Operators determining the norm

José Extremera Lizana, University of Granada, Spain

Let G be a locally compact abelian group, let X be a Banach space and let τ be a strongly continuous bounded representation of G on X. Let $\mathfrak{A}(\tau)$ be the weakly closed subalgebra of L(X) generated by all Fourier transforms $\int_G \tau(t)d\mu(t)$ with $\mu \in M(G)$. We say that $T \in \mathfrak{A}(\tau)$ determines the norm of X if every continuous norm $\|\cdot\|$ on X making the operator $T: (X, \|\cdot\|) \to (X, \|\cdot\|)$ continuous is equivalent to the Banach space norm of X. In this paper we study neccesary and sufficient conditions on T in order to determine the norm of X. Such conditions are mainly related with the topological structure of the Arveson spectrum of T and with the existence of critical eigenvalue of T.