Archimedean quadratic modules of real polynomials

Alexander Prestel, University of Konstanz, Germany

The polynomials $h_{1}, \ldots h_{s} \in \mathbb{R}\left[X_{1}, \ldots X_{n}\right]$ define an archimedean quadratic module $M(h)$ iff the semialgebraic set $W(h) \subseteq \mathbb{R}^{n}$ defined by $h_{i}(x) \geq 0$ for $1 \leq i \leq s$ is bounded and every polynomial $f \in \mathbb{R}\left[X_{1}, \ldots, X_{N}\right]$, strictly positive on $W(h)$, admits a representation

$$
f=\sigma_{0}+h_{1} \sigma_{2}+\cdots+h_{s} \sigma_{s}
$$

with σ_{i} being sums of squares of polynomials. If all h_{i} are linear and $W(h)$ is bounded, them $M(h)$ is archimedean. But not all bounded $W(h)$ have archimedean $M(h)$.

There exists an abstract valuation theoretic criterion for $M(h)$ to be archimedean. We are, however, concerned with an effective procedures that allows to decide whether $M(h)$ is archimedean or not. In dimension 2 a geometric such procedure was given by E. Cabral in her PhD thesis. In dimension $n \geq 3$ decidability has now been proved by S. Wagner, but a geometric procedure is still lacking.

