Some new bounds on realizing spectra in the nonnegative inverse eigenvalue problem

Tom Laffey, University College Dublin, Ireland

(Joint work with Helena Šmigoc)

Let $\sigma := (\lambda_1, \dots, \lambda_n)$ be a list of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) asks for necessary and sufficient conditions on σ to be the spectrum of a matrix with nonnegative real entries. We will summarize the literature on this problem and present some new sufficient results. Suppose that

maximum{ $| \lambda_j | : j = 1, 2, ..., n$ }

is a non-repeated element of σ . Let

 s_k

$$k := \lambda_1^k + \dots + \lambda_n^k, \quad k = 1, 2, 3, \dots$$

be the associated Newton power sums. Then a celebrated result of Boyle and Handelman states that if all the s_k are positive, then there exists a nonnegative integer N such that

$$\sigma_N := (\lambda_1, \dots, \lambda_n, 0, \dots, 0), \quad (N \text{ zeros})$$

is the spectrum of a nonnegative $(n+N) \times (n+N)$ matrix. The problem of obtaining a constructive proof of this result with an effective bound on the minimum number N of zeros required has not yet been solved. We will discuss an approach to this using polynomials, and apply it to the test spectrum (3+t, 3-t, -2, -2, -2). In particular, we will show that, for t > 0, if

$$N>2{\log_3(\frac{2}{t})},$$

then

$$(3+t, 3-t, -2, -2, -2, 0, \dots, 0),$$
 (N zeros)

is the spectrum of a nonnegative $(n + N) \times (n + N)$ matrix.