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Abstract: The recent paper [CGH2014] completes work begun
some years ago with Frank Gilfeather at the Maui High
Performance Computing Center (MHPCC, located on the Hawaiian
island of Maui). It combines that work with important new ideas
due to Michel Crouzeix. We explain how the problem treated in
[CGH2014] developed from a highly influential 1970 paper by Paul
Halmos, which drew attention to ten research problems about
Hilbert space operators. Among the most stimulating was the
following: find an intrinsic property of an operator T that holds iff
T is similar to a contraction C . Halmos proposed that such a
property might be: K (T ) <∞, where K (T ) is the so-called
polynomial bound of T , ie the supremum of ‖p(T )‖ over
polynomials p mapping the unit disc into itself.
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Many important tools were developed in response to this problem,
notably by Arveson, Paulsen, Bourgain, Pisier, and Davidson.
Pisier finally (c.1995) showed that the Halmos criterion must be
strengthened. We’ll give an account of these developments
(suitable for a general mathematical audience) leading up to the
related puzzle resolved in our joint work [CGH2014].

[CGH2014] M. Crouzeix, F. Gilfeather, and J. Holbrook,
Polynomial bounds for small matrices, Linear and Multilinear
Algebra, DOI: 10.1080/03081087.2013.777439, 12 pages, 2014
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Here we speak of Hilbert space operators T , ie linear T : X → X
where X is a complex Hilbert space. In the finite n–dimensional
case, we can think of X = Cn and represent T by an n × n
complex matrix. For the infinite–dimensional case it’s enough to
think of the sequence analog X = `2(C).

Our operators are bounded, ie ‖T‖ <∞ where

‖T‖ = sup{‖Tu‖ : u ∈ Cn, ‖u‖ = 1},

and ‖x‖ is the Hilbert space (Euclidean) norm of x ∈ X .
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Note that ‖T‖ is the Lipschitz constant of the map T : X → X ,
so that

‖TS‖ ≤ ‖T‖‖S‖.

In particular, if T is similar to a contraction C ie

T = SCS−1, ‖C‖ ≤ 1,

then for k = 0, 1, 2, . . .

‖T k‖ = ‖SC kS−1‖ ≤ ‖S‖‖C‖k‖S−1‖ ≤ ‖S‖‖S−1‖,

the condition number of S .
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Thus T similar to a contraction implies that K0(T ) <∞, where

K0(T ) = sup
k≥0
‖T k‖.

For a time it was thought that K0(T ) <∞ might characterize
those T that are similar to contractions.

This suggestion was perhaps due to Sz–Nagy, in view of his
beautiful 1947 result:

T is similar to a unitary operator U (both U and U−1 are
contractions) iff

sup{‖T k‖ : −∞ < k <∞} <∞.

9 / 86



Thus T similar to a contraction implies that K0(T ) <∞, where

K0(T ) = sup
k≥0
‖T k‖.

For a time it was thought that K0(T ) <∞ might characterize
those T that are similar to contractions.

This suggestion was perhaps due to Sz–Nagy, in view of his
beautiful 1947 result:

T is similar to a unitary operator U (both U and U−1 are
contractions) iff

sup{‖T k‖ : −∞ < k <∞} <∞.

10 / 86



The necessity of this condition is clear enough; on the other hand,
Sz–Nagy’s proof of sufficiency was a brilliant gem of classic
functional analysis: define

< h, g >= LIM{ 1

m

m∑
k=1

(T kh,T kg)},

where (h, g) is the inner product of h, g ∈ X and LIM is a Banach
limit, ie a norm–preserving linear extension of the limit for
convergent sequences to the space of all bounded complex
sequences (Hahn–Banach Theorem, so a bit of transfinite sorcery).

The introduction of Cesaro averages above makes the expression
translation invariant on sequences so that < Th,Tg >=< h, g >.
Let

M = sup{‖T k‖ : −∞ < k <∞}.

We have (1/M2)(h, h) ≤ < h, h > ≤ M2(h, h), so that < ·, · > is
a new inner product equivalent to the original.
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The relation < Th,Tg >=< h, g > says that T is unitary in the
new geometry. If we want to obtain the similarity explicitly we may
write

< h, g >= (Ah, g) = (Bh,Bg),

where A is a positive operator and B = A
1
2 ; then

(BTh,BTg) = (Bh,Bg),

ie BTB−1 is unitary.

It’s not hard to show that K0(T ) <∞ implies that T is similar to
a contraction in the finite–dimensional case. A useful idea here is
that if all eigenvalues of T are in the open unit disc, so that the
spectral radius r(T ) < 1, then the spectral radius formula

r(T ) = lim ‖T k‖
1
k

implies that
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∞∑
k=0

(T kh,T kg)

is convergent, defining a new inner product < h, g > such that
< Th,Th > ≤ < h, h >, ie T is a contraction with respect to the
new inner product.

In the infinite–dimensional case, however, Foguel (1964) found
examples where K0(T ) <∞ but T is not similar to a contraction.

A more demanding condition on operators similar to contractions
follows from von Neumann’s inequality:

16 / 86



∞∑
k=0

(T kh,T kg)

is convergent, defining a new inner product < h, g > such that
< Th,Th > ≤ < h, h >, ie T is a contraction with respect to the
new inner product.

In the infinite–dimensional case, however, Foguel (1964) found
examples where K0(T ) <∞ but T is not similar to a contraction.

A more demanding condition on operators similar to contractions
follows from von Neumann’s inequality:

17 / 86



∞∑
k=0

(T kh,T kg)

is convergent, defining a new inner product < h, g > such that
< Th,Th > ≤ < h, h >, ie T is a contraction with respect to the
new inner product.

In the infinite–dimensional case, however, Foguel (1964) found
examples where K0(T ) <∞ but T is not similar to a contraction.

A more demanding condition on operators similar to contractions
follows from von Neumann’s inequality:

18 / 86



in a remarkable 1951 paper, von Neumann showed that for a
Hilbert space contraction C and any polynomial p(z)

‖p(C )‖ ≤ ‖p‖∞ =definition max{|p(z)| : z ∈ C, |z | ≤ 1}.

Later we’ll give a simple proof of this and much more.

Thus, if T = SCS−1 we have

K (T ) =definition sup{‖p(T )‖ : ‖p‖∞ ≤ 1} ≤ ‖S‖‖S−1‖.

In fact, K (T ) ≤ M(T ), where

M(T ) = inf{‖S‖‖S−1‖ : ‖S−1TS‖ ≤ 1}.

The question that Halmos promoted in 1970 (and which took 25
years to answer) can now be expressed as follows:

K (T ) <∞ =⇒ M(T ) <∞?
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Meanwhile Arveson was developing the notions of complete
positivity and completely contractive maps, which were crucial
for the study of operator algebras and more recently for
quantum information theory (for example, the standard model
for a quantum channel is a completely positive map between
quantum systems).

Arveson suggested an alternative answer to the Halmos question:
M(T ) <∞ is equivalent to a much stronger condition than
K (T ) <∞ (“polynomial boundedness”), namely complete
polynomial boundedness. One way to express this condition is as
follows.

‖T‖cb <∞, where ‖T‖cb = supm ‖ϕm‖ and ϕm is the map on
m ×m matrices of polynomials defined by:
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ϕm([pij ]) = [pij (T )],

as an m ×m block matrix acting on the Hilbert space Xm.

This condition clearly comes from the fact that when T is replaced
by a contraction C the maps ϕm are contractive (the completely
contractive property; for von Neumann’s inequality take m = 1).

In [N1961] Edward Nelson gave a very simple proof of von
Neumann’s inequality (later noticed also by Pisier); it is based on
nothing more than a special case of the maximum principle from
complex analysis: if p is a polynomial, then max{|p(z)| : |z | ≤ 1}
(ie ‖p‖∞) occurs on the boundary (unit circle).

[N1961] E. Nelson, The distinguished boundary of the unit
operator ball, Proc. Amer. Math. Soc. 12, 994–5, 1961
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We show below that Nelson’s argument can also be used to prove
complete contractivity.

We restrict our discussion to the finite n–dimensional situation, ie
that of a matrix C ; it is not hard to reduce to this case.

Note that
‖[pij (C )]‖ = max{|([pij (C )]u,w)| : u,w ∈ Xm, ‖u‖ ≤ 1, ‖w‖ ≤ 1}.
Express C via its singular value decomposition, C = UDW , where
U and W are unitary, D = diag(s1, . . . , sn), and sk are the singular
values of C . Thus for each fixed u,w

([pij (C )]u,w) = P(s1, . . . , sn),

where P is a certain polynomial in n variables.
Since ‖C‖ ≤ 1 all sk lie in the unit disc (in fact, in [0, 1]), the
maximum principle implies that

|([pij (C )]u,w)| ≤ |P(z1, . . . , zn)|,
where each zk lies on the unit circle.
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Let A = diag(z1, . . . , zn); note that A is unitary and

P(z1, . . . , zn) = ([pij (UAW )]u,w).

Now UAW is unitary (by unconscious choice, UAW is also a
union!) so it only remains to show that

‖[pij (B)]‖ ≤ max{‖[pij (z)]‖ : |z | ≤ 1}

for unitary B. Write B in diagonal form: B = diag(b1, . . . , bn),
with each |bk | = 1.

Now each pij (B) = diag(pij (b1), . . . , pij (bn)) so that

‖[pij (B)]‖ = ‖
n⊕

k=1

[pij (bk )]‖ = maxk‖[pij (bk )]‖.

QED
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The polynomially bounded condition says that K (T ) = ‖ϕ1‖ <∞.
The condition ‖T‖cb <∞ is more complicated but it too can be
viewed as an intrinsic condition on T and so as a legitimate answer
to the Halmos question. Moreover, Arveson was right, and Vern
Paulsen proved it (and more) in two 1984 papers; the story is
nicely presented (along with many other matters) in Vern’s book
(second edition) [Pa2002].

[Pa84] V. Paulsen, Every completely polynomially bounded
operator is similar to a contraction, J. Funct. Anal. 55 (1984)
[Pa84a] V. Paulsen, Completely bounded homomorphisms of
operator algebras, Proc. Amer. Math. Soc. 92 (1984)
[Pa2002] V. Paulsen, Completely Bounded Maps and Operator
Algebras, Cambridge U. P. (2002)
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The fact that T is similar to a contraction iff T is a contraction
with respect to some equivalent inner product on the space X (so
that we might say T is a cryptocontraction) is a simple but
useful equivalence.

For example, suppose there are operators Tn on Cn such that
K (Tn) is bounded but M(Tn) is not (which was eventually found
to be the case). Then Halmos’s suggestion is wrong: consider

T = ⊕∞n=1Tn.

We have K (T ) = supK (Tn) <∞, but if M(T ) were finite we’d
have an inner product norm | · | with respect to which |T | ≤ 1 and,
since M(T ) depends only on the equivalence constant relating | · |
to ‖ · ‖, we would have the contradiction

supM(Tn) ≤ M(T ).
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Paulsen’s first 1984 paper established Arveson’s conjecture, but
[Pa84a] put it in a very tidy form:

M(T ) = ‖T‖cb.

Again, constructing the right new inner product was a key element.
The method came from the older paper [Ho1971], based in part on
and even older observation of Jordan and von Neumann: one can
first define an appropriate equivalent norm on X , then establish
that it’s an inner product norm by verifying the parallelogram law.

[Ho1971] J. Holbrook, Spectral dilations and polynomial bounded
operators, Indiana University Math. J. 20, No. 11 (1971)
[J–vN1935] P. Jordan and J. von Neumann, On inner products on
linear metric spaces, Ann. Math. 36 (1935)
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We’ve seen that the Halmos problem is closely related to a
finite–dimensional problem:

how is M(T ) controlled by K (T ) for operators T on Cn (n × n
matrices)?

Jean Bourgain, in a 1986 paper, used Paulsen’s relation
M(T ) = ‖T‖cb and some fancy function theory to obtain a bound
on M(T ) in terms of K (T ) and a slowly growing factor depending
on the underlying dimension n:

M(T ) ≤ cK 4(T ) log n,

where c is a universal constant.
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on the underlying dimension n:

M(T ) ≤ cK 4(T ) log n,

where c is a universal constant.
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Finally, c.1995, Gilles Pisier answered the Halmos question in the
negative, showing (among other things) that there exist
n–dimensional operators Tn such that K (Tn) is bounded while
M(Tn) ≥ K

√
log n for some constant K .

What is the true (maximal) growth rate of M(Tn)?

Pisier’s argument was somewhat mysterious and depended in part
on deep probabilistic methods. Davidson and Paulsen, however,
soon offered an alternate approach that is simpler and more direct.
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The papers:

[Pi96] G. Pisier, A polynomially bounded operator on Hilbert space
which is not similar to a contraction, C. R. Acad. Sci. Ser 1 Math.
322 (1996), pp.547–550

[Pi97] G. Pisier, A polynomially bounded operator on Hilbert space
which is not similar to a contraction, J. Amer. Math. Soc. 10
(1997), pp.351–369.

[D–P97] K. Davidson and V. Paulsen, On polynomially bounded
operators, J. für die reine und angewandte Math. (1997)
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So – that’s the “big picture”, but these results tell us little about
the relations between K (T ) and M(T ) for particular T – for small
matrices, for example.

It was noted early on that M(T ) = K (T ) for 2x2 matrices.

My first proof was a not–very–enlightening calculation; presently
we’ll show the 2x2 result in the light of more general principles.

First of all, one clearly needed to explore the possibility that
M(T ) = K (T ) for all dimensions.
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Pisier–Davidson–Paulsen eventually showed that this cannot be the
case, but that work seems of little help in constructing simple
matrices T that exhibit K (T ) < M(T ).

Consider T on finite–dimensional X (≡ Cn) with M(T ) <∞. Let
‖ · ‖ denote the (inner product) norm on X and | · | a new (ip)
norm such that |T | ≤ 1.

Let U be the unit sphere in X with respect to | · |:

U = {u ∈ X : |u| = 1},

and let

m = min
u∈U
‖u‖, M = max

u∈U
‖u‖, δ = M/m.

Then M(T ) = min{δ : |T | ≤ 1}.
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We say T has big spectrum if T has distinct eigenvalues
z1, . . . , zn and all |zk | = 1. (Actually for many of our results we
can allow one zk to be strictly within the unit disc ...)

Clearly T with big spectrum is cryptounitary, ie similar to a
unitary.

Proposition: For such T we have M(T ) ≤ K 2
0 (T ) ≤ K 2(T ).

The proof is essntially an adaptation of the Sz.–Nagy renorming
idea combined with the “almost periodicity” of finite–dimensional
unitaries (there are large N for which TN ≈ I ).

Thus cryptounitaries cannot resolve the Halmos question although,
as it turns out, they can display M(T ) > K (T ).
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Let u1, . . . , un be eigenvectors of T corresponding to z1, . . . , zn,
with |uk | = 1. If < ·, · > denotes the ip corresponding to | · |, the
uk are orthonormal with respect to < ·, · >.

Given u ∈ U let

s(u) = (| < u, u1 > |2, . . . , | < u, un > |2)

(squares of Fourier coefficients of u, a point lying in the
n − 1–dimensional probability simplex).

Let
U∗ = {u ∈ U : ‖u‖ = m (minimal)}

and
U∗ = {u ∈ U : ‖u‖ = M (maximal)}.
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Proposition: If T has big spectrum,

(a) M(T ) = δ iff conv(s(U∗)) ∩ conv(s(U∗)) 6= ∅;

(b) K (T ) = δ iff s(U∗) ∩ s(U∗) 6= ∅.

The geometric distinction between these two conditions allows
construction of examples where M(T ) > K (T ):

earlier with n = 12 (ad hoc),

later with n = 4 (interpenetrating ellipsoids ...).
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The 4–dimensional examples arise as follows:

if U∗ and U∗ are “two–dimensional” then s(U∗) and s(U∗) are
hollow ellipsoids inside the 3–dimensional simplex (tetrahedron).

If they interpenetrate we can chose some u ∈ U∗ such that s(u) is
strictly interior to s(U∗) and modify ‖ · ‖ so that U∗ = {e iθu}.
Then s(U∗) = {s(u)} does not intersect with s(U∗) but does lie
in conv(s(U∗)).

“video proof:”
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What about n = 3? (one of several challenging 3× 3 problems,
but this one is solved).

However, examples cannot be 3× 3’s with large spectrum:

If U∗ is two–dimensional and U∗ is one–dimensional then s(U∗) is
a filled ellipse in the 2–simplex (triangle) and s(U∗) is a single
point, so both are convex and the conditions

(a) M(T ) = δ iff conv(s(U∗)) ∩ conv(s(U∗)) 6= ∅
(b) K (T ) = δ iff s(U∗) ∩ s(U∗) 6= ∅

are the same.
[Ho78] J. Holbrook, Distortion coefficients for crypto–unitary
operators, Linear Alg. Appl. 19 (1978), pp.189–205
[Ho95] J. Holbrook, Interpenetration of ellipsoids and the
polynomial bound of a matrix, Linear Alg. Appl. 229 (1995),
pp.151–166
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All this suggests we focus on T ∈ G3, the space of 3× 3 matrices
with distinct eigenvalues all lying strictly inside the unit disc.
Versions of the following propositions are available for Gn (any
finite n) but here we often look at the simplified forms for n = 3 or
n = 2.

Given α ∈ D = {z ∈ C : |z | < 1}, let µα : D→ D denote the
Möbius transformation defined by

µα(z) =
z − α

1− αz
.

Note that µα is the automorphism of D mapping α to 0.

Proposition 1: If T ∈ G3 then

K (T ) = max{‖
m∏

k=1

µαk
(T )‖ : αk ∈ D,m < 3}.

This proposition makes the estimation of K (T ) computationally
feasible, since we need only check finite Blaschke products of
length 1 or 2.
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The proof is based on the fact that a Blaschke product of length 3
can match the action of any polynomial p : D→ D at the 3
eigenvalues and that it is even better to expand p to the point
where one of the Möbius factors is degenerate.

Let Bm denote the class of Blaschke products of length not
exceeding m, and, given T ∈ Gn, let

Km(T ) = max{‖f (T )‖ : f ∈ Bm}.

As in Proposition 1, K (T ) = Kn−1(T ) for each T ∈ Gn, but it may
well be the case that K (T ) = Km(T ) for some smaller m. Let us
call the smallest m such that K (T ) = Km(T ) the µ–index of T .
Thus, for n = 3 the matrices either have µ–index 1 or 2.
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In the 3× 3 case, Proposition 1 suggests a reasonably efficient
(two parameter) algorithm for estimating K (T ), since

K (T ) = max{‖µα(T )µβ(T )‖ : α, β ∈ D},

where µβ(T ) is interpreted as −βI when |β| = 1. Given a
(randomly chosen) T ∈ G3, for each α ∈ D the value of

h(α) = max
β∈D
‖µα(T )µβ(T )‖

was computed and plotted.

The observation that K (T ), the largest value of h(α), occurs on
the “rim of the crater” where |α| = 1 indicates that
K (T ) = ‖µβ(T )‖ for some β ∈ D , ie that this T has µ–index 1.

In some other cases, two interior maxima for h are observed in the
plot, indicating a T with µ–index 2.
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Proposition 2: Suppose that T ∈ Gn and f ∈ Bm is such that
‖f (T )‖ = K (T ). Let g : D→ D be analytic and let Z = g(T )
and Y = f (T ). If u is a norming vector for Y , then |(Zu, u)| ≤ 1.
In particular, |(Y ku, u)| ≤ 1 for every integer k ≥ 2.

In order to determine whether or not M(T ) = K (T ) we use
propositions of the following sort. We give explicitly only the case
where n = 2, but similar criteria apply whenever the µ–index is 1.

Proposition 3: If T ∈ Gn has µ–index 1, then M(T ) = K (T ) iff
‖Q‖ ≤ 1 for all Q in an explicit parametric family of matrices. In
the case n = 2

Q =

[
0 (Y 2u, u)
1 0

]
.
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Now the fact that M(T ) = K (T ) when T is 2× 2 may be seen as
a combination of three more general principles: Proposition 1 (T
has µ–index 1), Proposition 2 (|(Y 2u, u)| ≤ 1), and Proposition 3
(‖Q‖ ≤ 1).

When n = 3, the family of Q has one real parameter and one can
check numerically that ‖Q‖ > 1 sometimes occurs. In this way
Frank and I became convinced that M(T ) > K (T ) can happen for
3× 3 T , although we did not complete a proper error analysis.

[G–H00] F. Gilfeather and J. Holbrook, Polynomial bounds for
matrices, HPCERC Technical Report HPCERC2000-001 (2000),
available at www.carc.unm.edu
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The work of Michel Crouzeix:

Michel independently developed many of the same tools as we had
done but then applied them and a tour de force of epsilonics to
show that for sufficiently small ε

Tε =

0 2 0
ε 0 η
0 0 η

 where η =
1− ε2√

2

satisfies K (Tε) = ‖Tε‖ = 2 < M(Tε). (Note that µ–index is 1.)

[CGH2014] M. Crouzeix, F. Gilfeather, and J. Holbrook,
Polynomial bounds for small matrices, Linear and Multilinear
Algebra, DOI: 10.1080/03081087.2013.777439, 12 pages, 2014
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Wrapping up: the phenomenon K (T ) < M(T ), which leads to the
answer to the Halmos question, begins at n = 3 and becomes more
and more pronounced as n→∞ at a rate not entirely determined
but somewhere between

√
log n and log n.
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