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Let A be an n x n complex matrix. Pereira proved that
there exists a vector v such that

Vv p(A)v = trace(p(4))/n,
for all polynomials p(x).

He calls such a vector v a trace vector for A.

Finding a trace vector for general A4 is difficult. The
usual strategy of reducing A to canonical form does not
work here, as no such form 1s available for unitary
similarity. However, there are several cases where a
trace vector 1s easy to find and which then yields
interesting consequences and we present some of these
here.



(1)  Suppose that 4 is diagonal.

Then eAn, wheree: = (1,1, .. ,I)", isatrace
vector for A.

More generally, if 4 1s a normal matrix, so there
exists a unitary matrix U with U AU diagonal, then
U e/n is a trace vector for 4.

(2)  Suppose that 4 is in Jordan normal form with
consecutive Jordan blocks along the diagonal of

sizesk; .., k,. Lete(l,d:=(,0, .. ,0)(d
components) and let
v:=(ke(l, k), .. Ake(l r)An

Then v is a trace vector for 4.

(3) | A 1s a circulant.

Since p(A4) is also a circulant, for every polynomial
p(x), p(A) has all its diagonal entries equal, so each
of the basic unit vectors is a trace vector for A.
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A very useful observation of Pereira is that if 4 1s an
n x n matrix with leading principal

(n—1)x (n—1) submatrix A4;;, then the
vector (0,0, .. ,0,1 )T 18 a trace vector for
A if and only if # times the characteristic
polynomial of 4;; equals the derivative of
the characteristic polynomial of 4. In
particular, this holds if A is a circulant.



As an example, let P, be the permutation
matrix corresponding to the #n — cycle (1 2
myandC, = P, + P,’. Then C, isa
circulant and thus, for n > 2, the
characteristic polynomial of the simple (n —
1) x (n— 1) path matrix M (so M = (m;;)
where m; = m;; = [ wheni - j =%/ and

m ; = 0, otherwise) 1s n times the
derivative of det(x 1, - C,).

Here det(x/, - M) is a Chebyshev
polynomial while the eigenvalues of C, are
sums ® + o, where @ runs through the set
of n th roots of unity, so one can deduce
identities between roots of unity.



Let f{x) be a monic polynomial of degree »

and C its companion matrix.

Let S; be the unipotent lower triangular matrix
with (i,j) entry ns_ﬁ1 ,forn>i>j>1, where
s Is the kth Newton power sum of /, that is,
sy Is the sum of the & th powers of the roots of

the equation f(x) = 0.
Let S, = CS. So C = SzSIl. LetR = STISQ.




For example, if n = 3, then
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The matrix R = S71S, was first considered by
Reams in his 1994 PhD thesis at University
College Dublin and he showed that is useful
in the study of the nonnegative inverse
eigenvalue problem. If the power sums s, are
nonnegative, then §; and §; have
nonnegative entries and it is possible to write
down simple inequalities among the s; which
are sufficient for R to have nonnegative
entries.



In seeking examples of matrices with
easy-to-describe trace

vectors for this talk, it was discovered that the
vector

er = (1,0, ... ,0)T
Is a trace vector for R.

So n times the characteristic polynomial of
the trailing (n — 1) x (n — 1) principal submatrix
M of R is the derivative f'(x).
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In particular, if R has nonnegative entries, so
that the list of roots of the equation f{x) = 0 is
the spectrum of the nonnegative matrix R,
then the list of roots of the polynomial

f'(x) =0

is the spectrum of the nonnegative matrix M.



This relates to unsolved questions of Monov
(Cybern. Inform. Technol. 2 (2006) 35-11,
LAA 429 (2008) 2199-2208) on the spectral
properties of the derivatives of the
characteristic polynomials of nonnegative
matrices. (See also Chapter 4 of the PhD
thesis of Anthony Cronin, University College
Dublin, 2012).



It also provides a setting for studying the
Sendov conjecture on the Hausdorff distance
between the spectrum of g(x) and g '(x) for
polynomials g(x) with roots inside the unit
circle. Pereira has successfully used trace
vectors to attack problems of this type,
though the Sendov conjecture itself has
proved elusive.



We now present another class of examples
having trace vector e,.

Let
T = ()ula 3;u1’l)9
xp =+ 0 +uk kE=1,2,3,..
q(x) =TT, (x — ps)
=x"+qux"'+ ... +qn



Let X, =
/ X1 1
X2 X1 0
X3 X2 X1 0
X3
Xpn—-1 Xp=2 . ; ; X2 X1 n—1

\ Xn  Xn—1 . " « N3 A0 X1




The matrix X,, occurs in the context of the
Newton identities relating the coefficients of a

polynomial to the power sums of its roots. Let
Z = (1,ql, ,qn_l)T,en = (O, ,1)T e C”".
Then the Newton identities can be written as

Xnz = —ngen.

If we use Cramer’s rule to find the value of
the first variable z; = 1, we obtain the identity

det(X,) = (=1)"n!q.



However, the matrix X, itself, as distinct from
its determinant, does not appear to have
been widely investigated.



Laffey (LAA 436(6) (2012)1701-1709)
discovered the following universal property of
the matrices X,,.

Theorem 1. Leto = (A1, .. ,A,) bealist
of complex numbers satisfying
(YA, >| A; |,forj =23, .. ,m and

(iiyse =A%+ ... +Ak >0,fork=1,2,3,

Then there exists a positive integer N = N(o)
such that, for all integers n > N, and
appropriate nonnegative real numbers x;, ...
x», the spectrum of the matrix X, differs from
o only in the number of zeros.

Given o, one can compute an upper bound
on the least such N, and one can then easily
compute the required x;.




In a celebrated paper, using symbolic
dynamics, Boyle and Handelman (Annals of
Math. (2) 133 (2) (1991) 240-316) found a
proof that conditions (i) and (ii) above imply
that for sufficiently large », there exists an

n x n nonnegative matrix with spectrum ¢ and
n —m zeros, but their proof does not lead to a
bound on N nor a constructive algorithm.

In their work, condition (ii) is weakened by
allowing some of the s; to be zero under
certain circumstances.



It is worth noting that if 4 is an m x m square
matrix with positive entries, then its spectrum
satisfies condition (i) and (ii) above and that,
in this case, one can easily modify the matrix
X, to yield a matrix with positive entries
having the same spectrum.



Because of this application, Laffey,Loewy
and Smigoc have iInvestigated the properties
of the matrices X,, and some of the results
obtained are presented next.



It is convenient to regard the entries x; as
commuting indeterminates, but here it is
assumed that they are real or complex
numbers. Further details are available in the
paper "Power series with positive coefficients
arising from the characteristic polynomials of
positive matrices” currently available on
arXiv. 1205.1933v3[math.SP] 17 July 2013.



A key observation in proving Theorem 1 is:

Proposition. The characteristic polynomial
of X, is |

Ox) = x" + ng 1 x" ' +n(n— 1)gx"2% +

+nlqy.



Proof.
let P =

g1
q?
qs3

q1
q2

g n-3
qn-2

c\if} o\|’f3 - O O

(
(
C
1
(n—2)! U
g1 L.
(n—2)! (n-1)



and let C =
[0 1 0 S 0\
0 O 1 O 0 \
O 1 O 2
|
|
1
|
/
|
|
0 0 L 0 0 1 |
\\-——n!qn a . —nql{,ff

be the companion matrix of
Ox) = x"+ng1x" ' +nuln—1Dgx"?+ ... +alq

W



Direct multiplication, using the Newton
identities, yields  PC = X, P.

This proves the proposition.



Let r(x) = x" ' +q1x"*+ .. +¢gn1. Then,

using the Newton identities, x;, ... .x,.1 are
the first n» — 1 Newton power sums of the
polynomial r(x), so, by a similar argument,

we have
Fo1(x) = det(xl — X)) = x" 1+ (n— 1)gx"2
+(n—1)(n—-2)gx"> +...
+(m—-1)g,1.

Hence the derivative F,(x) = nF,_(x).



So, by Pereira’s result, the vector
e, =(0, .. ,DT

is a trace vector for X,,.



Let 1,.(¢) := t"X,(1/¢) be the reciprocal
polynomial of F,(x).

The equation F,,(x) = nF,i(x) transforms to

nf;(t) = [ — fn—l(t) (*)
fn(0) fa(0)

Next, expanding f,(f) = det(1 — ¢X,) yields

7)) = (1= 500 (0= 3, =i OF
=2 '

'?‘T-K'\
\ )



Suppose now that the numbers x;, ... ,x,
are real and nonnegative.

Since

/

A0
120

where T;(n) =trace(X%), (*) implies that

= T1(n) + To(n)t + T3(ﬂ)t2 +

f—}:(g) = 1+ (L))t + o) + T () +

has all its coefficients nonnegative.




Since e, is a trace vector for X, the (n,n)
entry of X, is ’()

and thus

T; (n)

Ti(n) =2 Ti(n—-1) +
and
(n—D)Tj(n) > nTy(n—1).



Let W(¢) = f,.1(0)/(f,(1)) "+, considered as a
formal power series in t.

Then the logarithmic derivative

W@ _ _Ju® , -1) @
40 Jn-1(2) T (D)

= > 10 - 7y - 1

=1

has nonnegative coefficients.



Formally integrating term-by-term and
exponentiating, we deduce

that W(¢) has nonnegative coefficients.

Observe that if 0 < ¢ < 1,the formal
expansion of (1 — 2)¢in

powers of / has all its coefficients negative.



We can write equation (**) in the form
@7 = (1 =x18)fpa (D) 7[1 -
—~ (n—1! xfs(OFf 1
17
Z

=~ (n—0)! (1-x18)fn1(0)
= (1 =x1)fa (D)7 (1 = V(@)

where

Va(t) = i (n=-1!  xfui@®F
| i=2

(m—0! (1 —tx1)fu1(t)



We now prove by induction that, except for
the first term 1, all the coefficients in the
formal expansion of ()= are non-positive.

Note that

(ot O) 7T = 1=x1t= D _y,t,
=2

with 7, > 0.



So

(1L =x1)fur1 )7 = (1 —x18) 7 (1 — x12 -

N D
D vt
=2

= (1 —x11)(1 -
vt 1=
_ 1 —x¢t
=
— (1=x,0(1 -
o0 o0 t
Zﬁk(z 17/Jx t)k
k=1 j=2
=1 —-x1f—

- (Z;ZQ(?/]ﬂ)k
;ﬁk (1-x)Ft

where (1 -0 =1->" But*.




Note that g, > 0, fork = 1,2,3,

Note also that the expansion of (1 — x;¢#)~*V
has nonnegative

coefficients.



Now

L7 = (L=x10)fu1 )7 (1 = Vu(®)
= (1 -x1t)fma () 7 (1 -

D ailu(®))
=1
= (1 = x10)fp1 ()™ —
3" ai((1 = 21 () F Va0,
i=1

where (1-0)7 = 1-Y_ a;t"

i=1




Next((1 — x16)f,-1(6) 7 V()

(=D xfei@F
= "= (1 — 11)fn-1(2)

3 =D afeOF i)
= =0 (1 =tx1)f1(®) " fru2@

fn—2 (t)
(1 () 1




Using (*) and the fact that for a positive
integerk < n—1,
fr@) - i@ fen (D) Jn2(2)
ot @) fen (@) fea(®) T fua ()

and the inductive hypothesis that all
coefficients except the first term 1 in the

expansion of (fn_l(t))ff? are non-positive, we
deduce that all coefficients in the expansion
of (f,(¢)) * , except

for the first term 1, are non-positive.




If all the x; are positive, one can check that
"non-positive” can be

replaced by "negative”.



One has the following consequence:

Theorem 2. Let 4 be a square matrix with
positive entries and let

f(t) = det({ — t4). Then there exists a positive
integer N such

that all coefficients in the formal expansion of
1 — (D)~ are

positive, for all n > N.



One can write down an upper bound on the
least NV required in terms of the spectrum of A.

In the special case where
A =diag(ai, .. an),

where all a; > 0,then 1 — f{r) = has positive
coefficients for all n > m and in general this is
best possible here (Laffey , Math. Proc.
RIA.112 A (2) (2013) 97-106).



Sign patterns of the coefficients of formal
power series also play a role in the study of
the spectra of nonnegative integer matrices
by Kim, Ormes and Roush (JAMS 13 (2000)
773-800).




Suppose that
o = (Al, /An)
is a list of complex numbers and

fix) = (x-A;1) ... (x-A,)
=x"+pxX" + ... +p, say.

By comparing power sums of the elements of
o with traces of powers of X, , for example,
one can inductively find unique elements x;,

,X n, such that the corresponding X,, has
characteristic polynomial f(x).

So there is a matrix with entries in the field
generated by the coefficients of f(x) which has
spectrum o and trace vector

e.= (0, ... ,01)".
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If, given o, we use instead of X, the matrix Y,
obtained from it by replacing the diagonal
(1,2, ... ,n-1) by (1,1, ... ,1) (n—-1
entries) and then compute the x; inductively
such that the characteristic polynomial of the
principal leading j x j submatrix of Y, has
characteristic polynomial the (n —j ) th
derivative of f(x), made monic, then the
resulting Y, will also have trace vector e,.
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If the polynomial f(x) has integer coefficients,
then the corresponding Y, will have rational
entries, but not necessarily, integer entries.
However, if the coefficient p; is divisible by

n(n-1)... (n-j+1)

forj=1, ... ,n, thenY, will have integer
entries.
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Finally, we consider a special case of the
matrix X,, Let S, be the matrix obtained from
X, by putting x, =1 and all other x; = 0.

Then S, has trace vector (0, ... ,0,1)T and
characteristic polynomial the (statisticians’)
Hermite polynomial He, (x) given by

He,(x) = exp(x’/2)D"(exp(-x*/2))
where D=d/dx.
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Let f,(t) := det(l - tS, ) be the reciprocal of
He,(x) and let

P(t) =-tf, (t)/fa(t).
So
P(t) = Ty(n)t + To(n)t* +

where T;(n) = trace(S,’) is the sum of the j th
powers of the roots of He,(x) = 0.
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P(t) satisfies the Riccati equation

(1-(2n - 1)t°)P(t)+t P’(t) = t°P(t)] + n(n - 1)F’.
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There is a very considerable literature on the
roots of He,(x), especially in the area of
combinatorics and theoretical computer
science - in studying the average height of
plane trees, De Bruijn, Knuth and Rice wrote a
famous paper on the subject in 1972 (in
which they introduced Mellin transforms into
this area) and later, Flajeolet, Lagarias,
Odlyzko, Zagier and many others, have done
so. However, this Riccati equation has no
known explicit solution in terms of
elementary functions.
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The power sum T, (n) is a polynomial in n of

degree k + 1 and the coefficient of n“is the
(2k)!

Catalan number C, = :
(k+1)'k!

The Perron root of S,, is close to v(2vn).
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The polynomial f,(t) is a polynomial in t* and,
as such, it has positive roots (since, for
example, S, is similar to a real symmetric
matrix so the nonzero eigenvalues of Sn2 are
positive) and therefore it follows that the
expansion in powers of t of 1-f, (t)z/n has all
its coefficients nonnegative.



