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Introduction



An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations

Wigner's theorem

Theorem

Let H be a complex Hilbert space and let S denote the set of unit

vectors of H. Let us consider an arbitrary mapping φ : S → S such

that the following holds:

|〈~u, ~v〉| = |〈φ(~u), φ(~v)〉| (‖~u‖ = ‖~v‖ = 1). (W's C)

Then there exists a linear or a conjugatelinear isometry W : H → H
and a function f : S → T := {z ∈ C : |z | = 1} such that we have

φ(~u) = f (~u) ·W~u

is satis�ed for every unit vector ~u ∈ H.

Remark: Originally Wigner assumed bijectivity of φ.
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E. P. Wigner (1931) −→ the proof was not complete.

J. A. Lomont and P. Mendleson (1963) −→ �rst known proof for
the classical (i.e. bijective) case.

V. Bargmann (1964) −→ His proof follows the thoughtline
suggested by Wigner.

Figure: Valentine Bargmann
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U. Uhlhorn (1963) −→ A nice generalization (dimH ≥ 3, φ is
bijective and preserves orthogonality in both directions).

Figure: Ulf Uhlhorn
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L. Molnár (1996) −→ algebraic approach, he managed to
generalize Wigner's theorem in several ways.

Figure: Molnár Lajos
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P1 := P1(H) ≡ the set of rank-one (self-adjoint) projections.
If ‖~u‖ = 1, then
P[~u] ≡ the rank-one projection with precise range C · ~u.

|〈~u, ~v〉|2 = TrP[~u]P[~v ]︸ ︷︷ ︸
transition probability

.

‖P[~u]− P[~v ]‖ =
√
1− |〈~u, ~v〉|2.
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Wigner's theorem, two reformulations

Theorem

Let us consider an arbitrary mapping φ : P1 → P1 for which the

following holds

TrP[~u]P[~v ] = Tr f (P[~u])f (P[~v ]) (‖~u‖ = ‖~v‖ = 1). (W's C)

Then there is a linear or antilinear isometry W : H → H such that

φ(P[~u]) = WP[~u]W∗ = P[W~u] (‖~u‖ = 1).

Theorem

For every isometry φ : P1 → P1 there exists a linear or an antilinear

isometry W : H → H such that we have

φ(P[~u]) = WP[~u]W∗ = P[W~u] (‖~u‖ = 1).
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De�nition (S. Bau and A. F. Beardon)

Let (X , d) be a metric space and D,R ⊆ X . We say that R is a
resolving set of D if for every two points x1, x2 ∈ D whenever
d(x1, y) = d(x2, y) is satis�ed for all y ∈ R , we necessarily have
x1 = x2.

dimH = N ∈ N ∪ {ℵ0}, N > 1.

We �x an orthonormal base: {~ej}Nj=1.

Let vj := 〈~v , ~ej〉 denote the jth coordinate of a unit vector ~v .

The set
D := {P[~v ] : vj 6= 0, ∀ j} ⊆ P1

is dense in P1.
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Lemma

Let H be an arbitrary separable (�nite or in�nite-dimensional)

Hilbert space. Then the set

R = {P[~ej ]}Nj=1 ∪
{
P[ 1√

2
(~ej − ~ej+1)],P[

1√
2
(~ej + i~ej+1)]

}
1≤j<N

resolves D.

Proof. An easy calculation. �
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Proof of Wigner's theorem
(in the separable case)
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Proof. Let P[~fj ] = φ(P[~ej ]), then {~fj}Nj=1 is an ONS.

H′ := ∨{~fj}Nj=1.

Set a unit vector ~v ∈ H and let φ(P[~v ]) = P[~w ]. (W's C) implies

|vj | = |〈~w , ~fj〉| (∀j),

and from Parseval's identity we get ~w ∈ H′.
We de�ne a linear isometry

V : H → H′ ⊆ H, V~ej = ~fj (j ∈ NN).

The mapping φ1(·) := V∗φ(·)V satisfy (W's C). Moreover

φ1(P[~ej ]) = V
∗φ(P[~ej ])V = V

∗
P[~fj ]V = P[V∗~fj ] = P[~ej ] (∀ j).
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Again from (W's C)

φ1

(
P[1/
√
2 · (~ej − ~ej+1)]

)
= P[1/

√
2 · (~ej − δj+1~ej+1)]

φ1

(
P[1/
√
2 · (~ej + i~ej+1)]

)
= P[1/

√
2 · (~ej − εj+1~ej+1)]

where |δj+1| = |εj+1| = 1 (1 ≤ j < N).

Therefore
√
2 = |1+ δj+1εj+1|,

and consequently δj+1 = ±iεj+1 (j < N).
We de�ne φ2(·) := U∗φ1(·)U, where

1 If ε2 = −iδ2, then let U be the unitary operator such that

U~e1 = ~e1, U~ek =

 k∏
j=2

δj

 ~ek (k > 1).

2 If ε2 = iδ2, then let U be the antiunitary operator de�ned by
the equations above.
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Moreover,
φ2(P[~ej ]) = P[~ej ] (∀ j),

φ2(P[1/
√
2 · (~ej − ~ej+1)]) = P[1/

√
2 · (~ej − ~ej+1)] (∀ j),

φ2(P[1/
√
2 · (~e1 + i~e2)]) = P[1/

√
2 · (~e1 + i~e2)].

We also have

φ2(P[1/
√
2 · (~ej + i~ej+1)]) = P[1/

√
2 · (~ej ± i~ej+1)] (1 < j < N).

Assume that there exists an index j > 1 for which

φ2(P[1/
√
2 · (~ej + i~ej+1)]) = P[1/

√
2 · (~ej − i~ej+1)]

holds. We may assume that this j is the �rst such index.
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Claim Then

φ2(P[vj−1~ej−1 + t~ej + vj+1~ej+1]) = P[vj−1~ej−1 + t~ej + vj+1~ej+1]

holds for every t > 0, vj−1 6= 0, vj+1 6= 0, |vj−1|2 + t2 + |vj+1|2 = 1.

Proof of Claim An easy calculation. �

Now, let

~x =
−1
2
~ej−1 +

1
2
~ej +

1√
2
~ej+1, ~y =

i

2
~ej−1 +

1
2
~ej +

i√
2
~ej+1.

Claim and (W's C) implies
√
2/4 = |i/4+ 1/4− i/2| = |i/4+ 1/4+ i/2| =

√
10/4,

which is a contradiction. Therefore φ2 is the identity mapping on
P1, and φ(P[~u]) = WP[~u]W∗ with W = VU. �
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Remarks

The proof is short and elementary, it does not contain any
serious computations.

The non-separable case can be proven as a consequence of the
separable case (technical).

It works for the general case (bijcetivity of φ or separability of
H is not assumed).

Note that we could consider φ : P1(H)→ P1(K) with some
Hilbert spaces H and K.
The proof is similar (but easier) in real Hilbert spaces.
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