be
transitive, or that it acts transitively on V = Cn, if

∀x , y ∈ V \ 0 ∃A ∈ L 3 Ax = y .

Or, equivalently,

∀x ∈ V \ 0,Lx = {Ax : A ∈ L} ⊇ V \ 0.

We say that L is semitransitive, it that it acts semitransitively, if

∀x , y ∈ V \ 0 ∃A ∈ L 3 Ax = y or Ay = x .

Or, equivalently,

∀x , y ∈ V \ 0, x ∈ Ly or y ∈ Lx .

Topological version(s) are defined in the obvious way.

Introduced by H. Rosenthal and V. Troitsky in early 2000’s.
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Observations

If L is a group, then semitransitivity= transitivity.

If L is transitive then L is irreducible: the only invariant subspaces
are 0 and V .

If L is semitransitive, then the set of invariant subspaces is totally
ordered: if U,W are invariant subspaces, then U ≤W or W ≤ U.

If L is a unital semigroup , then L is semitransitive if and only if the
set of orbits is totally ordered.

If L is a unital algebra, then L is semitransitive if and only if the set
of invariant subspaces is totally ordered.

The set of all upper triangular Toeplitz matrices is semitransitive.

Compressions of semitransitive collections are semitransitive, i.e., if
E ∈Mn(C) is an idempotent, and L is semitransitive, then so is
ELE ⊆ L(EU,EU).
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Semigroups

Joint work with Bernik, Grunenfelder, Radjavi, Troitsky:

Case n = 1 is nontrivial:
I semigroup L ⊆ C is semitransitive if and only if it contains

T = {roots of 1} and the preimage of the positive cone of some total
order on C×/T

I the only compact subsemigroup of C is the unit disc

If n > 1, then semitransitive semigroups do not necessarily contain
minimal semitransitive subsemigroups.

If L is semitransitive and the rank of every nonzero matrix in L is k ,
then k divides n.

For every k that divides n there exists a constant-rank-k
semitransitive semigroup.
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Constant-rank-k semitransitive semigroup

The semigroup consisting of all matrices of the block form (all blocks are
k × k) 

0 · · · 0 A1 0 · · · 0
0 · · · 0 A2 0 · · · 0
...

...
...

...
...

0 · · · 0 Ai 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0


,

where i = 1, . . . , n/k, block-entries A1, . . . ,Ai−1 are arbitrary and Ai

invertible (these entries are in the i-th column).
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Associative Algebras

Burnside:

An algebra A of matrices is transitive if and only if A =Mn(C).

BGMRT:

An algebra of matrices is semitransitive if and only if, up to
simultaneous similarity, it contains all upper triangular Toeplitz
matrices.

Idea of the proof: We prove that A contains a nilpotent matrix of
maximal rank.

I Block-triangularize A in a suitable way.
I Prove that the projections onto the superdiagonal blocks must be

nonzero - and are hence full.
I Use linear combinations to produce an upper-triangular nilpotent

element with nonzero super-diagonal entries.
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Linear spaces

Duality:

Let L be a subspace of L(U,V ). Then we can view U as a subspace
of L(L,V ) via

(̂ ) : U → L(L,V )

u 7→ û

given by
ûA = Au.

Properties of L can be translated into properties of Û.

In particular: L is transitive if and only if every nonzero x̂ ∈ Û is
surjective.
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Questions:

Semitransitivity only makes sense if U = V . Can you generalize the
notion of semitransitivity to the case where U 6= V (in a natural and
interesting way)?

Can you describe semitransitivity of L in terms of intrinsic properties
of Û (i.e., without invoking the identification U ≡ Û)?
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Spatial (or flag-type?) semitransitivity

Partial answer:

Let
0 = V0 < V1 < . . . < Vk = V

be the lattice of all invariant subspaces of L ⊆ L(V ,V ). If for every
i = 1, . . . , k and

∀x ∈ Vi \ Vi−1, Lx = Vi ,

then L is semitransitive.

This condition is equivalent to saying that the range of every
x̂ ∈ V̂i \ V̂i−1 is Vi , i.e., for every x ∈ Vi \ Vi−1 we have that x̂
viewed as a map from L to Vi is surjective.
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There exist irreducible spaces that are semitransitive, but not transitive; so
in general spatial semitransitivity is stronger then semitransitivity.
However, if k = n = dim V , i.e., L is triangularizable, then spatial
semitransitivity is equivalent to semitransitivity.

Question(s):

What can we say about structure and properties of spatially
semitransitive spaces (possibly with additional structure and
properties)? In particular:

I Do spatially semitransitive spaces contain triangularizable
semitransitive spaces?

I When are spatial semitransitivity and transitivity the same?

How about for nonlinear collections of matrices (perhaps with a
topological notion of spatial semitransitivity)?

Some answers in the context of algebraic groups will be discussed later.
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Some properties of semitransitive spaces

Radjavi, Trotsky:

If L ⊆Mn(C) is semitransitive, then there exists a cyclic vector for L.

Hence the dimension of a semitransitive space is at least n.

Working group at LAW Bled: the above holds over an arbitrary field.

Contrast that with transitivity: the minimal possible dimension of a
transitive spaces over C is 2n + 1, but can be as small as n over other
fields. For example {(

a b
−b a

)
: a, b ∈ R

}
⊆M2(R)

is transitive.
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If n = 2, then it is easy to see that there are, up to simultaneous similarity
only 3 semitransitive spaces. (Exercise!)

For larger n there does not seem to be any hope of classifying
semitransitive spaces. For n > 5 even the structure of the ones of
dimension n seems completely inaccessible.

In particular:

If n > 2, then there exist irreducible minimal semitransitive spaces
that are not transitive.

If n > 2, then there exists minimal semitransitive spaces of
dimension > n that are triangular.

If n ≥ 4 then semitransitive spaces of dimension n do not need to
contain rank-one matrices.
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Semitransitive spaces of minimal dimension

Bernik, Drnovšek, Kokol-Bukovšek, Košir, Omladič:

Semitransitive spaces of dimension n are triangularizable.

A few words about the proof:

Use the following observation: If L ⊆ L(V ,W ) is transitive, then
dimL ≥ dim V + dim W + 1.

Study rank varieties of V̂ : Xi = {v ∈ V : dim(Lv) ≤ i}.
Prove that these varieties are spaces and hence they must coincide
with the lattice of invariant subspaces.
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More questions

Are there minimal semitransitive spaces that are transitive?

Given that L+ L∗ is transitive, find necessary and sufficient
conditions for L to be semitransitive.

The curious case of infinite dimensions?
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Semitransitive Jordan algebras

Bernik, Drnovšek, Kokol-Bukovšek, Košir, Omladič:

Spatial semitransitivity is equivalent to semitransitivity, in particular,
irreductible semitransitive Jordan algebras are transitive.

Up to simultaneous similarity, every semitransitive Jordan algebra
contains all upper triangular Toeplitz matrices.

In particular, every minimal semitransitive Jordan algebra is similar
to the algebra of upper triangular Toeplitz matrices and is therefore
triangularizable and of dimension n.
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Prehomogeneous vector spaces and semitransitivity

This is joint work with J. Bernik; some slides have been recycled from a
J. B. presentation.

Assume that V = Cn and that G ⊆ GLn(C) = GL(V ) is a linear
algebraic group.

G , or more precisely the action of G on V may have the following
properties.

1 V is a flag-type CG module: the poset {Gx : x ∈ V } of orbit closures
coincides with a flag 0 = V0 < V1 < . . . < Vk = V of linear subspaces
of V .

2 G is (Zariski) semitransitive: for each pair x , y ∈ V \ 0 we have that
either x ∈ Gy or y ∈ Gx .

3 there are finitely many orbits for the action of G on V .
4 (G ,V ) is a prehomogeneous vector space: there exists a Zariski-dense

orbit.

We have (1) =⇒ (2) =⇒ (3) =⇒ (4), all implications are strict.
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Prehomoheneous vector spaces

Prehomogeneous vector spaces have been studied for over 50 years
now, especially in connection with Fourier analysis, (semi)-invariants,
zeta functions, arithmetic,...

Observation: if v ∈ V is such that Gv is Zariski open in V , then
dim(Gv) = dim(V ). On the other hand, since g 7→ gv is a surjective
morphism, we have dim(G ) ≥ dim(Gv) = n.
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A major achievement was obtained by Sato and Kimura in 1977 who
classified irreducible prehomogeneous vector spaces up to castling
transformations (a method of obtaining a higher dimensional V ′ over
a higher dimensional group G ′ starting from (G ,V ).) They found 32
cases, some containing infinite families, of reduced irreducible
prehomoheneous vector spaces.

If V is an irreducible (as a CG -module), then G is reductive, so their
results deal with reductive linear algebraic groups. Later research in
the area is also mainly concentrated on reductive groups.

For a reductive G we can not have V of flag-type unless the flag is
trivial.
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Finitely Many Orbits

If action of G on V has only finitely many orbits, then (G ,V ) is
prehomogoneous vector space, but not all prehomogeneous vector
spaces have finitely many orbits. Irreducible ones that do have finitely
many orbits were classified by Kac in 1980.

Classification over algebraically closed fiels of prime characteristic was
obtained by Guralnick, Liebeck, Macpherson and Seitz in 1997. The
lists essentially overlap, there are some additional cases in positive
characteristic and some cases missing in small characteristics.

G = GL2 ⊗ GL2 ⊆ GL4 is an example with finitely many orbits that is
not of flag-type.
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Flag-type CG -modules and semitransitive Lie algebras

The study of flag-type CG -modules can be translated into Lie
algebras.

Let g be the Lie algebra of G . Then V is a flag-type CG -module if
and only if g ⊆Mn is spatially semitransitive, i.e., there exists a flag
0 = V0 < V1 < . . . < Vk = V such that for every v ∈ Vi \ Vi−1 we
have gv = Vi .

It turns out that a Lie algebra is spatially semitransitive if and only if
it is semitransitive

Main ingredient: If g is semitransitive and irreducible, and n > 1, then
s = [g, g] is either sln(with n arbitrary) or spn (with n even). In
particular this means that s is transitive.
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This follows by adjusting an argument in 1970 paper Infinite dimensional
primitive Lie algebras by V. Guillemin (who in turn credits the it to
S. Sternberg):

Note that s = [g, g] is simple and g ⊆ s + CI.
Use semitransitivity of s + CI to show that α = ν+ − ν−, where ν+

and ν− are maximal and minimal weights for the action, is a root.

From classification of simple Lie algebras it then follows that this can
only happen if s is of type A or C and V may be identified with its
natural module or its dual.
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Analysing in great detail the action of the radical r of g on V we
prove the following consequence: Every Borel subalgebra of a
semitransitive Lie algebra is also semitransitive. In particular, every
minimal semitransitive Lie algebra is solvable (i.e., triangularizable).

The most delicate part of this analysis is suitably ‘excising’ parts of V
where s acts ad-trivially on the radical r of g - in linear algebraic
terms these are parts of V corresponding to 1× 1 blocks in the
block-triangularization of g.
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Semitransitive Lie algebras of minimal dimension

They are triangularizable.

They do contain a nilpotent of maximal rank. (= n − 1)

The space of nilpotents is of dimension n − 1.

Do not have to contain nilpotents of rank 1.

Not unique.
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If the diagonal is not constant (i.e., they are not nilpotent as Lie
algebras), then they contain a diagonal matrix of the form

diag(a, a + 1, . . . , a + (n − 1))

and hence they are N-graded.
I The main tool is dimension counting together with analysing the

adjoint action of g on itself, more precisely the action of the
semi-simple part of ads on g, where s ∈ g is a matrix whose
(n, n)-entry is nonzero.

They are algebraic if and only if a ∈ Q.

Question: Which nilpotent Lie algebras can be represented as the
space of nilpotent elements of some semitransitive Lie algebra of
minimal dimension? Recently answered by J. Bernik and K. Šivic for
graded filiform Lie algebras.
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Structure of Flag-type CG -modules

The Lie algebra work then translates into the following theorem:
The following statements are equivalent for an algebraic group
G ⊆ GL(V ):

1 V is a flag-type CG -module.

2 V ∗ is a flag-type CG -module.

3 V is a flag-type CB-module for any Borel subgroup B in G .

4 There exists a closed solvable subgroup D ⊆ G such that V is a
flag-type CD-module.

Note that for solvable groups we have that flag-type = semitransitive. So
we have that

V is a flag-type CG module if and only if G contains a triangularizable
semitransitive subgroup.
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More Questions

How about positive characteristic?

How about replacing the Zariski topology with some other topology?
(the example of SU2 gives a partial negative answer in case of
Euclidean topology for compact Lie groups)

How about semigroups?
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Thank You!
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