# An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations

#### György Pál Gehér

### University of Szeged, Bolyai Institute and MTA-DE "Lendület" Functional Analysis Research Group, University of Debrecen

5th June 2014, Ljubljana

LAW'14

《曰》 《聞》 《臣》 《臣》 三臣

# Introduction

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

# Wigner's theorem

#### Theorem

Let  $\mathcal{H}$  be a complex Hilbert space and let S denote the set of unit vectors of  $\mathcal{H}$ . Let us consider an arbitrary mapping  $\phi \colon S \to S$  such that the following holds:

$$|\langle \vec{u}, \vec{v} \rangle| = |\langle \phi(\vec{u}), \phi(\vec{v}) \rangle| \quad (\|\vec{u}\| = \|\vec{v}\| = 1). \tag{W's C}$$

Then there exists a linear or a conjugatelinear isometry  $\mathbf{W} \colon \mathcal{H} \to \mathcal{H}$ and a function  $f \colon \mathcal{S} \to \mathbb{T} := \{z \in \mathbb{C} \colon |z| = 1\}$  such that we have

$$\phi(\vec{u}) = f(\vec{u}) \cdot \mathbf{W}\vec{u}$$

is satisfied for every unit vector  $\vec{u} \in \mathcal{H}$ .

**Remark**: Originally Wigner assumed bijectivity of  $\phi$ .

E. P. Wigner (1931)  $\longrightarrow$  the proof was not complete.

J. A. Lomont and P. Mendleson (1963)  $\longrightarrow$  first known proof for the classical (i.e. bijective) case.

V. Bargmann (1964)  $\longrightarrow$  His proof follows the thoughtline suggested by Wigner.



Figure: Valentine Bargmann

マロト イヨト イヨト

U. Uhlhorn (1963)  $\longrightarrow$  A nice generalization (dim  $\mathcal{H} \ge 3, \phi$  is bijective and preserves orthogonality in both directions).



#### Figure: Ulf Uhlhorn

György Pál Gehér An elementary proof of Wigner's theorem on quantum med

A B > A B

L. Molnár (1996)  $\longrightarrow$  algebraic approach, he managed to generalize Wigner's theorem in several ways.



#### Figure: Molnár Lajos

György Pál Gehér An elementary proof of Wigner's theorem on quantum med

$$\mathcal{P}_1 := \mathcal{P}_1(\mathcal{H}) \equiv \text{the set of rank-one (self-adjoint) projections.}$$
  
If  $\|\vec{u}\| = 1$ , then  
 $\mathbf{P}[\vec{u}] \equiv \text{the rank-one projection with precise range } \mathbb{C} \cdot \vec{u}$ .

$$|\langle \vec{u}, \vec{v} \rangle|^2 = \operatorname{Tr} \mathbf{P}[\vec{u}] \mathbf{P}[\vec{v}]$$
.

transition probability

$$\|\mathbf{P}[\vec{u}] - \mathbf{P}[\vec{v}]\| = \sqrt{1 - |\langle \vec{u}, \vec{v} \rangle|^2}.$$

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ■ の Q ()

# Wigner's theorem, two reformulations

#### Theorem

Let us consider an arbitrary mapping  $\phi\colon \mathcal{P}_1\to \mathcal{P}_1$  for which the following holds

Tr  $\mathbf{P}[\vec{u}]\mathbf{P}[\vec{v}] = \text{Tr} f(\mathbf{P}[\vec{u}])f(\mathbf{P}[\vec{v}]) \quad (\|\vec{u}\| = \|\vec{v}\| = 1).$  (W's C)

Then there is a linear or antilinear isometry  $W\colon \mathcal{H}\to \mathcal{H}$  such that

$$\phi(\mathsf{P}[\vec{u}]) = \mathsf{W}\mathsf{P}[\vec{u}]\mathsf{W}^* = \mathsf{P}[\mathsf{W}\vec{u}] \quad (\|\vec{u}\| = 1).$$

#### Theorem

For every isometry  $\phi: \mathcal{P}_1 \to \mathcal{P}_1$  there exists a linear or an antilinear isometry  $\mathbf{W}: \mathcal{H} \to \mathcal{H}$  such that we have

 $\phi(\mathsf{P}[\vec{u}]) = \mathsf{W}\mathsf{P}[\vec{u}]\mathsf{W}^* = \mathsf{P}[\mathsf{W}\vec{u}] \quad (\|\vec{u}\| = 1).$ 

# Resolving sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

#### Definition (S. Bau and A. F. Beardon)

Let (X, d) be a metric space and  $D, R \subseteq X$ . We say that R is a *resolving set* of D if for every two points  $x_1, x_2 \in D$  whenever  $d(x_1, y) = d(x_2, y)$  is satisfied for all  $y \in R$ , we necessarily have  $x_1 = x_2$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Definition (S. Bau and A. F. Beardon)

Let (X, d) be a metric space and  $D, R \subseteq X$ . We say that R is a *resolving set* of D if for every two points  $x_1, x_2 \in D$  whenever  $d(x_1, y) = d(x_2, y)$  is satisfied for all  $y \in R$ , we necessarily have  $x_1 = x_2$ .

$$\begin{split} &\dim \mathcal{H} = N \in \mathbb{N} \cup \{\aleph_0\}, \; N > 1. \\ & \text{We fix an orthonormal base: } \{\vec{e_j}\}_{j=1}^N. \\ & \text{Let } v_j := \langle \vec{v}, \vec{e_j} \rangle \; \text{denote the } j \text{th coordinate of a unit vector } \vec{v}. \\ & \text{The set} \end{split}$$

$$D := \{\mathbf{P}[\vec{v}] \colon v_j \neq 0, \ \forall \ j\} \subseteq \mathcal{P}_1$$

is dense in  $\mathcal{P}_1$ .

伺下 イヨト イヨト

#### Lemma

Let  $\mathcal{H}$  be an arbitrary separable (finite or infinite-dimensional) Hilbert space. Then the set

$$R = \{\mathsf{P}[\vec{e_j}]\}_{j=1}^N \cup \big\{\mathsf{P}[\frac{1}{\sqrt{2}}(\vec{e_j} - \vec{e_{j+1}})], \mathsf{P}[\frac{1}{\sqrt{2}}(\vec{e_j} + i\vec{e_{j+1}})]\big\}_{1 \le j < N}$$

resolves D.

< □ > < □ > < □ >

#### Lemma

Let  $\mathcal{H}$  be an arbitrary separable (finite or infinite-dimensional) Hilbert space. Then the set

$$R = \{\mathsf{P}[\vec{e_j}]\}_{j=1}^N \cup \big\{\mathsf{P}[\frac{1}{\sqrt{2}}(\vec{e_j} - \vec{e_{j+1}})], \mathsf{P}[\frac{1}{\sqrt{2}}(\vec{e_j} + i\vec{e_{j+1}})]\big\}_{1 \le j < N}$$

resolves D.

**Proof.** An easy calculation.

< □ > < □ > < □ >

Proof of Wigner's theorem (in the separable case)

**Proof.** Let 
$$P[\vec{f_j}] = \phi(P[\vec{e_j}])$$
, then  $\{\vec{f_j}\}_{j=1}^N$  is an ONS.

$$\mathcal{H}' := \vee \{\vec{f}_j\}_{j=1}^N.$$

György Pál Gehér An elementary proof of Wigner's theorem on quantum med

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ■ の Q ()

**Proof.** Let 
$$\mathbf{P}[\vec{f_j}] = \phi(\mathbf{P}[\vec{e_j}])$$
, then  $\{\vec{f_j}\}_{j=1}^N$  is an ONS. $\mathcal{H}' := \lor\{\vec{f_j}\}_{j=1}^N$ .

Set a unit vector  $\vec{v} \in \mathcal{H}$  and let  $\phi(\mathbf{P}[\vec{v}]) = \mathbf{P}[\vec{w}]$ . (W's C) implies

$$|v_j| = |\langle \vec{w}, \vec{f_j} \rangle| \quad (\forall j),$$

and from Parseval's identity we get  $\vec{w} \in \mathcal{H}'$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

**Proof.** Let 
$$\mathbf{P}[\vec{f_j}] = \phi(\mathbf{P}[\vec{e_j}])$$
, then  $\{\vec{f_j}\}_{j=1}^N$  is an ONS. $\mathcal{H}' := \lor \{\vec{f_j}\}_{j=1}^N.$ 

Set a unit vector  $\vec{v} \in \mathcal{H}$  and let  $\phi(\mathbf{P}[\vec{v}]) = \mathbf{P}[\vec{w}]$ . (W's C) implies

$$|v_j| = |\langle \vec{w}, \vec{f_j} \rangle| \quad (\forall j),$$

and from Parseval's identity we get  $\vec{w} \in \mathcal{H}'$ . We define a linear isometry

$$\mathbf{V} \colon \mathcal{H} o \mathcal{H}' \subseteq \mathcal{H}, \quad \mathbf{V} \vec{e_j} = \vec{f_j} \quad (j \in \mathbb{N}_N).$$

The mapping  $\phi_1(\cdot) := \mathbf{V}^* \phi(\cdot) \mathbf{V}$  satisfy (W's C).

伺下 イヨト イヨト

**Proof.** Let 
$$\mathbf{P}[\vec{f_j}] = \phi(\mathbf{P}[\vec{e_j}])$$
, then  $\{\vec{f_j}\}_{j=1}^N$  is an ONS.  
 $\mathcal{H}' := \lor \{\vec{f_j}\}_{j=1}^N$ .

Set a unit vector  $\vec{v} \in \mathcal{H}$  and let  $\phi(\mathbf{P}[\vec{v}]) = \mathbf{P}[\vec{w}]$ . (W's C) implies

$$|v_j| = |\langle \vec{w}, \vec{f_j} \rangle| \quad (\forall j),$$

and from Parseval's identity we get  $\vec{w} \in \mathcal{H}'$ . We define a linear isometry

$$\mathbf{V} \colon \mathcal{H} o \mathcal{H}' \subseteq \mathcal{H}, \quad \mathbf{V} \vec{e_j} = \vec{f_j} \quad (j \in \mathbb{N}_N).$$

The mapping  $\phi_1(\cdot) := \mathbf{V}^* \phi(\cdot) \mathbf{V}$  satisfy (W's C). Moreover

$$\phi_1(\mathbf{P}[\vec{e_j}]) = \mathbf{V}^* \phi(\mathbf{P}[\vec{e_j}]) \mathbf{V} = \mathbf{V}^* \mathbf{P}[\vec{f_j}] \mathbf{V} = \mathbf{P}[\mathbf{V}^* \vec{f_j}] = \mathbf{P}[\vec{e_j}] \quad (\forall j).$$

・吊り イヨト イヨト

Again from (W's C)  $\phi_1 (\mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - \vec{e_{j+1}})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - \delta_{j+1}\vec{e_{j+1}})]$   $\phi_1 (\mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} + i\vec{e_{j+1}})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - \varepsilon_{j+1}\vec{e_{j+1}})]$ where  $|\delta_{j+1}| = |\varepsilon_{j+1}| = 1$  ( $1 \le j < N$ ).

▲母 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ●

Again from (W's C) 
$$\begin{split} \phi_1 \big( \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - \vec{e_{j+1}})] \big) &= \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - \delta_{j+1}\vec{e_{j+1}})] \\ \phi_1 \big( \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} + i\vec{e_{j+1}})] \big) &= \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - \varepsilon_{j+1}\vec{e_{j+1}})] \\ \text{where } |\delta_{j+1}| &= |\varepsilon_{j+1}| = 1 \ (1 \leq j < N). \text{ Therefore} \\ \sqrt{2} &= |1 + \delta_{j+1}\overline{\varepsilon_{j+1}}|, \end{split}$$

and consequently  $\delta_{j+1} = \pm i \varepsilon_{j+1} \ (j < \mathbb{N}).$ 

Again from (W's C)  $\phi_1 \left( \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - \vec{e_{j+1}})] \right) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - \delta_{j+1}\vec{e_{j+1}})]$   $\phi_1 \left( \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} + i\vec{e_{j+1}})] \right) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - \varepsilon_{j+1}\vec{e_{j+1}})]$ where  $|\delta_{j+1}| = |\varepsilon_{j+1}| = 1$  ( $1 \le j < N$ ). Therefore  $\sqrt{2} = |1 + \delta_{j+1}\overline{\varepsilon_{j+1}}|,$ 

and consequently  $\delta_{j+1} = \pm i \varepsilon_{j+1}$   $(j < \mathbb{N})$ . We define  $\phi_2(\cdot) := \mathbf{U}^* \phi_1(\cdot) \mathbf{U}$ , where

() If  $\varepsilon_2 = -i\delta_2$ , then let **U** be the unitary operator such that

$$\mathbf{U}\vec{e_1} = \vec{e_1}, \quad \mathbf{U}\vec{e_k} = \left(\prod_{j=2}^k \delta_j\right)\vec{e_k} \quad (k > 1).$$

• If  $\varepsilon_2 = i\delta_2$ , then let **U** be the antiunitary operator defined by the equations above.

Moreover,

$$\phi_{2}(\mathbf{P}[\vec{e}_{j}]) = \mathbf{P}[\vec{e}_{j}] \quad (\forall j),$$
  
$$\phi_{2}(\mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{j} - \vec{e}_{j+1})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{j} - \vec{e}_{j+1})] \quad (\forall j),$$
  
$$\phi_{2}(\mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{1} + i\vec{e}_{2})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{1} + i\vec{e}_{2})].$$

◆□ ▶ ◆□ ▶ ◆注 ▶ ◆注 ▶ →

Ξ.

Moreover,

$$\phi_{2}(\mathbf{P}[\vec{e}_{j}]) = \mathbf{P}[\vec{e}_{j}] \quad (\forall j),$$
  
$$\phi_{2}(\mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{j} - \vec{e}_{j+1})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{j} - \vec{e}_{j+1})] \quad (\forall j),$$
  
$$\phi_{2}(\mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{1} + i\vec{e}_{2})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{1} + i\vec{e}_{2})].$$

#### We also have

$$\phi_2(\mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} + i\vec{e_{j+1}})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} \pm i\vec{e_{j+1}})] \quad (1 < j < N).$$

・ロト ・聞ト ・ヨト ・ヨト

э

Moreover,

$$\phi_{2}(\mathbf{P}[\vec{e}_{j}]) = \mathbf{P}[\vec{e}_{j}] \quad (\forall j),$$
  
$$\phi_{2}(\mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{j} - \vec{e}_{j+1})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{j} - \vec{e}_{j+1})] \quad (\forall j),$$
  
$$\phi_{2}(\mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{1} + i\vec{e}_{2})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e}_{1} + i\vec{e}_{2})].$$

#### We also have

$$\phi_2(\mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} + i\vec{e_{j+1}})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} \pm i\vec{e_{j+1}})] \quad (1 < j < N).$$

Assume that there exists an index j > 1 for which

$$\phi_2(\mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} + i\vec{e_{j+1}})]) = \mathbf{P}[1/\sqrt{2} \cdot (\vec{e_j} - i\vec{e_{j+1}})]$$

holds. We may assume that this *j* is the first such index.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\phi_2(\mathbf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + v_{j+1}\vec{e}_{j+1}]) = \mathbf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + \overline{v_{j+1}}\vec{e}_{j+1}]$$

holds for every t > 0,  $v_{j-1} \neq 0$ ,  $v_{j+1} \neq 0$ ,  $|v_{j-1}|^2 + t^2 + |v_{j+1}|^2 = 1$ .

$$\phi_2(\mathbf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + v_{j+1}\vec{e}_{j+1}]) = \mathbf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + \overline{v_{j+1}}\vec{e}_{j+1}]$$

holds for every t > 0,  $v_{j-1} \neq 0$ ,  $v_{j+1} \neq 0$ ,  $|v_{j-1}|^2 + t^2 + |v_{j+1}|^2 = 1$ . **Proof of Claim** An easy calculation.  $\Box$ 

▲ 同 ▶ → 目 ▶ → 目 ▶ →

$$\phi_2(\mathsf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + v_{j+1}\vec{e}_{j+1}]) = \mathsf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + \overline{v_{j+1}}\vec{e}_{j+1}]$$

holds for every t > 0,  $v_{j-1} \neq 0$ ,  $v_{j+1} \neq 0$ ,  $|v_{j-1}|^2 + t^2 + |v_{j+1}|^2 = 1$ . **Proof of Claim** An easy calculation.  $\Box$ Now, let

$$\vec{x} = rac{-1}{2}\vec{e}_{j-1} + rac{1}{2}\vec{e}_j + rac{1}{\sqrt{2}}\vec{e}_{j+1}, \quad \vec{y} = rac{i}{2}\vec{e}_{j-1} + rac{1}{2}\vec{e}_j + rac{i}{\sqrt{2}}\vec{e}_{j+1}.$$

< ロ > ( 同 > ( 回 > ( 回 > ) ) 回 ) 目 = ( 回 > ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( 回 > ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u = ) ( u

$$\phi_2(\mathbf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + v_{j+1}\vec{e}_{j+1}]) = \mathbf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + \overline{v_{j+1}}\vec{e}_{j+1}]$$

holds for every t > 0,  $v_{j-1} \neq 0$ ,  $v_{j+1} \neq 0$ ,  $|v_{j-1}|^2 + t^2 + |v_{j+1}|^2 = 1$ . **Proof of Claim** An easy calculation.  $\Box$ Now, let

$$\vec{x} = rac{-1}{2}\vec{e}_{j-1} + rac{1}{2}\vec{e}_j + rac{1}{\sqrt{2}}\vec{e}_{j+1}, \quad \vec{y} = rac{i}{2}\vec{e}_{j-1} + rac{1}{2}\vec{e}_j + rac{i}{\sqrt{2}}\vec{e}_{j+1}.$$

Claim and (W's C) implies

$$\sqrt{2}/4 = |i/4 + 1/4 - i/2| = |i/4 + 1/4 + i/2| = \sqrt{10}/4,$$

which is a contradiction.

同 ト イヨ ト イヨ ト

$$\phi_2(\mathbf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + v_{j+1}\vec{e}_{j+1}]) = \mathbf{P}[v_{j-1}\vec{e}_{j-1} + t\vec{e}_j + \overline{v_{j+1}}\vec{e}_{j+1}]$$

holds for every t > 0,  $v_{j-1} \neq 0$ ,  $v_{j+1} \neq 0$ ,  $|v_{j-1}|^2 + t^2 + |v_{j+1}|^2 = 1$ . **Proof of Claim** An easy calculation.  $\Box$ Now, let

$$\vec{x} = rac{-1}{2}\vec{e}_{j-1} + rac{1}{2}\vec{e}_j + rac{1}{\sqrt{2}}\vec{e}_{j+1}, \quad \vec{y} = rac{i}{2}\vec{e}_{j-1} + rac{1}{2}\vec{e}_j + rac{i}{\sqrt{2}}\vec{e}_{j+1}.$$

Claim and (W's C) implies

$$\sqrt{2}/4 = |i/4 + 1/4 - i/2| = |i/4 + 1/4 + i/2| = \sqrt{10}/4,$$

which is a contradiction. Therefore  $\phi_2$  is the identity mapping on  $\mathcal{P}_1$ , and  $\phi(\mathbf{P}[\vec{u}]) = \mathbf{W}\mathbf{P}[\vec{u}]\mathbf{W}^*$  with  $\mathbf{W} = \mathbf{V}\mathbf{U}$ .  $\Box$ 

• The proof is short and elementary, it does not contain any serious computations.

向下 イヨト イヨト

- The proof is short and elementary, it does not contain any serious computations.
- The non-separable case can be proven as a consequence of the separable case (technical).

伺下 イヨト イヨト

- The proof is short and elementary, it does not contain any serious computations.
- The non-separable case can be proven as a consequence of the separable case (technical).
- It works for the general case (bijcetivity of  $\phi$  or separability of  $\mathcal{H}$  is not assumed).

・吊り ・ ヨト・・ ヨト

- The proof is short and elementary, it does not contain any serious computations.
- The non-separable case can be proven as a consequence of the separable case (technical).
- It works for the general case (bijcetivity of  $\phi$  or separability of  $\mathcal{H}$  is not assumed).
- Note that we could consider  $\phi \colon \mathcal{P}_1(\mathcal{H}) \to \mathcal{P}_1(\mathcal{K})$  with some Hilbert spaces  $\mathcal{H}$  and  $\mathcal{K}$ .

・ 同 トーイ ヨート・イ ヨート

- The proof is short and elementary, it does not contain any serious computations.
- The non-separable case can be proven as a consequence of the separable case (technical).
- It works for the general case (bijcetivity of  $\phi$  or separability of  $\mathcal{H}$  is not assumed).
- Note that we could consider φ: P<sub>1</sub>(H) → P<sub>1</sub>(K) with some Hilbert spaces H and K.
- The proof is similar (but easier) in real Hilbert spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

# References 1/2

- E. P. Wigner, *Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektrum*, Fredrik Vieweg und Sohn, 1931.
- J. S. Lomont and P. Mendelson, The Wigner unitary-antiunitary theorem, *Ann. Math.* **78** (1963), 548–559.
- V. Bargmann, Note on Wigner's theorem on symmetry operations, *J. Math. Phys.* **5** (1964), 862–868.
- U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, *Ark. Fysik* **23** (1963), 307–340.

・吊り ・ラト ・ラト

# References 2/2

- L. Molnár, Wigner's unitary-antiunitary theorem via Herstein's theorem on Jordan homeomorphisms, J. Nat. Geom. 10 (1996), 137–148.
- L. Molnár, An algebraic approach to Wigner's unitary-antiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354–369.
- Gy. P. Gehér, An elementary proof for the non-bijective version of Wigner's theorem, to appear in *Phys. Lett. A*.

伺下 イヨト イヨト

This research was also supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 'National Excellence Program'

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

# Thank You for Your Kind Attention

