Complete decomposability of positive compact operators with positive commutators

Joint work with Roman Drnovšek

Marko Kandić

Faculty of Mathematics and Physics University of Ljubljana

marko.kandic@fmf.uni-lj.si

June 5, 2014

• General notations and definitions;

- General notations and definitions;
- Atomic diagonal of a positive operator and its connection with complete decomposability of positive operators;

- General notations and definitions;
- Atomic diagonal of a positive operator and its connection with complete decomposability of positive operators;
- Complete decomposability of families of "semi-commuting" operators;

- General notations and definitions;
- Atomic diagonal of a positive operator and its connection with complete decomposability of positive operators;
- Complete decomposability of families of "semi-commuting" operators;
- Complete decomposability of Lie sets of compact operators.

A positive operator is an operator which maps almost everywhere positive functions to almost everywhere positive functions. An operator A is of constant sign if A is positive or -A is positive. Operators A and B semi-commute if $AB - BA \ge 0$ or $BA - AB \ge 0$, i.e., the commutator AB - BA is of constant sign.

A positive operator is an operator which maps almost everywhere positive functions to almost everywhere positive functions. An operator A is of constant sign if A is positive or -A is positive. Operators A and B semi-commute if $AB - BA \ge 0$ or $BA - AB \ge 0$, i.e., the commutator AB - BA is of constant sign.

If $a \subseteq X$ is an atom of measure and P_a is the projection to the one-dimensional standard subspace $L^p(a)$, the atomic diagonal of the positive operator T is

$$\mathcal{D}(T) = \sup_{\mathcal{F}} \sum_{a \in \mathcal{F}} P_a T P_a$$

where \mathcal{F} runs over all finite sets consisting of all pairwise disjoint atoms of X.

A positive operator is an operator which maps almost everywhere positive functions to almost everywhere positive functions. An operator A is of constant sign if A is positive or -A is positive. Operators A and B semi-commute if $AB - BA \ge 0$ or $BA - AB \ge 0$, i.e., the commutator AB - BA is of constant sign.

If $a \subseteq X$ is an atom of measure and P_a is the projection to the one-dimensional standard subspace $L^p(a)$, the atomic diagonal of the positive operator T is

$$\mathcal{D}(T) = \sup_{\mathcal{F}} \sum_{a \in \mathcal{F}} P_a T P_a$$

where \mathcal{F} runs over all finite sets consisting of all pairwise disjoint atoms of X. A number λ is contained on the diagonal of the operator T if $\lambda = \operatorname{tr}(P_a T P_a)$ for some atom a in X.

Marko Kandić (FMF)

A family \mathcal{F} of operators on a Banach space X is said to be

A family \mathcal{F} of operators on a Banach space X is said to be

 reducible if there exists a closed subspace of X invariant under all operators from F; A family \mathcal{F} of operators on a Banach space X is said to be

- reducible if there exists a closed subspace of X invariant under all operators from F;
- irreducible if it is not reducible;

- A family \mathcal{F} of operators on a Banach space X is said to be
 - reducible if there exists a closed subspace of X invariant under all operators from F;
 - irreducible if it is not reducible;
 - triangularizable if there exists a chain of closed subspaces of X that is maximal as a chain of subspaces and every subspace from the chain is invariant under all operators from \mathcal{F} .

- A family \mathcal{F} of operators on a Banach space X is said to be
 - reducible if there exists a closed subspace of X invariant under all operators from F;
 - irreducible if it is not reducible;
 - triangularizable if there exists a chain of closed subspaces of X that is maximal as a chain of subspaces and every subspace from the chain is invariant under all operators from \mathcal{F} .
- A subspace \mathcal{M} of $L^{p}(X)$ is a standard subspace if there exists a measurable subset $Y \subseteq X$ such that $\mathcal{M} = L^{p}(Y)$.

- A family \mathcal{F} of operators on a Banach space X is said to be
 - reducible if there exists a closed subspace of X invariant under all operators from F;
 - irreducible if it is not reducible;
 - triangularizable if there exists a chain of closed subspaces of X that is maximal as a chain of subspaces and every subspace from the chain is invariant under all operators from \mathcal{F} .
- A subspace \mathcal{M} of $L^{p}(X)$ is a standard subspace if there exists a measurable subset $Y \subseteq X$ such that $\mathcal{M} = L^{p}(Y)$.
- A family \mathcal{F} of operators on $L^p(X)$ is said to be

- A family \mathcal{F} of operators on a Banach space X is said to be
 - reducible if there exists a closed subspace of X invariant under all operators from F;
 - irreducible if it is not reducible;
 - triangularizable if there exists a chain of closed subspaces of X that is maximal as a chain of subspaces and every subspace from the chain is invariant under all operators from \mathcal{F} .
- A subspace \mathcal{M} of $L^{p}(X)$ is a standard subspace if there exists a measurable subset $Y \subseteq X$ such that $\mathcal{M} = L^{p}(Y)$.
- A family \mathcal{F} of operators on $L^p(X)$ is said to be
 - decomposable if there exists a standard subspace of X invariant under all operators from F;

- A family \mathcal{F} of operators on a Banach space X is said to be
 - reducible if there exists a closed subspace of X invariant under all operators from F;
 - irreducible if it is not reducible;
 - triangularizable if there exists a chain of closed subspaces of X that is maximal as a chain of subspaces and every subspace from the chain is invariant under all operators from \mathcal{F} .

A subspace \mathcal{M} of $L^{p}(X)$ is a standard subspace if there exists a measurable subset $Y \subseteq X$ such that $\mathcal{M} = L^{p}(Y)$.

- A family \mathcal{F} of operators on $L^p(X)$ is said to be
 - decomposable if there exists a standard subspace of X invariant under all operators from F;
 - indecomposable if it is not decomposable;

- A family \mathcal{F} of operators on a Banach space X is said to be
 - reducible if there exists a closed subspace of X invariant under all operators from F;
 - irreducible if it is not reducible;
 - triangularizable if there exists a chain of closed subspaces of X that is maximal as a chain of subspaces and every subspace from the chain is invariant under all operators from \mathcal{F} .

A subspace \mathcal{M} of $L^{p}(X)$ is a standard subspace if there exists a measurable subset $Y \subseteq X$ such that $\mathcal{M} = L^{p}(Y)$.

- A family \mathcal{F} of operators on $L^p(X)$ is said to be
 - decomposable if there exists a standard subspace of X invariant under all operators from F;
 - indecomposable if it is not decomposable;
 - completely decomposable if there exists a chain of standard subspaces of X that is maximal as a chain of subspaces and every subspace from the chain is invariant under all operators from \mathcal{F} .

Marko Kandić (FMF)

Complete decomposability

Suppose that A is completely decomposable.

Suppose that A is completely decomposable.

There exists a permutation matrix P such that P^TAP is upper-triangular.

Suppose that A is completely decomposable.

There exists a permutation matrix P such that P^TAP is upper-triangular.

We conclude that the eigenvalues (repeated according to their multiplicities) of *A* are contained on the diagonal of *A*.

Suppose that A is completely decomposable.

There exists a permutation matrix P such that P^TAP is upper-triangular.

We conclude that the eigenvalues (repeated according to their multiplicities) of *A* are contained on the diagonal of *A*.

For positive matrices the converse statement also holds.

Suppose that A is completely decomposable.

There exists a permutation matrix P such that P^TAP is upper-triangular.

We conclude that the eigenvalues (repeated according to their multiplicities) of *A* are contained on the diagonal of *A*.

For positive matrices the converse statement also holds.

What can be said in the infinite dimensional case?

Theorem (MacDonald, Radjavi 2005)

The following statements are equivalent for a positive trace class operator T on the space $L^p(X)$ $(1 \le p < \infty)$.

Theorem (MacDonald, Radjavi 2005)

The following statements are equivalent for a positive trace class operator T on the space $L^{p}(X)$ $(1 \le p < \infty)$.

1 *T* is completely decomposable;

Theorem (MacDonald, Radjavi 2005)

The following statements are equivalent for a positive trace class operator T on the space $L^{p}(X)$ $(1 \le p < \infty)$.

- **1** *T* is completely decomposable;
- **2** T D(T) is quasinilpotent;

Theorem (MacDonald, Radjavi 2005)

The following statements are equivalent for a positive trace class operator T on the space $L^{p}(X)$ $(1 \le p < \infty)$.

- **1** *T* is completely decomposable;
- 2 T D(T) is quasinilpotent;
- The eigenvalues of D(T) consists precisely of the eigenvalues of T with the same multiplicities;

Theorem (MacDonald, Radjavi 2005)

The following statements are equivalent for a positive trace class operator T on the space $L^p(X)$ $(1 \le p < \infty)$.

- **1** *T* is completely decomposable;
- 2 T D(T) is quasinilpotent;
- The eigenvalues of D(T) consists precisely of the eigenvalues of T with the same multiplicities;

Theorem (Drnovšek, Kandić 20**)

Previous theorem also holds for positive power compact operators.

Let S be a semigroup of positive operators.

Let S be a semigroup of positive operators.

• If S is completely decomposable, then $\mathcal{D}(ST) = \mathcal{D}(S)\mathcal{D}(T)$ for all S, $T \in S$;

Let S be a semigroup of positive operators.

- If S is completely decomposable, then $\mathcal{D}(ST) = \mathcal{D}(S)\mathcal{D}(T)$ for all $S, T \in S$;
- If X is atomic and D(ST) = D(S)D(T) for all S, T ∈ S, then S is completely decomposable;

Let S be a semigroup of positive operators.

- If S is completely decomposable, then $\mathcal{D}(ST) = \mathcal{D}(S)\mathcal{D}(T)$ for all $S, T \in S$;
- ② If X is atomic and D(ST) = D(S)D(T) for all S, T ∈ S, then S is completely decomposable;
- If every operator in S is a completely decomposable compact operator and D(ST) = D(S)D(T) for all S, T ∈ S, then S is completely decomposable.

Let S be a semigroup of positive operators.

- If S is completely decomposable, then D(ST) = D(S)D(T) for all S, T ∈ S;
- ② If X is atomic and D(ST) = D(S)D(T) for all S, T ∈ S, then S is completely decomposable;
- If every operator in S is a completely decomposable compact operator and D(ST) = D(S)D(T) for all S, T ∈ S, then S is completely decomposable.

It can be easily verified that $\mathcal{D}(S)\mathcal{D}(T) = \mathcal{D}(T)\mathcal{D}(S)$ for all positive operators S and T. Therefore, $\mathcal{D}(ST) = \mathcal{D}(S)\mathcal{D}(T)$ for all $S, T \in S$ implies

$$\mathcal{D}(ST) = \mathcal{D}(TS)$$

for all $S, T \in S$. Is this enough for complete decomposability?

Theorem (Drnovšek, Kandić 201*)

A semigroup S of completely decomposable positive compact operators with the property that for every $T, S \in S$ we have $\mathcal{D}(ST) = \mathcal{D}(TS)$ is completely decomposable.
Theorem (Drnovšek, Kandić 201*)

A semigroup S of completely decomposable positive compact operators with the property that for every $T, S \in S$ we have $\mathcal{D}(ST) = \mathcal{D}(TS)$ is completely decomposable.

Example

$$A = \begin{bmatrix} 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}.$$

Then $A^2 = B^2 = AB = BA = 0$, so that $S = \{0, A, B\}$ is a semigroup of completely decomposable matrices such that $\mathcal{D}(S) = 0$ for all $S \in S$. However, S is not completely decomposable, as the diagonal of the matrix

$$|A| + B = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

is zero, but the matrix is not nilpotent.

Let A and B be positive compact operators with AB - BA positive as well.

Let A and B be positive compact operators with AB - BA positive as well.

- Bračič, Drnovšek, Farforovskaya, Rabkin and Zemánek proved that *AB* - *BA* is quasinilpotent.
- Therefore $\mathcal{D}(AB) = \mathcal{D}(BA)$.

Let A and B be positive compact operators with AB - BA positive as well.

- Bračič, Drnovšek, Farforovskaya, Rabkin and Zemánek proved that AB – BA is quasinilpotent.
- Therefore $\mathcal{D}(AB) = \mathcal{D}(BA)$.

Suppose that S is a semigroup of constant sign compact operators and that for $A, B \in S$ the commutator AB - BA is also of constant sign.

Let A and B be positive compact operators with AB - BA positive as well.

- Bračič, Drnovšek, Farforovskaya, Rabkin and Zemánek proved that AB – BA is quasinilpotent.
- Therefore $\mathcal{D}(AB) = \mathcal{D}(BA)$.

Suppose that S is a semigroup of constant sign compact operators and that for $A, B \in S$ the commutator AB - BA is also of constant sign.

• Then for all A, B in S the commutator AB - BA is quasinilpotent.

Let A and B be positive compact operators with AB - BA positive as well.

- Bračič, Drnovšek, Farforovskaya, Rabkin and Zemánek proved that AB – BA is quasinilpotent.
- Therefore $\mathcal{D}(AB) = \mathcal{D}(BA)$.

Suppose that S is a semigroup of constant sign compact operators and that for $A, B \in S$ the commutator AB - BA is also of constant sign.

- Then for all A, B in S the commutator AB BA is quasinilpotent.
- S is triangularizable.

Theorem (Drnovšek, Kandić 20**)

Let S be a semigroup of completely decomposable constant sign compact operators. If the diagonal of the commutator AB - BA is of constant sign for all $A, B \in S$, then S is completely decomposable.

Theorem (Drnovšek, Kandić 20**)

Let S be a semigroup of completely decomposable constant sign compact operators. If the diagonal of the commutator AB - BA is of constant sign for all $A, B \in S$, then S is completely decomposable.

Corollary

A commutative semigroup of completely decomposable positive compact operators is completely decomposable.

Is a commutative family of positive compact operators completely decomposable?

Is a commutative family of positive compact operators completely decomposable?

The matrix

$\left[\begin{array}{rrr}1&1\\1&1\end{array}\right]$

is an indecomposable rank one matrix on \mathbb{R}^2 .

Is a commutative family of positive compact operators completely decomposable?

The matrix

$$\left[\begin{array}{rrr}1&1\\1&1\end{array}\right]$$

is an indecomposable rank one matrix on \mathbb{R}^2 .

```
Theorem (Drnovšek, Kandić 20**)
```

Let A and B be completely decomposable positive power compact operators. If $AB \ge BA$, then A and B are simultaneously completely decomposable.

Corollary

Let \mathcal{F} and \mathcal{G} be families of positive compact operators. Suppose that \mathcal{F} and \mathcal{G} are completely decomposable. If $[A, B] \ge 0$ for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$, then $\mathcal{F} \cup \mathcal{G}$ is completely decomposable.

Corollary

Let \mathcal{F} and \mathcal{G} be families of positive compact operators. Suppose that \mathcal{F} and \mathcal{G} are completely decomposable. If $[A, B] \ge 0$ for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$, then $\mathcal{F} \cup \mathcal{G}$ is completely decomposable.

Corollary

A commutative family of completely decomposable positive power compact operators is completely decomposable.

Corollary

Let \mathcal{F} and \mathcal{G} be families of positive compact operators. Suppose that \mathcal{F} and \mathcal{G} are completely decomposable. If $[A, B] \ge 0$ for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$, then $\mathcal{F} \cup \mathcal{G}$ is completely decomposable.

Corollary

A commutative family of completely decomposable positive power compact operators is completely decomposable.

Corollary

Let \mathcal{F} and \mathcal{G} be commutative families of positive completely decomposable power compact operators. If $[A, B] \ge 0$ for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$, then $\mathcal{F} \cup \mathcal{G}$ is completely decomposable.

Theorem (Radjavi 1987)

A set \mathcal{N} of nilpotent endomorphisms of a finite dimensional vector space is triangularizable whenever for $A, B \in \mathcal{N}$ there exists a noncommutative polynomial p(A, B) such that $AB + p(A, B)A \in \mathcal{N}$.

Theorem (Radjavi 1987)

A set \mathcal{N} of nilpotent endomorphisms of a finite dimensional vector space is triangularizable whenever for $A, B \in \mathcal{N}$ there exists a noncommutative polynomial p(A, B) such that $AB + p(A, B)A \in \mathcal{N}$.

Corollary (Jacobson)

A set \mathcal{N} of nilpotent endomorphisms of a finite dimensional vector space is triangularizable whenever for $A, B \in \mathcal{N}$ there exists a scalar c such that $AB - cBA \in \mathcal{N}$.

Theorem (Radjavi 1987)

A set \mathcal{N} of nilpotent endomorphisms of a finite dimensional vector space is triangularizable whenever for $A, B \in \mathcal{N}$ there exists a noncommutative polynomial p(A, B) such that $AB + p(A, B)A \in \mathcal{N}$.

Corollary (Jacobson)

A set \mathcal{N} of nilpotent endomorphisms of a finite dimensional vector space is triangularizable whenever for $A, B \in \mathcal{N}$ there exists a scalar c such that $AB - cBA \in \mathcal{N}$.

• A semigroup of nilpotent endomorphisms is triangularizable (c = 0);

Theorem (Radjavi 1987)

A set \mathcal{N} of nilpotent endomorphisms of a finite dimensional vector space is triangularizable whenever for $A, B \in \mathcal{N}$ there exists a noncommutative polynomial p(A, B) such that $AB + p(A, B)A \in \mathcal{N}$.

Corollary (Jacobson)

A set \mathcal{N} of nilpotent endomorphisms of a finite dimensional vector space is triangularizable whenever for $A, B \in \mathcal{N}$ there exists a scalar c such that $AB - cBA \in \mathcal{N}$.

- A semigroup of nilpotent endomorphisms is triangularizable (c = 0);
- A Lie set of nilpotent endomorphisms is triangularizable (c = 1);

Theorem (Radjavi 1987)

A set \mathcal{N} of nilpotent endomorphisms of a finite dimensional vector space is triangularizable whenever for $A, B \in \mathcal{N}$ there exists a noncommutative polynomial p(A, B) such that $AB + p(A, B)A \in \mathcal{N}$.

Corollary (Jacobson)

A set \mathcal{N} of nilpotent endomorphisms of a finite dimensional vector space is triangularizable whenever for $A, B \in \mathcal{N}$ there exists a scalar c such that $AB - cBA \in \mathcal{N}$.

- A semigroup of nilpotent endomorphisms is triangularizable (c = 0);
- A Lie set of nilpotent endomorphisms is triangularizable (c = 1);
- A Jordan set of nilpotent endomorphisms is triangularizable (c = -1).

A Lie algebra of nilpotent endomorphisms is triangularizable

A Lie algebra of nilpotent endomorphisms is triangularizable

Engel's theorem can be strengthened. A Lie set \mathcal{L} of endomorphisms is triangularizable if and only if every commutator of elements of \mathcal{L} is nilpotent.

A Lie algebra of nilpotent endomorphisms is triangularizable

Engel's theorem can be strengthened. A Lie set \mathcal{L} of endomorphisms is triangularizable if and only if every commutator of elements of \mathcal{L} is nilpotent.

A Lie algebra of nilpotent endomorphisms is triangularizable

Engel's theorem can be strengthened. A Lie set \mathcal{L} of endomorphisms is triangularizable if and only if every commutator of elements of \mathcal{L} is nilpotent.

Wojtyński: Can one extend Engel's result to algebras of quasinilpotent operators on an infinite dimensional Banach space?

• Yes in the case of algebras of quasinilpotent Schatten operators on Hilbert spaces (Wojtyński 1976);

A Lie algebra of nilpotent endomorphisms is triangularizable

Engel's theorem can be strengthened. A Lie set \mathcal{L} of endomorphisms is triangularizable if and only if every commutator of elements of \mathcal{L} is nilpotent.

- Yes in the case of algebras of quasinilpotent Schatten operators on Hilbert spaces (Wojtyński 1976);
- In general, the answer is no! (Read's operator);

A Lie algebra of nilpotent endomorphisms is triangularizable

Engel's theorem can be strengthened. A Lie set \mathcal{L} of endomorphisms is triangularizable if and only if every commutator of elements of \mathcal{L} is nilpotent.

- Yes in the case of algebras of quasinilpotent Schatten operators on Hilbert spaces (Wojtyński 1976);
- In general, the answer is no! (Read's operator);
- Yes in the case of algebras of quasinilpotent compact operators (Shulman, Turovskii 2000);

A Lie algebra of nilpotent endomorphisms is triangularizable

Engel's theorem can be strengthened. A Lie set \mathcal{L} of endomorphisms is triangularizable if and only if every commutator of elements of \mathcal{L} is nilpotent.

- Yes in the case of algebras of quasinilpotent Schatten operators on Hilbert spaces (Wojtyński 1976);
- In general, the answer is no! (Read's operator);
- Yes in the case of algebras of quasinilpotent compact operators (Shulman, Turovskii 2000);
- A Lie algebra \mathcal{L} of compact operators is triangularizable if the spectrum is subadditive on \mathcal{L} (Kennedy, Radjavi 2009) and (Shulman, Turovskii 2005).

Theorem

Theorem

Let \mathcal{H} be a Hilbert space and \mathcal{M} a Lie set in $\mathcal{B}^1(\mathcal{H})$. The following statements are equivalent:

1 \mathcal{M} is triangularizable;

Theorem

- **1** \mathcal{M} is triangularizable;
- **2** Every pair of operators from \mathcal{M} is triangularizable;

Theorem

- **1** \mathcal{M} is triangularizable;
- 2 Every pair of operators from \mathcal{M} is triangularizable;
- **③** For all A, B and C in \mathcal{M} the operator A(BC CB) is quasinilpotent.

Theorem

- **1** \mathcal{M} is triangularizable;
- 2 Every pair of operators from $\mathcal M$ is triangularizable;
- **③** For all A, B and C in \mathcal{M} the operator A(BC CB) is quasinilpotent.
 - The equivalence between (1) and (2) was obtained by Shulman and Turovskii in the case of Lie algebras of compact operators;

Theorem

- **1** \mathcal{M} is triangularizable;
- 2 Every pair of operators from $\mathcal M$ is triangularizable;
- **§** For all A, B and C in \mathcal{M} the operator A(BC CB) is quasinilpotent.
 - The equivalence between (1) and (2) was obtained by Shulman and Turovskii in the case of Lie algebras of compact operators;
 - If \mathcal{M} is an algebra, then (3) states that all commutators from the algebra \mathcal{M} are contained in the Jacobson radical of \mathcal{M} which implies triangularizability of \mathcal{M}
What about an infinite dimensional extension of strengthened Engel's result?

Theorem

Let \mathcal{H} be a Hilbert space and \mathcal{M} a Lie set in $\mathcal{B}^1(\mathcal{H})$. The following statements are equivalent:

- **1** \mathcal{M} is triangularizable;
- 2 Every pair of operators from $\mathcal M$ is triangularizable;
- **§** For all A, B and C in \mathcal{M} the operator A(BC CB) is quasinilpotent.
 - The equivalence between (1) and (2) was obtained by Shulman and Turovskii in the case of Lie algebras of compact operators;
 - If \mathcal{M} is an algebra, then (3) states that all commutators from the algebra \mathcal{M} are contained in the Jacobson radical of \mathcal{M} which implies triangularizability of \mathcal{M}
 - If we assume only that tr(A(BC − CB)) = 0 for all A, B and C ∈ M, then we can obtain that M is reducible;

What about an infinite dimensional extension of strengthened Engel's result?

Theorem

Let \mathcal{H} be a Hilbert space and \mathcal{M} a Lie set in $\mathcal{B}^1(\mathcal{H})$. The following statements are equivalent:

- **1** \mathcal{M} is triangularizable;
- 2 Every pair of operators from $\mathcal M$ is triangularizable;
- **§** For all A, B and C in \mathcal{M} the operator A(BC CB) is quasinilpotent.
 - The equivalence between (1) and (2) was obtained by Shulman and Turovskii in the case of Lie algebras of compact operators;
 - If \mathcal{M} is an algebra, then (3) states that all commutators from the algebra \mathcal{M} are contained in the Jacobson radical of \mathcal{M} which implies triangularizability of \mathcal{M}
 - If we assume only that tr(A(BC CB)) = 0 for all A, B and $C \in M$, then we can obtain that M is reducible;
 - The trace condition tr(ABC) = tr(ACB) on algebra of trace class operators implies its triangularizability.

Let \mathcal{M} a Lie set of compact operators on E of constant sign. Then \mathcal{M} is triangularizable in both of the following cases:

Let \mathcal{M} a Lie set of compact operators on E of constant sign. Then \mathcal{M} is triangularizable in both of the following cases:

• $\{[A, B]: A, B \in \mathcal{M}\}$ consists of finite rank operators;

Let \mathcal{M} a Lie set of compact operators on E of constant sign. Then \mathcal{M} is triangularizable in both of the following cases:

- $\{[A, B]: A, B \in \mathcal{M}\}$ consists of finite rank operators;
- $\ \, {\cal M}\subseteq {\cal B}^1(L^2(X)).$

Let \mathcal{M} a Lie set of compact operators on E of constant sign. Then \mathcal{M} is triangularizable in both of the following cases:

- $\{[A, B] : A, B \in \mathcal{M}\}$ consists of finite rank operators;
- $\mathfrak{O} \ \mathcal{M} \subseteq \mathcal{B}^1(L^2(X)).$

If, in addition, every member of \mathcal{M} is completely decomposable, then \mathcal{M} is completely decomposable.

Let \mathcal{M} a Lie set of compact operators on E of constant sign. Then \mathcal{M} is triangularizable in both of the following cases:

If, in addition, every member of \mathcal{M} is completely decomposable, then \mathcal{M} is completely decomposable.

Open questions:

Let \mathcal{M} a Lie set of compact operators on E of constant sign. Then \mathcal{M} is triangularizable in both of the following cases:

- $\{[A, B] : A, B \in \mathcal{M}\}$ consists of finite rank operators;
- $\mathcal{M} \subseteq \mathcal{B}^1(L^2(X)).$

If, in addition, every member of \mathcal{M} is completely decomposable, then \mathcal{M} is completely decomposable.

Open questions:

Let *M* be a Lie set of compact operators on a Banach space. Is *M* triangularizable if *AB* − *BA* is quasinilpotent for all *A*, *B* ∈ *M*?

Let \mathcal{M} a Lie set of compact operators on E of constant sign. Then \mathcal{M} is triangularizable in both of the following cases:

- $\{[A, B] : A, B \in \mathcal{M}\}$ consists of finite rank operators;
- $\mathcal{M} \subseteq \mathcal{B}^1(L^2(X)).$

If, in addition, every member of \mathcal{M} is completely decomposable, then \mathcal{M} is completely decomposable.

Open questions:

- Let *M* be a Lie set of compact operators on a Banach space. Is *M* triangularizable if *AB* − *BA* is quasinilpotent for all *A*, *B* ∈ *M*?
- Let \mathcal{M} be a Lie set of completely decomposable compact operators of constant sign. Is \mathcal{M} completely decomposable?

References

Marko Kandić

Multiplicative coordinate functionals and ideal-triangularizability *Positivity* 17(4) 2013, 1085 – 1099.

Roman Drnovšek, Marko Kandić From local to global ideal-triangularizability *Linear and Multilinear algebra* DOI: 10.1080/03081087.2013.839675

Roman Drnovšek, Marko Kandić Ideal-triangularizability and commutators of constant sign Submitted to *Mediterranean Journal of Mathematics*