Some new bounds on realizing spectra in the nonnegative inverse eigenvalue problem

Tom Laffey, University College Dublin, Ireland
(Joint work with Helena Šmigoc)

Let $\sigma:=\left(\lambda_{1}, \quad \ldots \quad, \lambda_{n}\right)$ be a list of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) asks for necesssary and sufficient conditions on σ to be the spectrum of a matrix with nonnegative real entries. We will summarize the literature on this problem and present some new sufficient results. Suppose that

$$
\operatorname{maximum}\left\{\left|\lambda_{j}\right|: \quad j=1,2, \quad \ldots \quad n\right\}
$$

is a non-repeated element of σ. Let

$$
s_{k}:=\lambda_{1}^{k}+\quad \ldots \quad+\lambda_{n}^{k}, \quad k=1,2,3, \ldots
$$

be the associated Newton power sums. Then a celebrated result of Boyle and Handelman states that if all the s_{k} are positive, then there exists a nonnegative integer N such that

$$
\sigma_{N}:=\left(\lambda_{1}, \quad \ldots \quad, \lambda_{n}, 0, \quad \ldots \quad, 0\right), \quad(N \text { zeros })
$$

is the spectrum of a nonnegative $(n+N) \times(n+N)$ matrix. The problem of obtaining a constructive proof of this result with an effective bound on the minimum number N of zeros required has not yet been solved. We will discuss an approach to this using polynomials, and apply it to the test spectrum ($3+t, 3-t,-2,-2,-2$). In particular, we will show that, for $t>0$, if

$$
N>2 \log _{3}\left(\frac{2}{t}\right)
$$

then

$$
(3+t, 3-t,-2,-2,-2,0, \quad \ldots, 0), \quad(N \text { zeros })
$$

is the spectrum of a nonnegative $(n+N) \times(n+N)$ matrix.

