When Jordan submodules are bimodules

Edward Kissin, London Metropolitan University, United Kingdom

(Joint work with Matej Brešar and Victor Shulman)

Let \mathcal{A} be an associative algebra and let X be an \mathcal{A} -bimodule. We call a linear subspace Y of X a Jordan \mathcal{A} -submodule of X if $Ay + yA \in Y$ for all $A \in \mathcal{A}$ and $y \in Y$ (if $X = \mathcal{A}$, then this coincides with the classical concept of a Jordan ideal). When is a Jordan \mathcal{A} -submodule a submodule? We give a thorough analysis of this question in both algebraic and analytic context. We consider general algebras and general Banach algebras and treat some more specific topics, such as symmetrically normed Jordan \mathcal{A} -submodules. Some of our results are of interest also in the classical situation; in particular, we show that there exist C^* -algebras having Jordan ideals that are not ideals.