Pólya permanent problem: 100 years after

Alexander Guterman

Moscow State University

Joint work with

Mikhail Budrevich, Gregor Dolinar, Bojan Kuzma, and Marko Orel

1. Gregor Dolinar, Alexander E. Guterman, Bojan Kuzma, Marko Orel, On the Polya permanent problem over finite fields, European J. of Combinatorics, 32, 2011, 116-132
2. Gregor Dolinar, Alexander E. Guterman, Bojan Kuzma, On Gibson barrier for Polya problem, Fundamental and Applied Mathematics, 16(8), 2010, 73-86
3. Gregor Dolinar, Alexander E. Guterman, Bojan Kuzma, Pólya convertibility problem for symmetric matrices, Math. Notes, 92 (5), 2012, 684-698.
4. Mikhail V. Budrevich, Alexander E. Guterman, Permanent has less zeros than determinant over finite fields, American Mathematical Society, Contemporary Mathematics, 579, 2012, 33-42.
5. Mikhail V. Budrevich, Alexander E. Guterman, On the Gibson bounds over finite fields, Serdica

Math. J. 38, 2012, 395416
6. Gregor Dolinar, Alexander E. Guterman, Bojan Kuzma, Marko Orel, Permanent versus determinant over a finite field, Journal of Mathematical Sciences (New-York), 193(3), 2013, 404-412

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \cdots a_{n \sigma(n)}
$$

and

$$
\operatorname{per} A=\sum_{\sigma \in \mathfrak{S}_{n}} a_{1 \sigma(1)} \cdots a_{n \sigma(n)}
$$

here $A=\left(a_{i j}\right) \in M_{n}(\mathbb{C}), \mathfrak{S}_{n}$ denotes the set of all permutations of the set $\{1,2, \ldots, n\}$. The value $\operatorname{sgn}(\sigma) \in\{-1,1\}$ is the signum of the permutation σ.
per is a combinatorial invariant:

$$
\operatorname{per}(P A Q)=\operatorname{per} A
$$

for all permutation matrices P, Q

Some applications of permanent

Derangements problem

In how many ways can a dance be arranged for n married couples, so that no husband dances with his own wife?

Some applications of permanent

Derangements problem

In how many ways can a dance be arranged for n married couples, so that no husband dances with his own wife?

$$
D_{n}=\operatorname{per}\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & \vdots \\
1 & \cdots & \cdots & 1 \\
1 & \cdots & 1 & 0
\end{array}\right)=\operatorname{per}\left(J_{n}-I_{n}\right)=n!\cdot \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

Ménage problem or problème des ménages

In how many ways can n married couples be placed at a round table, so that men and women sit in alternate places and no husband sit on either side of his wife?

Ménage problem or problème des ménages

In how many ways can n married couples be placed at a round table, so that men and women sit in alternate places and no husband sit on either side of his wife?

$$
U_{n}=\operatorname{per}\left(\begin{array}{cccccc}
0 & 0 & 1 & \cdots & 1 & 1 \\
1 & 0 & 0 & \cdots & \vdots & \vdots \\
1 & 1 & 0 & \cdots & 1 & 1 \\
1 & 1 & \cdots & \cdots & \cdots & 1 \\
1 & 1 & \dddot{1} & 1 & 0 & 0 \\
0 & 1 & \cdots & 1 & 0
\end{array}\right)=\operatorname{per}\left(J_{n}-I_{n}-P_{n}\right)
$$

P_{n} is a permutation matrix of $(1,2)(2,3) \cdots(n-1, n)(n, 1)$.

Ménage problem or problème des ménages

In how many ways can n married couples be placed at a round table, so that men and women sit in alternate places and no husband sit on either side of his wife?

Sequence number $A 059375$ in on-line encyclopedia of integer sequences
The first terms:
$12,96,3120,115200,5836320,382072320,31488549120, \ldots$

Ménage problem or problème des ménages

Formulated in 1891 by Édouard Lucas and independently, a few years earlier, by Peter Guthrie Tait in connection with knot theory

Touchard (1934) derived the formula

$$
U_{n}=2 \cdot n!\sum_{k=0}^{n}(-1)^{k} \frac{2 n}{2 n-k}\binom{2 n-k}{k}(n-k)!
$$

Latin squares

S is a set, $|S|=n$ usually, $S=\{1,2, \ldots, n\}$
A Latin rectangle on S is an $r \times s$ matrix A with $a_{i j} \in S, a_{i j} \neq a_{i l}$, and $a_{i j} \neq a_{k j}$.
$n \times n$ Latin rectangle is a Latin square.

Latin squares

S is a set, $|S|=n$ usually, $S=\{1,2, \ldots, n\}$
A Latin rectangle on S is an $r \times s$ matrix $A: a_{i j} \in S, a_{i j} \neq a_{i l}$, and $a_{i j} \neq a_{k j}$.
$n \times n$ Latin rectangle is a Latin square.
Problems: 1. To find the number $L(n, n)$ of Latin squares on S
2. To find the number $L(r, n)$ of $r \times n$ Latin rectangles on S

Known facts

1. $L(1, n)=1$
2. $L(2, n)=n!\cdot D_{n}$
3. $L(3, n)=n!\cdot \sum_{k=0}^{\lfloor n / 2\rfloor} C_{n}^{k} D_{n-k} D_{k} U_{n-2 k}$
Λ_{n}^{k} is the set of $(0,1)$-matrices with $k 1$ in each row and column.
$m(k, n)$ and $M(k, n)$ are lower and upper bounds for permanent in Λ_{n}^{k}.
Then

$$
n!D_{n} \prod_{t=2}^{r-1} m(n-t, n) \leq L(r, n) \leq n!D_{n} \prod_{t=2}^{r-1} M(n-t, n)
$$

Domino tiling

Consider $m \times n$ rectangular chessboard and 2×1 dominoes.
A tiling is a placement of dominoes that covers all the cells of the board perfectly.

1. If there exists a tiling if we consider a usual chess-board with one corner-cell deleted?
2. If there exists a tiling if we consider a usual chess-board with one corner-cell deleted?

NO. The total number of cells is odd.

1. If there exists a tiling if we consider a usual chess-board with one corner-cell deleted?

NO. The total number of cells is odd.
2. If there exists a tiling if we consider a usual chess-board with two opposite corner-cells deleted?

1. If there exists a tiling if we consider a usual chess-board with one corner-cell deleted?

NO. The total number of cells is odd.
2. If there exists a tiling if we consider a usual chess-board with two opposite corner-cells deleted?

NO. Both deleted cells are of the same color, but domino covers two cells of different colors

Problems:

1. Existence of tilings.
2. If there are tilings, how many are them?

Problems:

1. For which m, n do there \exists tilings?
2. If there are tilings, how many are them?

Theorem. Tiling exist $\Leftrightarrow m, n$ are NOT both odd (i.e. $m n$ is even).

Example.

Example.

$$
\begin{gathered}
T(2, n)=T(2, n-1)+T(2, n-2) \\
T(3,2 n)=4 T(3,2 n-2)-T(3,2 n-4)
\end{gathered}
$$

Example.

$$
\begin{gathered}
T(2, n)=T(2, n-1)+T(2, n-2) \\
T(3,2 n)=4 T(3,2 n-2)-T(3,2 n-4)
\end{gathered}
$$

Difficult recurrent formulas...

Perfect matching in a graph is a selection of edges that covers each vertex exactly once. tilings \longleftrightarrow perfect matchings in underlying grid graph

Chessboard coloring \Longrightarrow bipartite graph
Bipartite graph \Longrightarrow adjacency matrix A
The number of tilings $=$ number of perfect matchings $=\operatorname{per}(A)$

The number of tilings: Temperley \& Fisher (1961) and Kasteleyn (1961)

$$
\prod_{j=1}^{m} \prod_{k=1}^{n}\left(4 \cos ^{2} \frac{\pi j}{m+1}+4 \cos ^{2} \frac{\pi k}{n+1}\right)^{\frac{1}{4}}
$$

equivalent to

$$
\prod_{j=1}^{\left\lceil\frac{m}{2}\right\rceil} \prod_{k=1}^{\left\lceil\frac{n}{2}\right\rceil}\left(4 \cos ^{2} \frac{\pi j}{m+1}+4 \cos ^{2} \frac{\pi k}{n+1}\right) .
$$

If m or n is 2: the sequence reduces to the Fibonacci sequence (sequence A000045 in OEIS) (Klarner \& Pollack 1980)

Applications of permanent:

Counting function for combinatorial problems

Applications of permanent:

Counting function for combinatorial problems
DNA identification

Applications of permanent:

Counting function for combinatorial problems
DNA identification

Probability

Applications of permanent:

Counting function for combinatorial problems
DNA identification

Probability

Quantum field theory

Applications of permanent:

Counting function for combinatorial problems
DNA identification

Probability

Quantum field theory

Ferro-magnetism

Applications of permanent:

Counting function for combinatorial problems
DNA identification

Probability

Quantum field theory

Ferro-magnetism

Coding theory

Applications of permanent:

Counting function for combinatorial problems
DNA identification

Probability

Quantum field theory

Ferro-magnetism

Coding theory

Makes everybody happy

	det	per
Geometry	Oriented volume	Combinatorial geometry
Algebra	$\lambda_{1} \cdots \lambda_{n}$	Bounds
Complexity	$O\left(n^{3}\right)$	$\sim(n-1) \cdot\left(2^{n}-1\right)$

Ryser's formula

$$
\operatorname{per}(A)=\sum_{t=0}^{n-1}(-1)^{t} \sum_{X \in \Lambda_{n-t}} \prod_{i=1}^{n} r_{i}(X)
$$

$r_{i}(X)=\sum_{j=1}^{t} x_{i j}-i$ th row sum
Λ_{n-t} - the set of all $n \times(n-t)$ submatrices of A

How many tilings ?
To compute permanent is HARD!
Even if the entries are just 0,1 , computing the permanent is $\sharp P$-complete.

The quantity of transformations preserving a given matrix invariant provide a "measure" of its complexity

Theorem 1 [Frobenius, 1896]

$$
T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})
$$

- linear, bijective

$$
\operatorname{det}(T(A))=\operatorname{det} A \quad \forall A \in M_{n}(\mathbb{C})
$$

\Downarrow

$$
\exists P, Q \in G L_{n}(\mathbb{C}), \operatorname{det}(P Q)=1:
$$

$$
T(A)=P A Q \quad \forall A \in M_{n}(\mathbb{C}) \text { or } T(A)=P A^{t} Q \quad \forall A \in M_{n}(\mathbb{C})
$$

Theorem 2 [Marcus, May] Linear transformation T is permanent pre-
server iff

$$
T(A)=P_{1} D_{1} A D_{2} P_{2} \quad \forall A \in M_{n}(\mathbb{F}), \text { or }
$$

$$
T(A)=P_{1} D_{1} A^{t} D_{2} P_{2} \quad \forall A \in M_{n}(\mathbb{F})
$$

here D_{i} are invertible diagonal matrices, $i=1,2$
P_{i} are permutation matrices, $i=1,2$

Polya, 1913 observed:

$$
n=2:
$$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\operatorname{per}\left(\begin{array}{rr}
a & b \\
-c & d
\end{array}\right)
$$

Problem 1. Polya, 1913. Does \exists a uniform way of affixing \pm to the entries of $A=\left(a_{i j}\right) \in M_{n}(\mathbb{F}): \operatorname{per}\left(a_{i j}\right)=\operatorname{det}\left(\pm a_{i j}\right)$?

$$
n=2:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(\begin{array}{rr}
a & b \\
-c & d
\end{array}\right)
$$

Szegö, 1914. $n>2$: NO.

Why NOT ?

$$
n=3: \text { consider } J_{3}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

Then per $J_{3}=6$ but

$$
\operatorname{det}\left(\begin{array}{ccc}
\pm 1 & \pm 1 & \pm 1 \\
\pm 1 & \pm 1 & \pm 1 \\
\pm 1 & \pm 1 & \pm 1
\end{array}\right)<6
$$

since each -1 is in two summands, so all 6 summands can not be positive.

What about SUBSETS of M_{n} ?

Sometimes the conversion is possible:

1. $\left(\begin{array}{ccc}a & b & 0 \\ c & d & e \\ f & g & h\end{array}\right) \mapsto\left(\begin{array}{ccc}a & b & 0 \\ -c & d & e \\ f-g & h\end{array}\right)$
2. $A: a_{i j}=0$ if $j-i \geq 2$ (Hessenberg matrices)
$A \mapsto \tilde{A}=(\tilde{a i j}): \tilde{a_{i j}}= \begin{cases}-a_{i j}, & \text { if } j-i=1 \\ a_{i j}, & \text { otherwise }\end{cases}$
3. A is Jacobi (3-diagonal) matrix.
$A \mapsto \widehat{A}=\left(\widehat{a_{i j}}\right):$

$$
\widehat{a_{s t}}= \begin{cases}\mathrm{i} a_{s t}, & \text { if } s \neq t \\ a_{s s}, & \text { if } s=\mathrm{t}\end{cases}
$$

Problem 2. Under what conditions does there exist a transformation
$\Phi: M_{n}(\mathbb{F}) \rightarrow M_{m}(\mathbb{F})$ satisfying

$$
\operatorname{per} A=\operatorname{det} \Phi(A) ?
$$

Here a transformation Φ on $M_{n}(\mathbb{F})$ is called a converter.

Are there linear transformations of this type?

Are there linear transformations of this type?

Theorem (Marcus, Minc, 1961). There is no bijective linear transformation $\Phi: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F}), n>2$ satisfying $\operatorname{per} A=\operatorname{det} \Phi(A) \forall$ $A \in M_{n}(\mathbb{F})$.

Proof: based on linear algebra.

Are there linear transformations of this type ?

Theorem (Marcus, Minc, 1961). There is no bijective linear transformation $\Phi: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F}), n>2$ satisfying $\operatorname{per} A=\operatorname{det} \Phi(A) \forall$ $A \in M_{n}(\mathbb{F})$.

Proof: based on linear algebra.

Theorem (J. von zur Gathen, 1987). Let \mathbb{F} be infinite, $\operatorname{char}(\mathbb{F}) \neq 2$.
There is no bijective affine transformation $\Phi: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F}), n>2$
satisfying per $A=\operatorname{det} \Phi(A) \forall A \in M_{n}(\mathbb{F})$.
Proof: based on algebraic geomery.
M. Marcus, H. Minc, Illinois J. Math. 5 (1961), 376-381
P. Botta, Canad. Math. Bull., 11 (1968), 31-34
P. M. Gibson, Amer. Math. Month., 76 (1969), 270-271
P. M. Gibson, Proc. Amer. Math. Soc., 27 (1971), 471-476
J. von zur Gathen, LAA, 96 (1987) 87-100
J. Cai, Information and Computation, 84 (1990) 119-127
M. P. Coelho, M. A. Duffner, LAMA, 48 (2001), 383-408, 51, 2, (2003), 127-136, 137-145
M. P. Coelho, M. A. Duffner, LAA, 418, 1 (2006), 177-187
B. Kuzma, Fundamental and Applied Mathematics, 13, 4, (2007), 113-120
R. Meshulam, Linear Algebra and its Applications, 114/115 (1989) 261-271

Th. Mignon, N. Ressayre, Int. Math. Res. Not. 79, (2004), 4241-4253.

Example. There are non-bijective non-linear converters $\Phi: M_{n}(\mathbb{F}) \rightarrow$
$M_{m}(\mathbb{F})$ of per and det:

$$
\Phi: A \mapsto\binom{1 \frac{1}{2}(\operatorname{det} A-\operatorname{per} A)}{1 \frac{1}{2}(\operatorname{det} A+\operatorname{per} A)} \oplus \operatorname{Id}_{m-2}
$$

Hence, per $A=\operatorname{det} \Phi(A)$ and $\operatorname{det} A=\operatorname{per} \Phi(A)$.

Example. There are bijective non-linear converters of per and det over infinite fields:

For any \mathbb{F} and any $\lambda, \mu \in \mathbb{F}$

$$
\begin{aligned}
& \operatorname{card}\left\{A \in M_{n}(\mathbb{F}) \mid \operatorname{det} A=\mu, \operatorname{per} A=\lambda\right\}= \\
& =\operatorname{card} \mathbb{F} \\
& =\operatorname{card}\left\{A \in M_{n}(\mathbb{F}) \mid \operatorname{det} A=\lambda, \operatorname{per} A=\mu\right\},
\end{aligned}
$$

thus partial bijections exist, and hence the bijection exists.

WHAT HAPPENS OVER FINITE FIELDS ?

Theorem. [Dolinar, Guterman, Kuzma, Orel] For any $n \geq 3$ there exists $q_{0}=q_{0}(n)$ such that for any finite field \mathbb{F}, ch $\mathbb{F} \neq 2,|\mathbb{F}| \geq$ q_{0} there are NO bijective maps $\Phi: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ satisfying

$$
\begin{equation*}
\operatorname{per} A=\operatorname{det} \Phi(A) \tag{1}
\end{equation*}
$$

If $n=3$ the conclusion holds for any finite field with ch $\mathbb{F} \neq 2$.

$$
\left|D_{n}\right|=\left|M_{n}\right|-\left|G L_{n}\right|
$$

\Downarrow
if $n \geq 4$

$$
\left|D_{n}\right|=q^{n^{2}}-\prod_{k=1}^{n}\left(q^{n}-q^{k-1}\right)=q^{n^{2}-1}+q^{n^{2}-2}+O\left(q^{n^{2}-5}\right)
$$

$$
\left|D_{n}\right|=q^{n^{2}}-\prod_{k=1}^{n}\left(q^{n}-q^{k-1}\right)=q^{n^{2}-1}+q^{n^{2}-2}+0+0+O\left(q^{n^{2}-5}\right)
$$

$$
\begin{aligned}
& L_{n}=q^{n^{2}-1}-q^{n^{2}-2}+O\left(q^{n^{2}-3}\right) \quad(n \geq 4) \\
& U_{n}=q^{n^{2}-1}+0+O\left(q^{n^{2}-3}\right) \quad(n \geq 4)
\end{aligned}
$$

$$
L_{n} \leq P_{n} \leq U_{n}<D_{n}
$$

$\left|P_{n}\right| \leq U_{n}<\left|D_{n}\right|$ if q is sufficiently large ($q \geq q_{0}$).

$$
U_{n}=q^{n^{2}-1}+O\left(q^{n^{2}-3}\right)
$$

$$
\left|D_{n}\right|=q^{n^{2}-1}+q^{n^{2}-2}+O\left(q^{n^{2}-5}\right)
$$

n	3	4	5	6	7	8	9	10	11
q_{0}	3	43	79	121	167	223	289	367	449
n	12	13	14	15	16	17	18	19	20
q_{0}	541	641	751	877	997	1151	1279	1433	1597

Probability

[P. Erdös, A. Rényi] What is the probability of the permanent of a given matrix to be equal to 0 ?

Theorem. Let \mathbb{F} be a finite field, ch $\mathbb{F} \neq 2 . \forall \lambda \in \mathbb{F}$

$$
P(\text { per } A=\lambda)=\frac{1}{q}+O\left(\frac{1}{q^{2}}\right) .
$$

Let us consider tensor of permanent of $A \in M_{k, n}, k \leq n$ which is
defined by
$T_{A}^{i_{1}, \ldots, i_{n-k}}=\left\{\begin{array}{l}\operatorname{per}\left(A\left(\mid i_{1}, \ldots, i_{n-k}\right)\right), \text { if all } i_{1}, \ldots, i_{n-k} \text { are different } \\ 0, \text { otherwise } .\end{array}\right.$

Examples:

1. $k=n$. Then $T_{A}=\operatorname{per} A$.
2. $k=1, A=\left(a_{1}, \ldots, a_{n}\right)$. Then $T_{A}^{1, \ldots, i-1, i+1, \ldots, n}=a_{i}$.

Properties:

1. $A \in M_{1, n}$ is a vector. Then $T_{A} \equiv 0$ if and only if $A \equiv 0$.
2. For any A it holds T_{A} is symmetric.

Definition. The convolution of $T_{B}, B \in M_{k, n}$ and $x \in \mathbb{F}_{q}^{n}$ is

$$
\left(T_{B} \circ x\right)^{i_{1}, \ldots, i_{n-k-1}}=\sum_{j=1}^{n} T^{i_{1}, \ldots, i_{n-k-1}, j} \cdot x_{j} \text { of the valency }(n-k-1) .
$$

Lemma. Let $a \in \mathbb{F}_{q}^{n}, A \in M_{k, n}, k<n, B=\binom{a}{A}$. Then $T_{B}=T_{A} \circ a$.

Corollary. For $A \in M_{n}\left(\mathbb{F}_{q}\right)$ formed by the rows a_{1}, \ldots, a_{n}.

$$
\begin{gathered}
\operatorname{per}(A)=T_{A}=T_{\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{n}
\end{array}\right)=T_{(}^{a_{2}}\left(\begin{array}{c}
a_{3} \\
a_{3} \\
a_{n}
\end{array}\right) \circ a_{1}=\left(T_{\left.\binom{a_{3}}{a_{n}} \circ a_{2}\right) \circ a_{1}=}\right.}^{=\ldots=\left(\ldots\left(T_{a_{n}} \circ a_{n-1}\right) \circ a_{n-2} \ldots\right) \circ a_{1}}
\end{gathered}
$$

Lemma. Let $A \in M_{k \times n}\left(\mathbb{F}_{q}\right)$ and $T_{A} \not \equiv 0$. Then there are at least $q^{n}-q^{k}$ different vectors $x \in F_{q}^{n}$ such that $R=T_{A} \circ x \not \equiv 0$.

Lemma. Let $a=(1, \ldots, 1) \in \mathbb{F}_{q}^{n}, n \geq 3$. Then the number of vectors $x \in \mathbb{F}_{q}^{n}$ such that $R=T_{a} \circ x \neq 0$ is equal to $q^{n}-1>q^{n}-q$.

Theorem (Budrevich, Guterman). Let \mathbb{F} be a finite field, ch $\mathbb{F} \neq 2$.
$\forall n \geq 3$ the number of zeros of per is less
than the number of zeros of det.

Theorem (Budrevich, Guterman). Let \mathbb{F} be a finite field, ch $\mathbb{F} \neq 2$.
$\forall n \geq 3$ the number of zeros of per is less
than the number of zeros of det.

Theorem (Budrevich, Guterman). Let \mathbb{F} be a finite field, ch $\mathbb{F} \neq 2$.
$\forall n \geq 3$ there is $N O$ bijective map $T: M_{n}(\mathbb{F}) \rightarrow M_{n}(\mathbb{F})$ satisfying

$$
\operatorname{per} A=\operatorname{det} T(A)
$$

Problem 3 (Polya). Given a (0,1)-matrix $A \in M_{n}(\mathbb{F})$, does $\exists B$, obtained by changing some of the +1 entries of A into -1 , so that

$$
\text { per } A=\operatorname{det} B ?
$$

The following problems are equivalent to the problem above:

1. Even cycle: A digraph. Does it have no directed circuits of even length?
2. Sign solvability: When does a real square matrix have the property that every real matrix with the same sign pattern is non-singular?

There are more than 30 equivalent problems of this kind, see [W. Mc-
Cuaig, The Electronic Journal of Combinatorics 11 (2004), R79].

Let M_{n} be the set of all $n \times n\{0,1\}$ matrices over \mathcal{R} - any ring of characteristic 0 .
$\mathrm{S}_{n} \subseteq M_{n}$ - subset of symmetric matrices.
$v(A)$ is the number of 1 of A. NB: $v(A)=\sum$ all entries of A.
$X \circ A$ denote the Schur (entrywise) product of two matrices.

Definition.

$A \in M_{n}$ is convertible if $\exists X \in M_{n}(\pm 1)$:

$$
\operatorname{per} A=\operatorname{det}(X \circ A)
$$

$A \in \mathrm{~S}_{n}$ is symmetrically convertible, if $\exists X \in \mathrm{~S}_{n}(\pm 1)$:

$$
\operatorname{per} A=\operatorname{det}(X \circ A)
$$

$A \in \mathrm{~S}_{n}$ is symmetrically weakly-convertible, if $\exists X \in \mathrm{~S}_{n}(\pm 1)$:

$$
\operatorname{per} A=|\operatorname{det}(X \circ A)|
$$

OBSERVATION

$A \in \mathrm{~S}_{n}$ is symmetrically weakly-convertible.
Then A is convertible.

Multiply a row of A with -1 .

Can a matrix with arbitrary number of units be convertible ?

Theorem. [Gibson, 1971] Let $A \in M_{n}$ be a convertible matrix with
$\operatorname{per} A>0$.
Then $v(A) \leq \Omega_{n}:=\frac{n^{2}+3 n-2}{2}$.
The equality holds $\Leftrightarrow \exists$ permutation matrices $P, Q: A=P T_{n} Q$.

Here Gibson matrix $T_{n}=\left(t_{i j}\right) \in M_{n}$ is $t_{i j}=\left\{\begin{array}{ll}0, & \text { if } 1 \leq i<j<n \\ 1, & \text { if } i \geq j \text { or } j=n\end{array}\right.$.
Also $G_{n}=\left(g_{i j}\right): \quad g_{i j}= \begin{cases}0, & \text { if } i+j \leq n-1 \\ 1, & \text { if } i+j>n-1\end{cases}$
Note that $G_{n}=T_{n} Q_{n}$ for $Q_{n}=Q(\sigma)$ s.t.

$$
\sigma=(1, n-1)(2, n-2), \ldots,(\lfloor n / 2\rfloor,\lfloor(n+1) / 2\rfloor),
$$

here $\lfloor x\rfloor$ is the largest integer $\leq x$.

$$
T_{5}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right) \quad G_{5}=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The following results are from [Dolinar, Guterman, Kuzma]

Theorem. $n \geq 3, A \in S_{n}$, per $A>0, A$ is convertible.
Then $v(A) \leq \Omega_{n}=\frac{n^{2}+3 n-2}{2}$.
Let $v(A)=\Omega_{n}$ then A is convertible $\Leftrightarrow A=P G_{n} P^{t}$ for some permutation matrix P.

Theorem (Dolinar, Guterman, Kuzma). $n \geq 3, A \in S_{n}$, per $A>0$, $v(A)=\Omega_{n}=\frac{n^{2}+3 n-2}{2}$ and A is convertible. Then
$n \neq 2(\bmod 4) \Longrightarrow A$ is symmetrically convertible.
$n=2(\bmod 4) \Longrightarrow A$ is symmetrically weakly-convertible, but not symmetrically convertible.

Can we find ω_{n} s.t. $\forall A: v(A)<\omega_{n} \Rightarrow A$ is convertible ?
$\omega_{n}=n+5$

Theorem. [Little, 1972, Graph Theory approach] $n \geq 2, A \in M_{n}$, $v(A) \leq n+5 \Rightarrow A$ is convertible.

Is $n+5$ a really magic number ?

Theorem (Dolinar, Guterman, Kuzma). $n \geq 3, A \in M_{n}, v(A)=n+6$.
Then A is not convertible $\Leftrightarrow \exists$ permutation matrices $P, Q: P A Q=$ $\operatorname{Id}_{n-3} \oplus J_{3}$, where $J_{3}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.

What is about S_{n} ?

Theorem. [Dolinar, Guterman, Kuzma]

1. $n \geq 2, A \in \mathrm{~S}_{n}, v(A) \leq n+5 \Rightarrow A$ is symmetrically weaklyconvertible.
2. $n \geq 3, v(A)=n+6$. Then A is not convertible $\Leftrightarrow \exists$ permutation matrices $P, Q: P A Q=\operatorname{Id}_{n-3} \oplus J_{3}$.
3. A is convertible, $v(A)=n+6, \Rightarrow A$ is symmetrically weaklyconvertible.

What happens in between ω_{n} and Ω_{n} ?

Theorem. [Dolinar, Guterman, Kuzma] Let $r \in \mathbb{Z}: \omega_{n} \leq r \leq \Omega_{n}$.
Then

1. $\exists A \in \mathrm{~S}_{n}$: symmetrically weakly-convertible, $\operatorname{per}(A) \neq 0, v(A)=r$
2. $\exists B \in S_{n}$: not convertible, $v(B)=r$

For fully indecomposable matrices lower bound can be improved.

For fully indecomposable matrices lower bound can be improved.
$A \in M_{n}$ is decomposable, if \exists a permutation matrix $P \in M_{n}$ such that
$A=P\left(\begin{array}{ll}B & 0 \\ C & D\end{array}\right) P^{t}$, where B, D are square.
If A is not decomposable, it is called indecomposable.
$A \in M_{n}$ is partially decomposable if \exists permutation matrices $P, Q \in M_{n}$ such that

$$
A=P\left(\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right) Q
$$

where B, D are square.
If A is no partially decomposable, it is fully indecomposable.
Note, O is decomposable and partially decomposable.

Lemma.

- If $A \in M_{n}$ is decomposable, then A is partially decomposable.
- If $A \in M_{n}$ is fully indecomposable, then A is indecomposable.

Example.

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \in M_{2}
$$

is indecomposable, but partially decomposable with $P=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Q=I$.

For fully indecomposable matrices lower bound can be improved.

Theorem (Budrevich, Dolinar, Guterman, Kuzma). Let $A \in M_{n}$ be
fully indecomposable, $v(A) \leq 2 n+2$. Then A is convertible.

Example. Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$. Then A is fully indecomposable, nonconvertible, and $v(A)=9=2 \cdot 3+3$.

Example. Let

$$
A=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 0 & 0 & \cdots
\end{array}\right)\left(\begin{array}{ccccc}
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots \\
0 & 0 & \vdots \\
0 & 0 & \cdots & \cdots & \cdots
\end{array}\right)
$$

Then A is not fully indecomposable, indecomposable, not convertible, and $v(A)=n+6$.

The bibliography:

P. Botta: On the conversion of the determinant into the permanent // Canad. Math.

Bull. 11 (1968) 31-34.
R. A. Brualdi, B. L. Shader: On sign-nonsingular matrices and the conversion of the permanent into the determinant // DIMACS Series in Descrete Mathematics and Theoretical Computer Science, 4 (1991) 117-134.
M. P. Coelho, M. D. Antónia: Immanant preserving and immanant converting maps
// Linear Algebra Appl. 418, 1, (2006) 177-187.
G. Dolinar, A. Guterman, B. Kuzma, M. Orel: On the Polya permanent problem over finite fields // European Journal of Combinatorics, to appear.
P. M. Gibson, An identity between permanents and determinants, Amer. Math. Month. 76 (1969) 270-271.
P. M. Gibson, Conversion of the Permanent into the Determinant, Proc. Amer. Math. Soc. 27 (1971) 471-476.
V. Klee, R. Ladner, R. Manber: Signsolvability revisited // Linear Algebra Appl. 59 (1984) 132-157.
C. H. C. Little: A characterization of convertible (0,1)-matrices // J. Combin. Theory, Ser. B 18 (1975) 187-208.
M. Marcus, H. Minc: On the relation between the determinant and the permanent //

Illinois J. Math. 5 (1961) 376-381.
W. McCuaig: Pólya's permanent problem // The Electronic Journal of Combinatorics 11, R79 (2004).
H. Minc, Permanents. Addison-Wesley, 1978.
G. Pólya: Aufgabe 424, Arch. Math. Phys. 20, 3, (1913) 271.
G. Szegö: Lösungzu 424, Arch. Math. Phys. 21 (1913) 291-292.
L.G. Valiant: The complexity of computing the permanent // Theoret. Comput. Sci. 8 (1979) 189-201.
V.V. Vazirani, M. Yannakakis: Pfaffian orientations, 0-1 permanents, and even cycles in directed graphs // Discrete Applied Mathematics, 25 (1989) 179-190.

Important trivial observation:

Zeros are better than ones since they are stable under the sign operation!

