Alexander Guterman

Department of Mathematics and Mechanics
Moscow State University (Russia)
guterman@list.ru
Two important functions in matrix theory, determinant and permanent, look very similar:

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}}(-1)^{\sigma} a_{1 \sigma(1)} \cdots a_{n \sigma(n)} \quad \text { and } \quad \text { per } A=\sum_{\sigma \in S_{n}} a_{1 \sigma(1)} \cdots a_{n \sigma(n)}
$$

here $A=\left(a_{i j}\right) \in M_{n}(\mathbb{F})$ is an $n \times n$ matrix and S_{n} denotes the set of all permutations of the set $\{1, \ldots, n\}$.

While the computation of the determinant can be done in a polynomial time, it is still an open question, if there are such algorithms to compute the permanent. Due to this reason, starting from the work by Pólya, 1913, different approaches to convert the permanent into the determinant were under the intensive investigation.

The lecture will contain the exposition of this theory during the past 100 years including our recent research results.

This talk is based on a series of joint works with M. Budrevich (Lomonosov Moscow State University), G. Dolinar (University of Ljubljana), B. Kuzma (University of Primorska) and M. Orel (University of Primorska).

