Spaces of real places

Katarzyna Osiak, University of Silesia, Poland

An \mathbb{R} - place of a formally real field K is a place $\xi : K \longrightarrow \mathbb{R} \cup \{\infty\}$. The set of all \mathbb{R} -places of the field K is denoted by M(K). Every \mathbb{R} - place of K is connected with some subset of the space X(K) of orderings of the field K. Namely, if ξ is an \mathbb{R} - place, then there exists an ordering P such that the set

$$A(P) := \{ a \in K : \exists q \in \mathbb{Q}^+ (q \pm a \in P) \}$$

is the valuation ring of ξ . We say that P determines ξ in this case. Any ordering P of the field K determines exactly one \mathbb{R} - place.

The above described correspondence between orderings and R-places defines a surjective map

$$\lambda_K: \mathcal{X}(K) \longrightarrow M(K),$$

which, in turn, allows us to equip M(K) with the quotient topology inherited from $\mathcal{X}(K)$. M(K) is a Hausdorff space. It is also compact as a continuous image of a compact space. But the problem

Which compact, Hausdorff spaces occur as the spaces of real places?

is still open.

We prove that:

- every Boolean space is a space of \mathbb{R} places of some formally real field K;
- the segment [0,1] is realised as a space of \mathbb{R} places for some algebraic extension of $\mathbb{R}(X)$;
- the space of \mathbb{R} places of a function field over any real closure of $\mathbb{R}(X)$ is not a metrizable space and therefore $M(\mathbb{R}(X,Y))$ is not metrizable.