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1. Introduction

This project is joint work with

Janez Bernik, (Ljubljana, Slovenia)
Alexey Popov and Heydar Radjavi (Waterloo, Canada)
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1. Introduction Background.

Selfadjoint semigroups.

Definition. A semigroup (S, o) is a non-empty set equipped with
an associative binary operator o.
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an associative binary operator o.

If x,y € S, then y is called an inverse of x if yxy = y and xyx = x.
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1. Introduction

Definition. A semigroup (S, o) is a non-empty set equipped with
an associative binary operator o.

If x,y € S, then y is called an inverse of x if yxy = y and xyx = x.
A semigroup S in which each element has a unique inverse is called
an inverse semigroup.
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1. Introduction Background.

Selfadjoint semigroups.

Example. Let X be a non-empty set. The symmetric inverse
semigroup of X is:

Ix ={f:A—=B:ACX,BCX, and f is a bijection}.
For f € Ix, the (unique) inverse of f : A— B is
g:B— A g(f(a)) =a.
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1. Introduction Background.

Selfadjoint semigroups.

Example. Let X be a non-empty set. The symmetric inverse
semigroup of X is:

Ix ={f:A—=B:ACX,BCX, and f is a bijection}.
For f € Ix, the (unique) inverse of f : A— B is
g:B— A g(f(a)) =a.

The Wagner-Preston Theorem says that every inverse semigroup
admits a representation as a subsemigroup of some symmetric
inverse semigroup.
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1. Introduction Background.

Selfadjoint semigroups.

Example. Let X be a non-empty set. The symmetric inverse
semigroup of X is:

Ix ={f:A—=B:ACX,BCX, and f is a bijection}.
For f € Ix, the (unique) inverse of f : A— B is
g:B— A g(f(a)) =a.

The Wagner-Preston Theorem says that every inverse semigroup
admits a representation as a subsemigroup of some symmetric
inverse semigroup.

It was observed by Barnes (see also Duncan and Paterson) that
this lifts to a faithful *-representation of S on /»(S) as a
selfadjoint semigroup of partial isometries, o

stif s*st =1t

0 otherwise

Laurent W. Marcoux On selfadjoint extensions of semigroups of partial isometries



1. Introduction Background.

Selfadjoint semigroups.

Let H be a Hilbert space. A partial isometry is a bounded linear
operator V on H satisfying one (and hence all) of the following:

(@) Vlker v)r : (ker V)+ — ran V is an isometry.
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1. Introduction Background.

Selfadjoint semigroups

Let H be a Hilbert space. A partial isometry is a bounded linear
operator V on H satisfying one (and hence all) of the following

(@) Vlker v)r : (ker V)+ — ran V is an isometry.

(b) Py := V*V is a projection (called the initial projection of V)
(c) Qv := VV*is a projection (called the final projection of V)
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1. Introduction Background.

Selfadjoint semigroups.

Let H be a Hilbert space. A partial isometry is a bounded linear
operator V on H satisfying one (and hence all) of the following:

(@) Vlker v)r : (ker V)+ — ran V is an isometry.

(b) Py := V*V is a projection (called the initial projection of V).
(c) Qv := VV*is a projection (called the final projection of V).
(d) V=VV*Vv.

(e) V¥ =V*yv*
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1. Introduction Background.

Selfadjoint semigroups.

Let H be a Hilbert space. A partial isometry is a bounded linear
operator V on H satisfying one (and hence all) of the following:
(@) Vlker v)r : (ker V)+ — ran V is an isometry.

(b) Py := V*V is a projection (called the initial projection of V).
(c) Qv := VV*is a projection (called the final projection of V).
(d) V=VV*v.

(e) V¥ =V*VvVv*,

If S is a selfadjoint semigroup of partial isometries, then the
unique inverse of an element V of S is V*.

Laurent W. Marcoux On selfadjoint extensions of semigroups of partial isometries



1. Introduction Background.

Selfadjoint semigroups.

Let H be a Hilbert space. A partial isometry is a bounded linear
operator V on H satisfying one (and hence all) of the following:
(@) Vlker v)r : (ker V)+ — ran V is an isometry.

(b) Py := V*V is a projection (called the initial projection of V).
(c) Qv := VV*is a projection (called the final projection of V).
(d) V=VV*v.

(e) V¥ =V*VvVv*,

If S is a selfadjoint semigroup of partial isometries, then the
unique inverse of an element V of S is V*.

A number of C*-algebras are defined as the closed linear span of a
selfadjoint semigroup of partial isometries:

Cuntz algebras, Cuntz-Krieger algebras, graph C*-algebras.
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1. Introduction B ound

Selfadjoint semigroups.

Theorem. [Popov-Radjavi o 2013] Let S = 8* be an irreducible
semigroup of partial isometries. Then we can write H = L2(Q,K),
where K is a Hilbert space and (2, 1) is a probability space, so
that for each V € S we have:
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1. Introduction Background

Selfadjoint semigroups.

Theorem. [Popov-Radjavi o 2013] Let S = 8* be an irreducible
semigroup of partial isometries. Then we can write H = L2(Q,K),
where K is a Hilbert space and (2, 1) is a probability space, so
that for each V € S we have:

@ there exist measurable sets X and Y in € so that
PyH = L%(X,K) and QuH = L(Y,K);
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1. Introduction Background

Selfadjoint semigroups.

Theorem. [Popov-Radjavi o 2013] Let S = 8* be an irreducible
semigroup of partial isometries. Then we can write H = L2(Q,K),
where K is a Hilbert space and (2, 1) is a probability space, so
that for each V € S we have:
@ there exist measurable sets X and Y in Q so that
PyH = L%(X,K) and QuH = L(Y,K);
°o V= Uff(B Vidt, where V: € B(K) is a unitary operator for
almost all t € X, and U : L?(X,K) — L%(Y,K) is a surjective
isometry defined via:

(U)(t) = w(t)f (¢ (1)

for some measure-preserving bijection ¢ : X — Y (modulo
sets of measure zero) and a weight function w : Y — R™.
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1. Introduction B ound

Selfadjoint semigroups.

Let k € NU {oo}, and let U be a semigroup of unitary operators
acting on a Hilbert space K.

We write SX(U) to denote the semigroup of all k x k matrices
having at most one non-zero entry which must then belong to U.
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Selfadjoint semigroups.

Let k € NU {oo}, and let U be a semigroup of unitary operators
acting on a Hilbert space K.

We write SX(U) to denote the semigroup of all k x k matrices
having at most one non-zero entry which must then belong to U.

Let Sf(U) denote the semigroup of all k x k matrices having at
most one non-zero entry in each row and each column, and
each such entry must belong to U.
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1. Introduction Background

Selfadjoint semigroups.

Let k € NU {oo}, and let U be a semigroup of unitary operators
acting on a Hilbert space K.

We write SX(U) to denote the semigroup of all k x k matrices
having at most one non-zero entry which must then belong to U.

Let Sf(U) denote the semigroup of all k x k matrices having at
most one non-zero entry in each row and each column, and
each such entry must belong to U.

Theorem. [Popov-Radjavi o 2013] Suppose that S is an
irreducible, norm-closed semigroup of partial isometries containing
a non-zero compact operator. Then there exists k € NU {co} and
an irreducible group U of unitary matrices such that up to unitary
equivalence,

S§U) € 8 C S (U).
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1. Introduction B ound

Selfadjoint semigroups.

Corollary. [Popov-Radjavi o 2013] Let S be an irreducible
semigroup of partial isometries containing a non-zero compact
operator. Then the selfadjoint semigroup T generated by S
consists of partial isometries.

Laurent W. Marcoux On selfadjoint extensions of semigroups of partial isometries



1. Introduction B ound

Selfadjoint semigroups.

Corollary. [Popov-Radjavi o 2013] Let S be an irreducible
semigroup of partial isometries containing a non-zero compact
operator. Then the selfadjoint semigroup T generated by S
consists of partial isometries.

Questions.

@ Is the presence of the non-zero compact operator necessary?
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Corollary. [Popov-Radjavi o 2013] Let S be an irreducible
semigroup of partial isometries containing a non-zero compact
operator. Then the selfadjoint semigroup T generated by S
consists of partial isometries.

Questions.
@ Is the presence of the non-zero compact operator necessary?

@ Is irreducibility a necessary condition?
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1. Introduction B ound

Selfadjoint semigroups.

Corollary. [Popov-Radjavi o 2013] Let S be an irreducible
semigroup of partial isometries containing a non-zero compact
operator. Then the selfadjoint semigroup T generated by S
consists of partial isometries.

Questions.
@ Is the presence of the non-zero compact operator necessary?
@ Is irreducibility a necessary condition?

@ In general, which conditions guarantee that a semigroup of
partial isometries on H can be extended to a selfadjoint
semigroup of partial isometries?
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2. Non-selfadjoint semigroups

Question 1. Is every semigroup of partial isometries *-extendible?
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2. Non-selfadjoint semigroups

Question 1. Is every semigroup of partial isometries *-extendible?

For example, let J denote the semigroup of all isometries in B(H).
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2. Non-selfadjoint semigroups

Question 1. Is every semigroup of partial isometries *-extendible?
For example, let J denote the semigroup of all isometries in B(H).

Theorem. [Halmos-Wallen o 1969]:
Suppose that V and W are partial isometries. Then VW is a

partial isometry if and only if P,y = V*V commutes with
Qy = VV*.
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2. Non-selfadjoint semigroups

Question 1. Is every semigroup of partial isometries *-extendible?
For example, let J denote the semigroup of all isometries in B(H).

Theorem. [Halmos-Wallen o 1969]:

Suppose that V and W are partial isometries. Then VW is a
partial isometry if and only if P,y = V*V commutes with

Qy = VV*.

Corollary. In any *-extendible semigroup of partial isometries,
P(S)={Py:V eS8} and Q(S) ={Qv : V € §} form two
commuting families of projections, and P(S) C Q(S)'.
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Preliminaries
An interesting example
Positive results

2. Non-selfadjoint semigroups

Question 1. Is every semigroup of partial isometries *-extendible?
For example, let J denote the semigroup of all isometries in B(H).

Theorem. [Halmos-Wallen o 1969]:

Suppose that V and W are partial isometries. Then VW is a
partial isometry if and only if P,y = V*V commutes with

Qy = VV*.

Corollary. In any *-extendible semigroup of partial isometries,
P(S)={Py:V eS8} and Q(S) ={Qv : V € §} form two
commuting families of projections, and P(S) C Q(S)'.

Conclusion: 7 is not *-extendible. In fact, it is a maximal
semigroup of partial isometries.
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2. Non-selfadjoint semigroups

The Halmos-Wallen Theorem provides us with a necessary
condition for a semigroup S of partial isometries to be *-extendible,
namely: P(S) U Q(S) must be a commuting family of projections.
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2. Non-selfadjoint semigroups

The Halmos-Wallen Theorem provides us with a necessary
condition for a semigroup S of partial isometries to be *-extendible,
namely: P(S) U Q(S) must be a commuting family of projections.

Question 2. Suppose S is a semigroup of partial isometries for
which P(S) U Q(S) is commutative. Is S *-extendible? o
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2. Non-selfadjoint semigroups

The Halmos-Wallen Theorem provides us with a necessary
condition for a semigroup S of partial isometries to be *-extendible,
namely: P(S) U Q(S) must be a commuting family of projections.

Question 2. Suppose S is a semigroup of partial isometries for
which P(S) U Q(S) is commutative. Is S *-extendible? o

The issue is to try to add adjoints of elements of S to S. Suppose
A B €S -is A*B a partial isometry?

(A*B)(A*B)* = A*BB*A = A*QgA.
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2. Non-selfadjoint semigroups

The Halmos-Wallen Theorem provides us with a necessary
condition for a semigroup S of partial isometries to be *-extendible,
namely: P(S) U Q(S) must be a commuting family of projections.

Question 2. Suppose S is a semigroup of partial isometries for
which P(S) U Q(S) is commutative. Is S *-extendible? o

The issue is to try to add adjoints of elements of S to S. Suppose
A B €S -is A*B a partial isometry?

(A*B)(A*B)* = A*"BB*A = A*QBA.
This is clearly selfadjoint. Also,

(A*QpA)? = A*QpAA* QA = A*QeQaQBA = A*QBA,

so it is an idempotent. Thus it is a projection, and A*B is a partial
isometry.

Laurent W. Marcoux On selfadjoint extensions of semigroups of partial isometries



2. Non-selfadjoint semigroups

What about products of three elements? Is A*BC* a partial
isometry?
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2. Non-selfadjoint semigroups

What about products of three elements? Is A*BC* a partial

isometry?
: 10

Example. Let E = 7| and F = . Let
I 0 0

NN =
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2. Non-selfadjoint semigroups

What about products of three elements? Is A*BC* a partial

isometry?
11 10
Example. LetE:[% %] andF:[ }Let
5 5 0 0
0 E 0O 0 00 h 0 00O
0 0 0O 0 00 O 0 00 O
A= 0 o' 5= 0 of ©7 0 F|
0 0 0 0 0 0

Set S ={A,B,C,0g,ls}. Then S is a semigroup of partial
isometries. Moreover,

73(5) = {087 /87 A(O7 E7O70)7A(070707 /)7A(070707 F)}7
Q(S) = {087 /8’ A(E7 07070)7A(l707070)7A(0707 F7 O)}7

so P(S) U Q(S) is commutative.
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2. Non-selfadjoint semigroups

However,
0 0 O

B |0 0 EF

o
o O O o

is not a partial isometry.
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2. Non-selfadjoint semigroups

However,
0 0 O

B |0 0 EF

o
o O O o

is not a partial isometry.

Note: S is not irreducible. e
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2. Non-selfadjoint semigroups

However,
00 0 O
s+ __ |0 0O EF O
A*BC* = 0 0
0 O

is not a partial isometry.
Note: S is not irreducible. o

Question 3. Suppose that S is an irreducible semigroup of partial
isometries, and that P(S) U Q(S) is commutative. Is S
*-extendible?
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2. Non-selfadjoint semigroups

Positive results

However,
00 0 O
s+ __ |0 0O EF O
A*BC* = 0 0
0 O

is not a partial isometry.
Note: S is not irreducible. o

Question 3. Suppose that S is an irreducible semigroup of partial
isometries, and that P(S) U Q(S) is commutative. Is S
*-extendible?

This is substantially harder than the first two questions.
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2. Non-selfadjoint semigroups

Positive results

C. Read (2005) showed that there exist isometries S, T in B(H)
WOT

such that alg(S, T) = B(H).
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2. Non-selfadjoint semigroups

Positive results

C. Read (2005) showed that there exist isometries S, T in B(H)
WOT

such that alg(S, T) = B(H).
Now set Ho = L2[0, 1];

[TF](t) = p(t)f(2t),t € [0,1/2]
= 0 otherwise
[ST](t) = ¥(t)f(2t —1),t € [1/2,1]

= 0 otherwise.

Here |o(t)| = |¢(t)| = V2 for all t € [0,1]. (Need a special choice
that doesn't concern us here.)
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2. Non-selfadjoint semigroups

Positive results

C. Read (2005) showed that there exist isometries S, T in B(H)
WOT

such that alg(S, T) = B(H).
Now set Ho = L2[0, 1];

[TF](t) = p(t)f(2t),t € [0,1/2]
= 0 otherwise
[ST](t) = ¥(t)f(2t —1),t € [1/2,1]

= 0 otherwise.

Here |o(t)| = |¢(t)| = V2 for all t € [0,1]. (Need a special choice
that doesn't concern us here.)

Let K be a second (infinite-dimensional) Hilbert space. Let
Ti=T®Icand S; = S® I, acting on L2([0, 1], K).
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2 - joi igl .
2. Non-selfadjoint semigroups Positive results

Let S; = (51, T1), the semigroup generated by S; and T;. Let

52}
V= {/ Vidt : V; unitary on K},
[0,1]

and let S; = (81, V).
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2. Non-selfadjoint semigroups Positive results

Let S; = (51, T1), the semigroup generated by S; and T;. Let

52}

V= {/ Vidt : Vi unitary on K},
[0,1]

and let S, = (51, V).

Then S, is irreducible, since the algebra generated by S, contains

the tensor product of two irreducible algebras. Note that Sz is

*-extendible.
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2. Non-selfadjoint semigroups

Let S; = (51, T1), the semigroup generated by S; and T;. Let

52}

V= {/ Vidt : Vi unitary on K},
[0,1]

and let S, = (51, V).

Then S, is irreducible, since the algebra generated by S, contains

the tensor product of two irreducible algebras. Note that Sz is

*-extendible.

Define a unitary U € B(L2([0,1],K)) as follows: Pick

E = E* = E2 € B(K) with infinite rank and co-rank, and choose

two isometries Wi : EX — K, Wh : ELK — K.
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2. Non-selfadjoint semigroups

Positive results

Let S; = (51, T1), the semigroup generated by S; and T;. Let

52}

V= {/ Vidt : Vi unitary on K},
[0,1]

and let S, = (51, V).

Then S, is irreducible, since the algebra generated by S, contains

the tensor product of two irreducible algebras. Note that Sz is

*-extendible.

Define a unitary U € B(L2([0,1],K)) as follows: Pick

E = E* = E2 € B(K) with infinite rank and co-rank, and choose

two isometries Wi : EX — K, Wh : ELK — K.

Set

[UF](t) = V2W4(EF(2t)), t € [0,1/2]
= V2Wh(E*-F(2t — 1)), t € [1/2,1].
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2. Non-selfadjoint semigroups Positive results

Let S = (S2,{U}). Then
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2. Non-selfadjoint semigroups Positive results

Let S = (S2,{U}). Then
@ S consists of isometries.
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2. Non-selfadjoint semigroups

Positive results

Let S = (S2,{U}). Then
@ S consists of isometries.
@ Since S contains S» and S» is irreducible, T is irreducible.
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2. Non-selfadjoint semigroups Positive results

Let S = (S2,{U}). Then
@ S consists of isometries.
@ Since S contains S» and S» is irreducible, T is irreducible.
@ Foreach T € §, P+ =1, Q7 is a standard projection, so
that
P(S)U Q(S)

is commutative.
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2. Non-selfadjoint semigroups Positive results

Let S = (S2,{U}). Then
@ S consists of isometries.
@ Since S contains S» and S» is irreducible, T is irreducible.
@ Foreach T € §, P+ =1, Q7 is a standard projection, so
that
P(S)U Q(S)
is commutative.
Consider 7 = (SUS*). Then

Laurent W. Marcoux On selfadjoint extensions of semigroups of partial isometries



Preliminaries
An interesting example

2. Non-selfadjoint semigroups

Positive results

Let S = (S2,{U}). Then
@ S consists of isometries.
@ Since S contains S» and S» is irreducible, T is irreducible.
@ Foreach T € §, P+ =1, Q7 is a standard projection, so
that
P(S)U Q(S)
is commutative.
Consider 7 = (SUS*). Then
o Qr, €7, and ran Qr, = L2([0,1/2],K).
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2. Non-selfadjoint semigroups

Positive results

Let S = (S2,{U}). Then
@ S consists of isometries.
@ Since S contains S» and S» is irreducible, T is irreducible.
@ Foreach T € §, P+ =1, Q7 is a standard projection, so
that
P(S)U Q(S)
is commutative.
Consider 7 = (SUS*). Then
o Qr, €7, and ran Qr, = L2([0,1/2],K).
© X:=QrUeT, soPx= [,y EdteT aswell
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2. Non-selfadjoint semigroups Positive results

Let S = (S2,{U}). Then
@ S consists of isometries.
@ Since S contains S» and S» is irreducible, T is irreducible.
@ Foreach T € §, P+ =1, Q7 is a standard projection, so
that
P(S)U Q(S)
is commutative.
Consider 7 = (SUS*). Then
o Qr, €7, and ran Qr, = L2([0,1/2],K).
© X:=QrUeT, soPx= [,y EdteT aswell
@ There exists V € B(K) unitary such that V*EV does not
commute with E. Then

® ®
/ V*EVdt and Px= / E dt
[0,1] [0,1]

are two projections in 7 which do not commute
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2. Non-selfadjoint semigroups Positive results

Let S = (S2,{U}). Then
@ S consists of isometries.
@ Since S contains S» and S» is irreducible, T is irreducible.
@ Foreach T € §, P+ =1, Q7 is a standard projection, so
that
P(S)U Q(S)
is commutative.
Consider 7 = (SUS*). Then
o Qr, €7, and ran Qr, = L2([0,1/2],K).
© X:=QrUeT, soPx= [,y EdteT aswell
@ There exists V € B(K) unitary such that V*EV does not
commute with E. Then

® ®
/ V*EVdt and Px= / E dt
[0,1] [0,1]

are two projections in 7 which do not commute, proving that
T does not consist of partial isometries.
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2. Non-selfadjoint semigroups

There do exist positive results:
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There do exist positive results:

Theorem. Suppose that S is an irreducible semigroup of partial
isometries, that P(S) U Q(S) admits a minimal element. Then S
is *-extendible. o
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Theorem. Suppose that S is an irreducible semigroup of partial
isometries, that P(S) U Q(S) admits a minimal element. Then S
is *-extendible. o

Proposition. Let S C B(H) be a semigroup of partial isometries
for which Q(S) is commutative. Then there exists a semigroup
Simaz Of partial isometries which is maximal with respect to the
conditions that
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There do exist positive results:

Theorem. Suppose that S is an irreducible semigroup of partial
isometries, that P(S) U Q(S) admits a minimal element. Then S
is *-extendible. o

Proposition. Let S C B(H) be a semigroup of partial isometries
for which Q(S) is commutative. Then there exists a semigroup
Simaz Of partial isometries which is maximal with respect to the
conditions that

(a) Smaz 2 S, and
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2. Non-selfadjoint semigroups

There do exist positive results:

Theorem. Suppose that S is an irreducible semigroup of partial
isometries, that P(S) U Q(S) admits a minimal element. Then S
is *-extendible. o

Proposition. Let S C B(H) be a semigroup of partial isometries
for which Q(S) is commutative. Then there exists a semigroup
Simaz Of partial isometries which is maximal with respect to the
conditions that

(a) Smaz 2 S, and
(b) W*(Q(Smax)) = W*(Q(S)).
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2. Non-selfadjoint semigroups

There do exist positive results:

Theorem. Suppose that S is an irreducible semigroup of partial
isometries, that P(S) U Q(S) admits a minimal element. Then S
is *-extendible. o

Proposition. Let S C B(H) be a semigroup of partial isometries
for which Q(S) is commutative. Then there exists a semigroup
Simaz Of partial isometries which is maximal with respect to the
conditions that

(a) Smaz 2 S, and

(b) W*(Q(Smaz)) = W*(Q(5))-

Furthermore, Q(Smaz) C Smaz-®
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2. Non-selfadjoint semigroups

The proof of this is based on the following:

If Sis a (WLOG - unital) semigroup of partial isometries and
Q(S8) is commutative, then given T € S, the semigroup
S1:=(SU{Qt}) consists of partial isometries, and if

W =5,Q75m-1Q71 - Q7 51, then

Qw = Qs,7Qs,,5,, 17 " Q5nSm_1--5T RSnSm_1--51
€ W*(Q(S))-
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The proof of this is based on the following:

If Sis a (WLOG - unital) semigroup of partial isometries and
Q(S8) is commutative, then given T € S, the semigroup
S1:=(SU{Qt}) consists of partial isometries, and if

W =5,Q75m-1Q71 - Q7 51, then

Qw = Qs,7Qs,,5,, 17 " Q5nSm_1--5T RSnSm_1--51
€ W*(Q(S))-

The conclusion is that W*(Q(S1)) = W*(Q(S)).
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2. Non-selfadjoint semigroups

The proof of this is based on the following:

If Sis a (WLOG - unital) semigroup of partial isometries and
Q(S8) is commutative, then given T € S, the semigroup
S1:=(SU{Qt}) consists of partial isometries, and if

W =5,Q75m-1Q71 - Q7 51, then

Qw = Qs,7Qs,5, 17 Q5,5 15T RS,S, 15,
e W*(Q(S5)).
The conclusion is that W*(Q(S1)) = W*(Q(S)).

In fact, it can be shown that the conclusion holds if
E € W*(Q(S)) is a projection and &1 := (SU{E}).
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2. Non-selfadjoint semigroups

Corollary. Let S C B(H) be a semigroup of partial isometries and
suppose that the von Neumann algebra W*(Q(S)) generated by
Q(S) forms a masa in B(H). Then the semigroup T generated by
S and §* consists of partial isometries.
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2. Non-selfadjoint semigroups

Corollary. Let S C B(H) be a semigroup of partial isometries and
suppose that the von Neumann algebra W*(Q(S)) generated by
Q(S) forms a masa in B(H). Then the semigroup T generated by
S and §* consists of partial isometries.

Note: For the semigroup S adapted from Read’s example,
W*(Q(S)) had uniform infinite multiplicity.
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Corollary. Let S C B(H) be a semigroup of partial isometries and
suppose that the von Neumann algebra W*(Q(S)) generated by
Q(S) forms a masa in B(H). Then the semigroup T generated by
S and §* consists of partial isometries.

Note: For the semigroup S adapted from Read’s example,
W*(Q(S)) had uniform infinite multiplicity.

Theorem. Suppose S is a semigroup of partial isometries.
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Corollary. Let S C B(H) be a semigroup of partial isometries and
suppose that the von Neumann algebra W*(Q(S)) generated by
Q(S) forms a masa in B(H). Then the semigroup T generated by
S and §* consists of partial isometries.

Note: For the semigroup S adapted from Read’s example,
W*(Q(S)) had uniform infinite multiplicity.

Theorem. Suppose S is a semigroup of partial isometries.
@ Suppose that P(S) = Q(S) C S. Then S is *-extendible.
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2. Non-selfadjoint semigroups

Corollary. Let S C B(H) be a semigroup of partial isometries and
suppose that the von Neumann algebra W*(Q(S)) generated by
Q(S) forms a masa in B(H). Then the semigroup T generated by
S and §* consists of partial isometries.

Note: For the semigroup S adapted from Read’s example,
W*(Q(S)) had uniform infinite multiplicity.

Theorem. Suppose S is a semigroup of partial isometries.
e Suppose that P(S) = Q(S) € S. Then S is *-extendible.
o Hence, if P(S)U Q(S) C S, then S is *-extendible.
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Theorem. Let S be a semigroup of partial isometries such that
Q(S) is commutative. If S is irreducible, then W*(Q(S)) has
uniform multiplicity.
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2. Non-selfadjoint semigroups

Theorem. Let S be a semigroup of partial isometries such that
Q(S) is commutative. If S is irreducible, then W*(Q(S)) has
uniform multiplicity.

Theorem. Let S be a semigroup of partial isometries such that
W*(Q(S)) has uniform finite multiplicity. If T € S then
Pr e W*(Q(S)) forall T € S.
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2. Non-selfadjoint semigroups

Corollary. Let S be a semigroup of partial isometries such that
W*(Q(S)) has uniform finite multiplicity. Then S C Sy, where Sy
is a semigroup of partial isometries for which P(Sp) U Q(So) C So.
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2. Non-selfadjoint semigroups

Corollary. Let S be a semigroup of partial isometries such that
W*(Q(S)) has uniform finite multiplicity. Then S C Sy, where Sy
is a semigroup of partial isometries for which P(Sp) U Q(So) C So.

Hence Sy is *-extendible, and thus S is *-extendible.
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Conclusion: If § C B(H) is an irreducible semigroup of partial
isometries and Q(S) is commutative, then W*(Q(S)) has uniform
multiplicity.

o If that multiplicity is finite, then S is *-extendible.

@ The “trans-Read” example shows that if the multiplicity is
infinite, then S need not be *-extendible.

o If & :={Eij:1<i,j} C B({2) are the standard matrix units
and U(¢) denotes the group of all unitaries acting on /3, then
S :=E ®@U(L) is an irreducible semigroup of partial
isometries, W*(Q(S)) has uniform infinite multiplicity, and
S=8".
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2. Non-selfadjoint semigroups

THEY LAUGHED WHEN I SAID I WAS GOING TO BE A
COMEDIAN. WELL, THEY'RE NOT LAUGHING NOW.
Bob Monkhouse

THANK YOU FOR YOUR ATTENTION.
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