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Permanent and determinant functions

De�nition
Let A = (aij) be a square matrix of order n and Sn is a symmetric

group on n elements, then

det(A) =
∑
σ∈Sn

sign(σ)
n∏

i=1

aiσ(i)

per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

Example

I Number of domino tiling's

I Number of derangements of order n

I M�enage numbers

I Number of perfect matching in bipartite graph
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P�olya permanent problem

Example (P�olya)

φ :

(
a11 a12
a21 a22

)
→
(
a11 −a12
a21 a22

)
The following equation is true:

per(A) = det(φ(A))

De�nition
The matrix A of order n is convertible if there is matrix

X = X (A) ∈ Mn(±1) such that the following equation is true:

per(A) = det(A ◦ X )
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Previous results, part 1

Example (P�olya, Szeg�o)

Matrix 1 1 1

1 1 1

1 1 1


is inconvertible.

Theorem (Gibson)

Let A ∈ Mn(0, 1) and per(A) > 0. If A is convertible then

ν(A) ≤ Ωn = n2+3n−2
2

. If ν(A) = Ωn then there exist permutation

matrices P,Q such that PAQ = Gn, where{
gij = 1, if j ≤ i + 1

gij = 0, otherwise.
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Previous results, part 2

Theorem (Brualdi, Shader)

Matrix A ∈ Mn(0, 1) is convertible i� there is sing-nonsingular

matrix S with zero elements on the same positions as in matrix A.

De�nition
Matrix A ∈ Mn(R) is sign-nonsingular if every matrix with the same

position of zeros, positive and negative elements is nonsingular.

Theorem (Little)

Bipartient graph G admits Pfa�an orientation i� incidence matrix

A is convertible.

Theorem (Valiant)

Computing permanent of A ∈ Mn(0, 1) is #− P-complete problem.
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Bijective convertation over �nite �eld

Theorem (Dolinar, Guterman, Kuzma, Orel)

Suppose n ≥ 3. Then there exist q0 = q0(n) such that for any �nite

�eld F with at least q0 elements and ch(F) > 2 no bijective map

φ : Mn(F)→ Mn(F) satis�es per(A) = det(φ(A)).

Example

Growing of q0 depending on n
n 3 4 5 6 7 8 9 10 11

q0 3 43 79 121 167 223 289 367 449

Theorem (Budrevich, Guterman)

Let F be a �nite �eld with characteristic p ≥ 3. Then for each

n ≥ 3 there is no bijective map φ : Mn(F)→ Mn(F) such that

per(A) = det(φ(A)).
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Convertibility over �nite �elds

How can we de�ne (sign) convertibility over �nite �eld?

De�nition
The matrix A ∈ Mn(F) of order n is convertible if there is matrix

X = X (A) ∈ Mn(±1) such that the following equation is true:

per(A) = det(A ◦ X )( mod F)

Example

If F is a �nite �eld with characteristic 2 then per(A) = det(A).
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Field with 3 elements

Theorem (Budrevich, Guterman)

Let A ∈ Mn(F3). Then there is matrix X ∈ Mn(±1) such that

per(A) = det(A ◦ X ).

Remark
There is no unique matrix X ∈ Mn(±1) such that any matrix

A ∈ Mn(F3) satis�es the equation per(A) = det(A ◦ X ).

Example

Matrix J3 with all ones is convertible over �eld F3 as

per(J3) = det(J3).
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Nonconvertible matrices over �nite �elds

Example

Matrix 1 1 1

1 1 1

1 1 1


is nonconvertible as a matrix over �nite �eld with characteristic

p ≥ 5.

Example

Let Fq be a �nite �eld with q = 3k elements and k > 1. If

Fq = Fp[x ]/ < h(x) >, where h(x) is irreducable polynom of order

k , then matrix x 2 1

1 1 1

1 1 1


is nonconvertible as a matrix over �eld Fq.
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Su�cient condition of convertibility

S(A) = (sij) :

{
sij = 1, if aij 6= 0

sij = 0, if aij = 0.

Theorem (Idea 1)

Let A ∈ Mn(F). If S(A) is convertible as a matrix over R then A is

convertible as a matrix over �nite �eld F.

Theorem (Idea 2)

Let A ∈ Mn(Fp), where Fp is a prime �eld with p elements. If there

is a row (or column) in A such that in Laplace decomposition by

this row (column) at least p − 1 nonzero summands, then A is

convertible.
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Gibson theorem over �nite �eld

Theorem (Gibson)

Let A ∈ Mn(0, 1) and per(A) > 0. If A is convertible then

ν(A) ≤ Ωn = n2+3n−2
2

. If ν(A) = Ωn then there exist permutation

matrices P,Q such that PAQ = Gn.

Question: Can we construct the condition same to Gibson theorem

for proving nonconvertability for some matrices?

Example

Let F be a �nite �eld of q = pk elements and p ≥ 3. For any

n ≥ p − 1 there is a convertible nonsingular matrix A ∈ Mn(F) with

all nonzero elements.

New question: Can we somehow reverse Gibson result for �nite

�eld?
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Reverse Gibson theorem

We want to prove some condition that guarantee convertibility of a

matrix A over �nite �eld.

Theorem
Let A ∈ Mn(Fp), where Fp is a prime �nite �eld with p elements

and n ≥ 2p − 6, satis�es the folowing conditions:

1. There is a column in A with all nonzero elements.

2. There a row in A with at least

M = (p − 3) log2(n − 1)(p − 1) + 2 nonzero elements.

3. Matrix A is fully indecomposable.

Then matrix A is converible.

Example

Let A ∈ M14(F5) be a fully indecomposable matrix and at least one

row and one column of A consist of nonzero elements. Then A is

convertible.
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Some corollaries

Corollary

Let A ∈ Mn(Fp) where Fp is a prime �eld with p elements. If

n ≥ (p − 3) log2(n − 1)(p − 1) + 2 then A is convertible.

Corollary

Suppose n ≥ (p − 3) log2(n − 1)(p − 1) + 2. Let A ∈ Mn(Fp) be a

symmetric matrix satis�es the following condition

1. There is a row in A with all nonzero elements.

2. There is σ ∈ Sn full cycle such that
n∏

i=1

aiσ(i) 6= 0.

Then matrix A is convertible.
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Ideas of the proof

Idea 1. We prove that for any z ∈ Fp there is a matrix

X ∈ Mn(±1) such that det(A ◦ X ) = z .

Idea 2.

Lemma
Let a1, . . . , ak be nonzero elements of Fp and k ≥ p. Then any

z ∈ Fp is equal to some linear combination
k∑

i=1

δiai , δi ∈ {±1}.

Idea 3. Find X ∈ Mn(±1) such that for matrix A ◦ X there is a

row (column) for which in Laplace decomposition formula at least

p − 1 nonzero summands.
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