Matrix convertibility over finite fields

Mikhail V. Budrevich (Lomonosov Moscow State University)

> Ljubljana, Slovenia 7 june 2014

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Permanent and determinant functions

Definition

Let $A = (a_{ij})$ be a square matrix of order n and S_n is a symmetric group on n elements, then

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{i=1}^n a_{i\sigma(i)}$$

$$\operatorname{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Permanent and determinant functions

Definition

Let $A = (a_{ij})$ be a square matrix of order n and S_n is a symmetric group on n elements, then

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{i=1}^n a_{i\sigma(i)}$$

$$\operatorname{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}$$

Example

- Number of domino tiling's
- Number of derangements of order n
- Ménage numbers
- Number of perfect matching in bipartite graph

Pólya permanent problem

Example (Pólya)

$$\phi: \begin{pmatrix} \mathsf{a}_{11} & \mathsf{a}_{12} \\ \mathsf{a}_{21} & \mathsf{a}_{22} \end{pmatrix} \to \begin{pmatrix} \mathsf{a}_{11} & -\mathsf{a}_{12} \\ \mathsf{a}_{21} & \mathsf{a}_{22} \end{pmatrix}$$

The following equation is true:

$$\operatorname{per}(A) = \operatorname{det}(\phi(A))$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Pólya permanent problem

Example (Pólya)

$$\phi: \begin{pmatrix} \mathsf{a}_{11} & \mathsf{a}_{12} \\ \mathsf{a}_{21} & \mathsf{a}_{22} \end{pmatrix} \to \begin{pmatrix} \mathsf{a}_{11} & -\mathsf{a}_{12} \\ \mathsf{a}_{21} & \mathsf{a}_{22} \end{pmatrix}$$

The following equation is true:

$$\operatorname{per}(A) = \operatorname{det}(\phi(A))$$

Definition

The matrix A of order n is convertible if there is matrix $X = X(A) \in M_n(\pm 1)$ such that the following equation is true:

$$\operatorname{per}(A) = \det(A \circ X)$$

Example (Pólya, Szegö) *Matrix*

 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

is inconvertible.

```
Example (Pólya, Szegö)
Matrix
```

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

is inconvertible.

Theorem (Gibson)

Let $A \in M_n(0, 1)$ and per(A) > 0. If A is convertible then $\nu(A) \leq \Omega_n = \frac{n^2+3n-2}{2}$. If $\nu(A) = \Omega_n$ then there exist permutation matrices P, Q such that $PAQ = G_n$, where

$$egin{cases} g_{ij}=1, \ if j\leq i+1\ g_{ij}=0, \ otherwise. \end{cases}$$

うして ふゆう ふほう ふほう うらつ

Theorem (Brualdi, Shader)

Matrix $A \in M_n(0,1)$ is convertible iff there is sing-nonsingular matrix S with zero elements on the same positions as in matrix A.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (Brualdi, Shader)

Matrix $A \in M_n(0,1)$ is convertible iff there is sing-nonsingular matrix S with zero elements on the same positions as in matrix A.

Definition

Matrix $A \in M_n(\mathbb{R})$ is sign-nonsingular if every matrix with the same position of zeros, positive and negative elements is nonsingular.

うして ふゆう ふほう ふほう うらつ

Theorem (Brualdi, Shader)

Matrix $A \in M_n(0,1)$ is convertible iff there is sing-nonsingular matrix S with zero elements on the same positions as in matrix A.

Definition

Matrix $A \in M_n(\mathbb{R})$ is sign-nonsingular if every matrix with the same position of zeros, positive and negative elements is nonsingular.

Theorem (Little)

Bipartient graph G admits Pfaffian orientation iff incidence matrix A is convertible.

Theorem (Brualdi, Shader)

Matrix $A \in M_n(0,1)$ is convertible iff there is sing-nonsingular matrix S with zero elements on the same positions as in matrix A.

Definition

Matrix $A \in M_n(\mathbb{R})$ is sign-nonsingular if every matrix with the same position of zeros, positive and negative elements is nonsingular.

Theorem (Little)

Bipartient graph G admits Pfaffian orientation iff incidence matrix A is convertible.

Theorem (Valiant)

Computing permanent of $A \in M_n(0, 1)$ is # - P-complete problem.

Bijective convertation over finite field

Theorem (Dolinar, Guterman, Kuzma, Orel)

Suppose $n \ge 3$. Then there exist $q_0 = q_0(n)$ such that for any finite field \mathbb{F} with at least q_0 elements and $ch(\mathbb{F}) > 2$ no bijective map $\phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ satisfies $per(A) = det(\phi(A))$.

うして ふゆう ふほう ふほう うらつ

Bijective convertation over finite field

Theorem (Dolinar, Guterman, Kuzma, Orel)

Suppose $n \ge 3$. Then there exist $q_0 = q_0(n)$ such that for any finite field \mathbb{F} with at least q_0 elements and $ch(\mathbb{F}) > 2$ no bijective map $\phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ satisfies $per(A) = det(\phi(A))$.

うして ふゆう ふほう ふほう うらつ

Example

Growing of q_0 depending on n

n	3	4	5	6	7	8	9	10	11
q_0	3	43	79	121	167	223	289	367	449

Bijective convertation over finite field

Theorem (Dolinar, Guterman, Kuzma, Orel)

Suppose $n \ge 3$. Then there exist $q_0 = q_0(n)$ such that for any finite field \mathbb{F} with at least q_0 elements and $ch(\mathbb{F}) > 2$ no bijective map $\phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ satisfies $per(A) = det(\phi(A))$.

Example

Growing of q_0 depending on n

	<u> </u>	1.		0					
n	3	4	5	6	7	8	9	10	11
q_0	3	43	79	121	167	223	289	367	449

Theorem (Budrevich, Guterman)

Let \mathbb{F} be a finite field with characteristic $p \geq 3$. Then for each $n \geq 3$ there is no bijective map $\phi : M_n(\mathbb{F}) \to M_n(\mathbb{F})$ such that $\operatorname{per}(A) = \operatorname{det}(\phi(A))$.

Convertibility over finite fields

How can we define (sign) convertibility over finite field?

◆□ > < 個 > < E > < E > E 9 < 0</p>

Convertibility over finite fields

How can we define (sign) convertibility over finite field?

Definition

The matrix $A \in M_n(\mathbb{F})$ of order n is convertible if there is matrix $X = X(A) \in M_n(\pm 1)$ such that the following equation is true:

 $per(A) = det(A \circ X)(\mod \mathbb{F})$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Convertibility over finite fields

How can we define (sign) convertibility over finite field?

Definition

The matrix $A \in M_n(\mathbb{F})$ of order n is convertible if there is matrix $X = X(A) \in M_n(\pm 1)$ such that the following equation is true:

$$per(A) = det(A \circ X)(\mod \mathbb{F})$$

Example

If \mathbb{F} is a finite field with characteristic 2 then per(A) = det(A).

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Field with 3 elements

Theorem (Budrevich, Guterman)

Let $A \in M_n(\mathbb{F}_3)$. Then there is matrix $X \in M_n(\pm 1)$ such that $per(A) = det(A \circ X)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Field with 3 elements

Theorem (Budrevich, Guterman)

Let $A \in M_n(\mathbb{F}_3)$. Then there is matrix $X \in M_n(\pm 1)$ such that $per(A) = det(A \circ X)$.

Remark

There is no unique matrix $X \in M_n(\pm 1)$ such that any matrix $A \in M_n(\mathbb{F}_3)$ satisfies the equation $per(A) = det(A \circ X)$.

うして ふゆう ふほう ふほう うらつ

Field with 3 elements

Theorem (Budrevich, Guterman)

Let $A \in M_n(\mathbb{F}_3)$. Then there is matrix $X \in M_n(\pm 1)$ such that $per(A) = det(A \circ X)$.

Remark

There is no unique matrix $X \in M_n(\pm 1)$ such that any matrix $A \in M_n(\mathbb{F}_3)$ satisfies the equation $per(A) = det(A \circ X)$.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Example

Matrix J_3 with all ones is convertible over field \mathbb{F}_3 as $per(J_3) = det(J_3)$.

Nonconvertible matrices over finite fields

Example Matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

is nonconvertible as a matrix over finite field with characteristic $p \ge 5$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nonconvertible matrices over finite fields

Example *Matrix*

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

is nonconvertible as a matrix over finite field with characteristic $p \ge 5$.

Example

Let \mathbb{F}_q be a finite field with $q = 3^k$ elements and k > 1. If $\mathbb{F}_q = \mathbb{F}_p[x] / < h(x) >$, where h(x) is irreducable polynom of order k, then matrix

$$\begin{pmatrix} x & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

うして ふゆう ふほう ふほう うらつ

is nonconvertible as a matrix over field \mathbb{F}_q .

Sufficient condition of convertibility

$$S(A) = (s_{ij}): egin{cases} s_{ij} = 1, \ ext{if} \ a_{ij}
eq 0 \ s_{ij} = 0, \ ext{if} \ a_{ij} = 0. \end{cases}$$

Theorem (Idea 1)

Let $A \in M_n(\mathbb{F})$. If S(A) is convertible as a matrix over \mathbb{R} then A is convertible as a matrix over finite field \mathbb{F} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Sufficient condition of convertibility

$$S(A) = (s_{ij}): egin{cases} s_{ij} = 1, \ ext{if} \ a_{ij}
eq 0 \ s_{ij} = 0, \ ext{if} \ a_{ij} = 0. \end{cases}$$

Theorem (Idea 1)

Let $A \in M_n(\mathbb{F})$. If S(A) is convertible as a matrix over \mathbb{R} then A is convertible as a matrix over finite field \mathbb{F} .

Theorem (Idea 2)

Let $A \in M_n(\mathbb{F}_p)$, where \mathbb{F}_p is a prime field with p elements. If there is a row (or column) in A such that in Laplace decomposition by this row (column) at least p - 1 nonzero summands, then A is convertible.

Gibson theorem over finite field

Theorem (Gibson) Let $A \in M_n(0, 1)$ and per(A) > 0. If A is convertible then $\nu(A) \le \Omega_n = \frac{n^2+3n-2}{2}$. If $\nu(A) = \Omega_n$ then there exist permutation matrices P, Q such that $PAQ = G_n$.

Question: Can we construct the condition same to Gibson theorem for proving nonconvertability for some matrices?

うして ふゆう ふほう ふほう うらつ

Gibson theorem over finite field

Theorem (Gibson)

Let $A \in M_n(0, 1)$ and per(A) > 0. If A is convertible then $\nu(A) \leq \Omega_n = \frac{n^2+3n-2}{2}$. If $\nu(A) = \Omega_n$ then there exist permutation matrices P, Q such that $PAQ = G_n$.

Question: Can we construct the condition same to Gibson theorem for proving nonconvertability for some matrices?

Example

Let \mathbb{F} be a finite field of $q = p^k$ elements and $p \ge 3$. For any $n \ge p - 1$ there is a convertible nonsingular matrix $A \in M_n(\mathbb{F})$ with all nonzero elements.

Gibson theorem over finite field

Theorem (Gibson)

Let $A \in M_n(0, 1)$ and per(A) > 0. If A is convertible then $\nu(A) \leq \Omega_n = \frac{n^2+3n-2}{2}$. If $\nu(A) = \Omega_n$ then there exist permutation matrices P, Q such that $PAQ = G_n$.

Question: Can we construct the condition same to Gibson theorem for proving nonconvertability for some matrices?

Example

Let \mathbb{F} be a finite field of $q = p^k$ elements and $p \ge 3$. For any $n \ge p - 1$ there is a convertible nonsingular matrix $A \in M_n(\mathbb{F})$ with all nonzero elements.

 $\underline{\text{New question:}}$ Can we somehow reverse Gibson result for finite field?

We want to prove some condition that guarantee convertibility of a matrix A over finite field.

We want to prove some condition that guarantee convertibility of a matrix A over finite field.

Theorem

Let $A \in M_n(\mathbb{F}_p)$, where \mathbb{F}_p is a prime finite field with p elements and $n \ge 2p - 6$, satisfies the following conditions:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We want to prove some condition that guarantee convertibility of a matrix A over finite field.

Theorem

Let $A \in M_n(\mathbb{F}_p)$, where \mathbb{F}_p is a prime finite field with p elements and $n \ge 2p - 6$, satisfies the following conditions:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. There is a column in A with all nonzero elements.

We want to prove some condition that guarantee convertibility of a matrix A over finite field.

Theorem

Let $A \in M_n(\mathbb{F}_p)$, where \mathbb{F}_p is a prime finite field with p elements and $n \ge 2p - 6$, satisfies the following conditions:

- 1. There is a column in A with all nonzero elements.
- 2. There a row in A with at least $M = (p-3)\log_2(n-1)(p-1) + 2$ nonzero elements.

うして ふゆう ふほう ふほう うらつ

We want to prove some condition that guarantee convertibility of a matrix A over finite field.

Theorem

Let $A \in M_n(\mathbb{F}_p)$, where \mathbb{F}_p is a prime finite field with p elements and $n \ge 2p - 6$, satisfies the following conditions:

1. There is a column in A with all nonzero elements.

2. There a row in A with at least $M = (p-3)\log_2(n-1)(p-1) + 2$ nonzero elements.

ション ふゆ く 山 マ チャット しょうくしゃ

3. Matrix A is fully indecomposable.

We want to prove some condition that guarantee convertibility of a matrix A over finite field.

Theorem

Let $A \in M_n(\mathbb{F}_p)$, where \mathbb{F}_p is a prime finite field with p elements and $n \ge 2p - 6$, satisfies the following conditions:

- 1. There is a column in A with all nonzero elements.
- 2. There a row in A with at least $M = (p-3)\log_2(n-1)(p-1) + 2$ nonzero elements.

ション ふゆ く 山 マ チャット しょうくしゃ

3. Matrix A is fully indecomposable. Then matrix A is converible.

We want to prove some condition that guarantee convertibility of a matrix A over finite field.

Theorem

Let $A \in M_n(\mathbb{F}_p)$, where \mathbb{F}_p is a prime finite field with p elements and $n \ge 2p - 6$, satisfies the following conditions:

- 1. There is a column in A with all nonzero elements.
- 2. There a row in A with at least $M = (p-3)\log_2(n-1)(p-1) + 2$ nonzero elements.
- 3. Matrix A is fully indecomposable. Then matrix A is converible.

Example

Let $A \in M_{14}(\mathbb{F}_5)$ be a fully indecomposable matrix and at least one row and one column of A consist of nonzero elements. Then A is convertible.

Some corollaries

Corollary

Let $A \in M_n(\mathbb{F}_p)$ where \mathbb{F}_p is a prime field with p elements. If $n \ge (p-3)\log_2(n-1)(p-1) + 2$ then A is convertible.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Some corollaries

Corollary

Let $A \in M_n(\mathbb{F}_p)$ where \mathbb{F}_p is a prime field with p elements. If $n \ge (p-3)\log_2(n-1)(p-1)+2$ then A is convertible.

Corollary

Suppose $n \ge (p-3)\log_2(n-1)(p-1) + 2$. Let $A \in M_n(\mathbb{F}_p)$ be a symmetric matrix satisfies the following condition

ション ふゆ く 山 マ チャット しょうくしゃ

1. There is a row in A with all nonzero elements.

2. There is
$$\sigma \in S_n$$
 full cycle such that $\prod_{i=1}^n a_{i\sigma(i)} \neq 0$.

Then matrix A is convertible.

Ideas of the proof

Idea 1. We prove that for any $z \in \mathbb{F}_p$ there is a matrix $X \in M_n(\pm 1)$ such that $\det(A \circ X) = z$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Ideas of the proof

Idea 1. We prove that for any $z \in \mathbb{F}_p$ there is a matrix $X \in M_n(\pm 1)$ such that $\det(A \circ X) = z$.

Idea 2.

Lemma

Let a_1, \ldots, a_k be nonzero elements of \mathbb{F}_p and $k \ge p$. Then any $z \in \mathbb{F}_p$ is equal to some linear combination $\sum_{i=1}^k \delta_i a_i, \ \delta_i \in \{\pm 1\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Ideas of the proof

Idea 1. We prove that for any $z \in \mathbb{F}_p$ there is a matrix $X \in M_n(\pm 1)$ such that $\det(A \circ X) = z$.

ldea 2.

Lemma

Let a_1, \ldots, a_k be nonzero elements of \mathbb{F}_p and $k \ge p$. Then any $z \in \mathbb{F}_p$ is equal to some linear combination $\sum_{i=1}^k \delta_i a_i, \ \delta_i \in \{\pm 1\}$.

Idea 3. Find $X \in M_n(\pm 1)$ such that for matrix $A \circ X$ there is a row (column) for which in Laplace decomposition formula at least p-1 nonzero summands.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you!

M.V.Budrevich mbudrevich@yandex.ru

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ