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Abstract

It is well-known that

trace(AB) ≥ 0

for real-symmetric nonnegative definite matrices A and B. However,

trace(ABC)

can be positive, zero or negative, even when C is real-symmetric nonnegative definite.

The genesis of the present investigation is consideration of a product of square matrices

A = A1A2 · · ·An.

Permuting the factors of A leads to a different matrix product. We are interested in

conditions under which the spectrum remains invariant. The main results are for square

matrices over an arbitrary algebraically closed commutative field. The special case of

real-symmetric possibly nonnegative definite matrices is also considered.
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1. Introduction & Outline

Consider a product

p = p1p2 · · · pn.

Some notations:

• Direct Neighbors or Next-Door Neighbors.

• Length of a Product.

• Let p be a product of length n, and let q be obtained from p by a permutation

of its n (not necessarily distinct) factors. These two products are said to be DN-

related to each other if each of the n factors has in both products exactly the

same direct neighbors. In which case, we write p ∼DN q.
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In this note, we consider matrix products

A = A1A2 · · ·An,

where the factors Ai (i = 1, 2, ·, n) are square matrices over an algebraically closed

commutative field F.

Some further notations:

• Let Sn denote the symmetric group on the natural numbers 1, 2, · · · , n.

• For each π := (π1, π2, · · · , πn) ∈ Sn, let Aπ :=
∏n
i=1Aπi .

• Moreover, let SA := {Aπ | π ∈ Sn}.
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Some observations:

• ∼DN is an equivalence relation.

• Hence the collection of equivalence classes DN(B) := {Aπ |Aπ ∼DN B}, B ∈ SA,

forms a partition of SA.

• There are exactly (n − 1)!/2 disjoint equivalence classes. For observe that the

equivalence class DN(Aπ) of

Aπ = Aπ1Aπ2 · · ·Aπn (1)

contains exactly all those products of the matrix symbols Ai (i = 1, 2, · · · , n) that

are obtained from (1) by cyclical and/or reverse re-orderings.
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Outline:

• In Section 3, we study some functions which are defined on SA, mainly the trace(·)
and the spectrum(·). There, we particularly show that if Ai (i = 1, 2, · · · , n) are

all symmetric m ×m matrices over F, then these functions are constant on each

equivalence class.

• Section 4 deals with the set of all symmetric nonnegative definite m×m matrices

over the field R of real numbers.

• Section 2 contains some known results, from which our findings in the subsequent

two chapters easily follow.
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2. Prerequisite Facts

Fact 2.1. [See, e.g., pp. 53–55 in Lancaster (1969).] Let A be a square matrix

of order m over the field F. The characteristic polynomial of A, being defined as

cA(λ) := det(λIm − A), is a monic polynomial of degree m with exactly m (not

necessarily distinct) roots λ1, λ2, · · · , λm ∈ F, called the eigenvalues of A. When

writing the characteristic polynomial of A as

cA(λ) = λm − c1λm−1 + c2λ
m−2 + · · ·+ (−1)mcm, (2)

the following relationships hold between the coefficients cr (r = 1, 2, · · · ,m), the

eigenvalues of A, the r-th compound A(r) and the principal minors of A:

cr = trace(A(r)) =
∑

(all r × r principal minors) =
∑

1≤i1<i2<···ir≤m
λi1λi2 · · ·λir .

(3)

Hence, in particular,

c1 = trace(A) =

m∑
i=1

λi and cm = det(A) =

n∏
i=1

λi. (4)
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Fact 2.2. [See, e.g., Exercise 6 on p. 56 in Lancaster (1969).] Let A be a square

matrix over F. Then

cA(λ) = cAt(λ), (5)

where At denotes the transpose of A. In other words, A and its transpose At possess

the same characteristic polynomial, and so these matrices have the same set of

eigenvalues with corresponding algebraic multiplicities.

index.html


9/21

P �
i ?
�
	
�
≫
≪
>
<

Fact 2.3. [See, e.g., Exercise 7.1.19 on p. 503 in Meyer (2000).] Let A and B be

square matrices of order m over the field F. Then the matrices AB and BA have

the same set of eigenvalues with corresponding algebraic multiplicities. Hence, in

particular,

spectrum(AB) = spectrum(BA). (6)

For the sake of completeness as well as for easier reference, we also cite some well-known

results for Hermitian matrices (over the field C of complex numbers).
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Fact 2.4. [See, e.g., pp. 75–78 in Lancaster (1969).] Let A be an Hermitian m×m
matrix. Then all eigenvalues of A are real. Moreover, A is unitarily similar to the

diagonal matrix D = diag(λ1, λ2, · · · , λm) of its eigenvalues, i.e., there exists an

m×m (unitary) matrix U = (u1, u2, · · · , um) such that

UU∗ = Im and A = UDU∗

or, equivalently,
m∑
i=1

uiu
∗
i = Im and A =

m∑
i=1

λiuiu
∗
i ,

with (·)∗ indicating as usual the conjugate transpose of (·). The pairs (λi, ui),

i = 1, 2, · · · ,m, are eigenpairs for A, i.e., λi and ui, satisfying Aui = λiui, are

eigenvalues and eigenvectors of A, respectively.
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For real-symmetric matrices the previous result allows the following version.

Fact 2.5. [See, e.g., pp. 75–78 in Lancaster (1969).] Let A be a real-symmetric

m × m matrix. Then all eigenvalues of A are real. Moreover, A is orthogonally

similar to the diagonal matrix D = diag(λ1, λ2, · · · , λm) of its eigenvalues, i.e.,

there exists an m×m (orthogonal) real matrix P = (p1, p2, · · · , pm) such that

PP t = I and A = PDP t

or, equivalently,
m∑
i=1

pip
t
i = Im and A =

m∑
i=1

λipip
t
i.

The pairs (λi, pi), i = 1, 2, · · · ,m, are eigenpairs for A, i.e., λi and pi, satisfying

Api = λipi, are eigenvalues and eigenvectors of A, respectively.
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Below we will also make use of the following two results.

Fact 2.6. [See, e.g., p. 559 in Meyer (2000).] Let A be a real-symmetric nonnegative

definite matrix. Then all its eigenvalues are nonnegative. If all its eigenvalues are

positive, then A is even a positive definite matrix.

Fact 2.7. [See, e.g., Exercise 7.2.16 in Meyer (2000).] Let A and B be diagonalizable

matrices of the same order, say m×m. Then A and B commute, i.e. AB = BA,

if and only if A and B can be simultaneously diagonalized, i.e. if and only

A = XDAX
−1 and B = XDBX

−1

for some regular matrix X = (x1, x2, · · · , xm) and some diagonal matrices DA =

diag(λ1, λ2, · · · , λm) and DB = (µ1, µ2, · · · , µm). For i = 1, 2, · · · ,m, the pairs

(λi, xi) and (µi, xi) are eigenpairs of A and B, respectively.
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3. Main Results

Theorem 3.1. For symmetric m×m matrices A1, A2, · · · , An over the field F, let

A :=
∏n
i=1Ai. Then we have

cA(λ) = cAπ(λ), (7)

irrespective of Aπ ∈ DN(A). Consequently,

trace(A(r)) =
∑

(all r × r principal minors of A)

=
∑

(all r × r principal minors of Aπ)

= trace(A(r)
π ), (8)

irrespective of Aπ ∈ DN(A), and so, in particular,

trace(A) = trace(Aπ) and det(A) = det(Aπ) (9)

for all Aπ with Aπ ∼DN A.

index.html


14/21

P �
i ?
�
	
�
≫
≪
>
<

Proof: Recall from Section 1 that DN(A) consists exactly of all those 2n ma-

trix products that are obtainable from A = A1A2 · · ·An by cyclical and/or reverse

re-orderings of the n matrix factors in A. In virtue of Fact 2.1 and Fact 2.2, the

claimed results now follow easily by means of Fact 2.3 and the fact that, for instance,

(A1A2 · · ·An)t = AnAn−1 · · ·A1. Details are left to the reader. �
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Because for any matrix product A of length 3, DN(A) = SA, the following is an

immediate corollary of the previous theorem.

Corollary 3.2 Let A := A1A2A3, with A1, A2 and A3 being symmetric matrices

of the same order m×m over the field F. Then

cA1A2A3(λ) = cAπ1Aπ2Aπ3 (λ) (10)

for each permutation π = (π1, π2, π3) ∈ S3. Hence, in particular,

trace(A
(r)
1 A

(r)
2 A

(r)
3 ) = trace(A(r)

π1 A
(r)
π2 A

(r)
π3 ), (11)

irrespective of π = (π1, π2, π3) ∈ S3 and r ∈ Nm, where

Nm := {r ∈ N : 1 ≤ r ≤ m}.
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If two of the three (not necessarily symmetric) square matrices A1, A2 and A3 in the

matrix product A := A1A2A3 commute, then each matrix in SA can obviously be

obtained by a cyclical reordering of the factors of A and/or by the commutation of the

commuting factors, and so we obtain the following.

Corollary 3.3. Let A := A1A2A3, with A1, A2 and A3 being such that at least

two of the three m×m matrices commute. Then

cA1A2A3(λ) = cAπ1Aπ2Aπ3 (λ) (12)

and so

trace(A
(r)
1 A

(r)
2 A

(r)
3 ) = trace(A(r)

π1 A
(r)
π2 A

(r)
π3 ), (13)

irrespective of π = (π1, π2, π3) ∈ S3 and r ∈ Nm.
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4. Special Case: Products of Length Three of

Real-Symmetric Nonnegative Definite Matrices

Consider the product

A1A2A3,

where all three factors are real-symmetric nonnegative definite. Then, according to

Corollary 3.2,

cA1A2A3(λ) = cA2A1A3(λ)

and so

trace((A1A2 +A2A1)A3) = 2 trace(A1A2A3)

holds true. An interesting question is, whether for given such factors anything can be

said about the signum of trace((A1A2 +A2A1)A3).
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Clearly, if A1, A2 and A3 are real-symmetric nonnegative definite m×m matrices, then

according to Fact 2.5, these matrices are orthogonally similar to some diagonal matrices

and hence, for i = 1, 2, 3, Ai can always be written as

Ai =

m∑
j=1

λijxijx
t
ij , (14)

where (λij , xij) (j = 1, 2, · · · ,m) are eigenpairs of Ai and {xij | j = 1, 2, · · · ,m}
constitutes an orthonormal basis for Rm. Then

trace(A1A2) =
m∑
j=1

m∑
k=1

λ1jλ2k(x
t
1jx2k)

2 ≥ 0, (15)

since, in view of Fact 2.6, all eigenvalues of a real-symmetric nonnegative definite matrix

are nonnegative. One might be tempted to believe that this result can be extended to

three factors. That this, however, is erroneous is illustrated by our next example.
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Example 4.1. Consider the real-symmetric positive definite matrices

A1 :=

(
4 −1.9
−1.9 1

)
, A2 :=

(
1 0.9

0.9 1

)
and A3 :=

(
1 −1.4
−1.4 2

)
.

Then

A1A2A3 =

(−0.09 0.194

0.006 −0.02

)
and A2A1A3 =

(
3.69 −5.206
2.694 −3.8

)
,

and so trace(A1A2A3) = −0.11 and trace(A2A1A3) = −0.11. The traces are negative

and coincide; the latter is in accordance with our findings in Section 2. The spectrum

of both matrices as well as all other matrices from SA1A2A3 is given by

spectrum(A1A2A3) = {(
√
61−55)/1000, (−

√
61−55)/1000} = spectrum(A2A1A3).
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We conclude with emphasizing that therefore, without any further restrictive assump-

tions, nothing can be said about the signum of the trace of the product of three real-

symmetric nonnegative definite matrices. The trace can be positive, negative, or even

0. If, however, the m×m matrices A1, A2, and A3 are all real-symmetric nonnegative

definite and, in addition, such that at least two of them commute, then, in view of

Fact 2.6 and Fact 2.5, it is clear that the product of the commuting pair of matrices

is itself a symmetric nonnegative definite matrix. Since in such a situation the product

of A1A2A3 can hence be considered as the product of two real-symmetric nonnegative

matrices, it follows from the lines around (15) that the trace of A1A2A3 is indeed also

nonnegative. Needless to say, if A1, A2 and A3 are real-symmetric positive definite and

two of these matrices commute, then the trace of A1A2A3 is necessarily positive.
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Krämer, eds.), pp. 359–365, Physica Verlag, Heidelberg.

index.html

	Abstract
	1. Introduction & Outline
	2. Prerequisite Facts
	3. Main Results
	4. Special Case: Products of Length Three of Real-Symmetric Nonnegative Definite Matrices

