Additive minimal–rank nonincreasing maps on \+-hermitian/\+-skew-hermitian matrices

Marko Orel, University of Ljubljana, Slovenia

(Joint work with B. Kuzma)

Let \mathbb{K} be a field, $\mathcal{M}_n(\mathbb{K})$ the algebra of all *n*-by-*n* matrices with entries from \mathbb{K} , and $\mathbf{H} : \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$ an involution. A matrix $A \in \mathcal{M}_n(\mathbb{K})$ is \mathbf{H} -hermitian (resp. \mathbf{H} -skew-hermitian) if $\mathbf{H}(A) := A^{\mathbf{H}} = A$ (resp. $A^{\mathbf{H}} = -A$). The set of all such matrices is denoted by $\mathcal{H}_n^{\mathbf{H}}(\mathbb{K})$ (resp. $\mathcal{SH}_n^{\mathbf{H}}(\mathbb{K})$). The minimal (nonzero) rank is defined as $r_{min} := \min\{\operatorname{rk} A \mid 0 \neq A \in \mathcal{H}_n^{\mathbf{H}}(\mathbb{K})\}$ (resp. $r_{min} := \min\{\operatorname{rk} A \mid 0 \neq A \in \mathcal{SH}_n^{\mathbf{H}}(\mathbb{K})\}$). A map Φ is minimal-rank nonincreasing if for any A, $\operatorname{rk} A = r_{min}$ implies $\operatorname{rk} \Phi(A) \leq r_{min}$. The classification of all such additive maps on $\mathcal{H}_n^{\mathbf{H}}(\mathbb{K})$ (resp. $\mathcal{SH}_n^{\mathbf{H}}(\mathbb{K})$) will be presented.