George P. H. Styan
Department of Mathematics and Statistics
McGill University (Canada) geostyan@gmail.com

We comment on some properties of 5×5 golden magic matrices and 5×5 Stifelsche Quadrate. Our "golden magic matrices" M are 5×5 fullymagic matrices where \mathbf{M}^{2} is a Toeplitz-circulant with top row (p, q, r, r, q) and eigenvalues $a+\Phi b$; here $\Phi=(1+\sqrt{5}) / 2$ is the Golden Ratio and a, b are rational numbers. For example, we find that the column-flipped Agrippa-Paracelsus classic fully-magic matrix A and the fully-magic Latin-square Hankel-circulant \mathbf{H} are golden

$$
\mathbf{A}=\left(\begin{array}{ccccc}
3 & 20 & 7 & 24 & 11 \tag{1}\\
16 & 8 & 25 & 12 & 4 \\
9 & 21 & 13 & 5 & 17 \\
22 & 14 & 1 & 18 & 10 \\
15 & 2 & 19 & 6 & 23
\end{array}\right), \quad \mathbf{H}=\left(\begin{array}{lllll}
0 & 3 & 1 & 4 & 2 \\
3 & 1 & 4 & 2 & 0 \\
1 & 4 & 2 & 0 & 3 \\
4 & 2 & 0 & 3 & 1 \\
2 & 0 & 3 & 1 & 4
\end{array}\right) .
$$

We define 5×5 Stifelsche Quadrate as 5×5 fully-magic matrices where the 3×3 inner centre submatrix is also fully-magic, for example

$$
\mathbf{S}=\left(\begin{array}{rrrrr}
3 & 18 & 21 & 22 & 1 \tag{2}\\
24 & 16 & 11 & 12 & 2 \\
7 & 9 & 13 & 17 & 19 \\
6 & 14 & 15 & 10 & 20 \\
25 & 8 & 5 & 4 & 23
\end{array}\right) .
$$

The 5×5 magic square defined by \mathbf{S} was chosen recently for a German postage stamp in honour of the mathematician and Augustinian monk Michael Stifel (1487-1567). The matrix S with magic sum $m=65$ is not golden but has a nilpotent property in common with the golden matrices \mathbf{A} and \mathbf{H} : we find that $\mathbf{N}_{\mathbf{S}}^{2}=\mathbf{0}$ where $\mathbf{N}_{\mathbf{S}}=\mathbf{S}+\mathbf{S F}-2 m \overline{\mathbf{E}}$, with \mathbf{F} the flip matrix and $\overline{\mathbf{E}}$ the 5×5 matrix with every entry equal to $1 / 5$. Moreover, $\mathbf{N}_{\mathbf{A}}^{2}=\mathbf{N}_{\mathbf{H}}^{2}=\mathbf{0}$.

Joint research with M. A. Amela (General Pico).

