

FACULTY OF ECONOMICS

Estimation of the covariance matrix based on two types of the forward search algorithm

Aleš Toman

23rd International Workshop on Matrices and Statistics Ljubljana, June 9, 2014

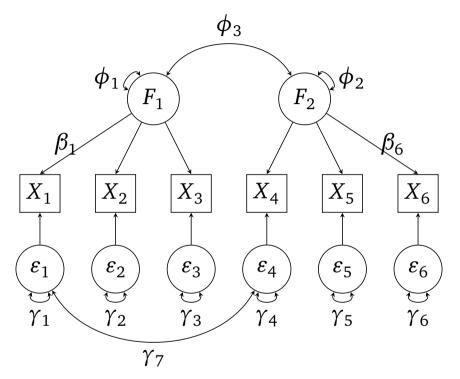
Outline

- Confirmatory factor analysis
- ► Forward search algorithm
 - ▷ Outlier identification
 - Robust covariance matrix estimate
 - Robust confirmatory factor analysis
 - Conclusions

The research was partially supported by Slovenian Research Agency and IMFM.

OF

Confirmatory factor analysis [2]



Linear dependence: $X = \mu + \Lambda F + \varepsilon$.

Does the restricted model make *reasonable fit* to the data?

Confirmatory factor analysis [2]

- $\blacktriangleright \operatorname{var}(X) = \Sigma \qquad {}_{p \times p}$
- $\blacktriangleright \operatorname{var}(F) = \Phi \qquad_{q \times q}$
- $\blacktriangleright \operatorname{var}(\varepsilon) = \Psi \qquad _{p \times p}$

Model implied covariance matrix
$$\Sigma = \Lambda \Phi \Lambda^T + \Psi$$
.

Maximum likelihood estimates

- Multivariate normal distribution.
- $\widehat{\Sigma}$ maximum likelihood estimate of the covariance matrix.

• Minimize
$$F_{\mathrm{ML}} = \operatorname{trace}(\widetilde{\Sigma}^{-1}\widehat{\Sigma}) - \log(\operatorname{det}(\widetilde{\Sigma}^{-1}\widehat{\Sigma})) - p$$
.

Model estimation and fit evaluation are **based on the matrix** $\widehat{\Sigma}$!

Forward search algorithm [1]

The forward search algorithm is an *iterative method*, that orders the data according to their *distances from the proposed model*. It helps us to identify observations with disproportionately *high influ-*

ence on statistical inference.

University of Ljubljana

Forward search algorithm [1]

The forward search algorithm is an *iterative method*, that orders the data according to their *distances from the proposed model*. It helps us to identify observations with disproportionately *high influence* on statistical inference.

- **1.** Split the sample into 2 subsets ► outlier free *basic set*,
 - non-basic set.
- **2.** Add observations to the basic set.
- **3.** Use *forward plots* to show the dynamics of estimates.

The algorithm enables ► data exploration,

► robust parameter estimation.

FACULTY OF

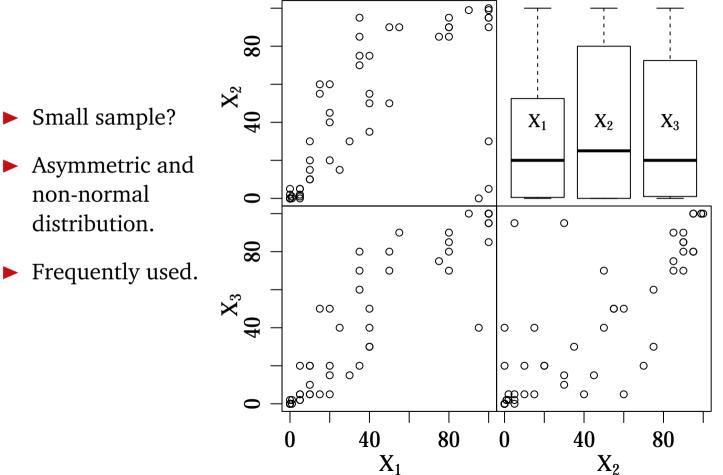
FCONOMICS

Data

G. W. Cermak, K. A. Bollen: *Observer consistency in judging extent of cloud cover*, Atmospheric Environment, **17** (1983) 2109–2121.

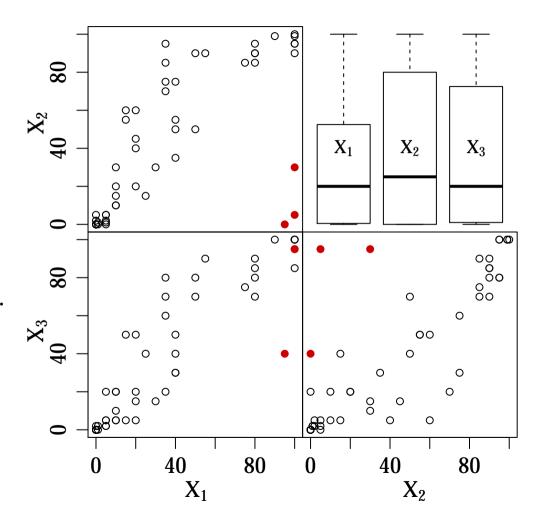
- ▶ *n* = 60 slides (July 1980).
- ▶ p = 3 judges.
- Percent of the sky containing clouds.

Data



Data

- Small sample?
- Asymmetric and non-normal distribution.
- Frequently used.
- Observations 40, 51, 52.



FACULTY OF ECONOMICS

Full sample estimates

$$\bar{x} = \begin{bmatrix} 32.95\\ 37.65\\ 35.55 \end{bmatrix}$$
$$S = \begin{bmatrix} 1301 & 1020 & 1237\\ 1020 & 1463 & 1200\\ 1237 & 1200 & 1404 \end{bmatrix}$$

- Split the sample into 2 subsets ► outlier free basic set,
 non-basic set.
- *S* sample covariance matrix
- $S_{(-i)}$ sample covariance matrix *with observation i excluded*

$$S = \begin{bmatrix} \Delta_1 & \cdot & \cdot \\ \Box_1 & \Box_2 & \cdot \\ \ominus_1 & \ominus_2 & \ominus_3 \end{bmatrix} \implies \operatorname{vecs}(S) = \begin{bmatrix} \Delta_1 \\ \Box_1 \\ \Box_2 \\ \ominus_1 \\ \ominus_2 \\ \ominus_3 \end{bmatrix}$$
$$\bullet \ s = \operatorname{vecs}(S)$$
$$\bullet \ s_{(-i)} = \operatorname{vecs}(S_{(-i)})$$

Г Л

Split the sample into 2 subsets ► outlier free basic set,
 non-basic set.

(Squared) *Cook's distance* of observation *i*

$$CD_i^2 = (s_{(-i)} - s)^T (\widehat{cov} s)^{-1} (s_{(-i)} - s)$$

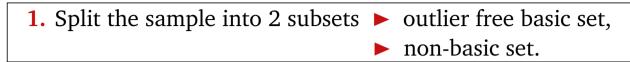
Multivariate normal distribution of *X*:

$$\blacktriangleright \operatorname{cov}(s_{gh}, s_{jk}) \propto \sigma_{gj} \sigma_{hk} + \sigma_{gk} \sigma_{hj}$$

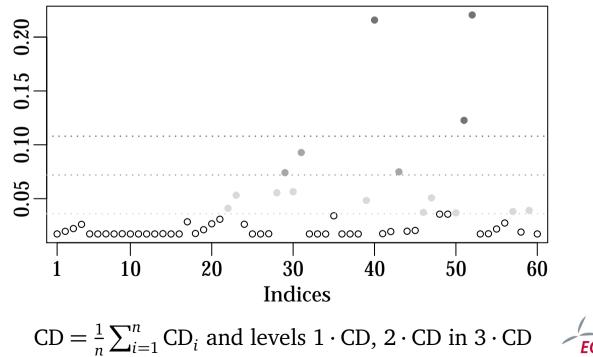
$$\blacktriangleright \ \widehat{\text{cov}}(s_{gh}, s_{jk}) \propto s_{gj} s_{hk} + s_{gk} s_{hj}$$

Take m = 30 observations with lowest Cook's distances.

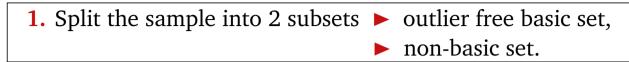
ACULTY OF CONOMICS



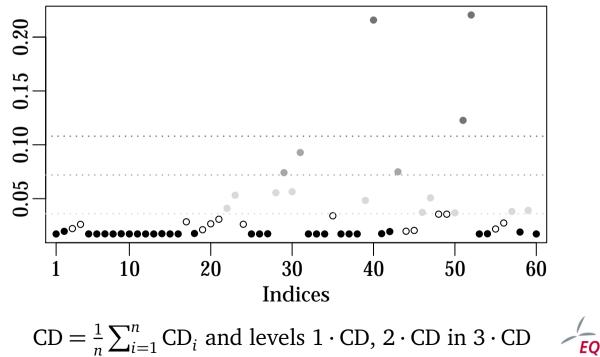
Cook's distance



University of Ljubljana



Cook's distance



University of Ljubljana

2. Add observations to the basic set.

 $X^{(\ell)}$ the basic set with ℓ observations: we wish to include one more.

 $S^{(\ell)}$ sample covariance matrix of the basic set.

- ► $S_{(-i)}^{(\ell)}$ covariance matrix *with observation i excluded*,
- ► $S_{(+i)}^{(\ell)}$ covariance matrix *with observation i added*.

$$s^{(\ell)} = \operatorname{vecs}(S^{(\ell)})$$
 $s^{(\ell)}_{(-i)} = \operatorname{vecs}(S^{(\ell)}_{(-i)})$ $s^{(\ell)}_{(+i)} = \operatorname{vecs}(S^{(\ell)}_{(+i)})$

2. Add observations to the basic set.

(Squared) *Cook's distance* of observation *i*

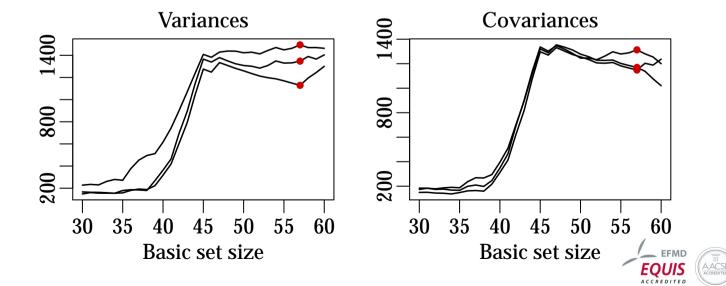
$$CD_{i}^{2(\ell)} = \begin{cases} \left(s_{(-i)}^{(\ell)} - s^{(\ell)} \right)^{T} \left(\widehat{cov} \ s^{(\ell)} \right)^{-1} \left(s_{(-i)}^{(\ell)} - s^{(\ell)} \right); & i \in X^{(\ell)} \\ \left(s_{(+i)}^{(\ell)} - s^{(\ell)} \right)^{T} \left(\widehat{cov} \ s^{(\ell)} \right)^{-1} \left(s_{(+i)}^{(\ell)} - s^{(\ell)} \right); & i \notin X^{(\ell)} \end{cases}$$

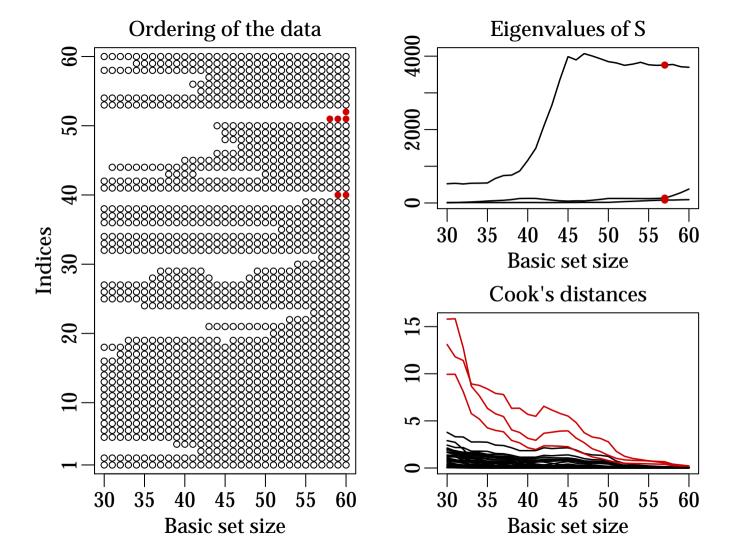
$$\blacktriangleright \quad \widehat{\operatorname{cov}}(s_{gh}^{(\ell)}, s_{jk}^{(\ell)}) \propto s_{gj}^{(\ell)} s_{hk}^{(\ell)} + s_{gk}^{(\ell)} s_{hj}^{(\ell)}$$

 $CD_i^{(\ell)}$ measures the *the influence of observation i* on S^{ℓ} .

Take $\ell + 1$ observations with lowest Cook's distances.

- **3.** Use forward plots to show the dynamics of estimates.
- Ordering of the data.
- ► Variances, covariances, and their functions.
- Cook's distances.





FACULTY

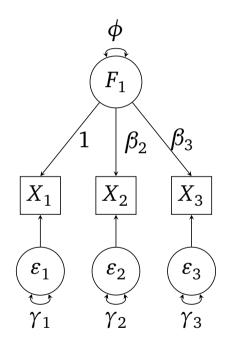
Data and the confirmatory factor model

$$\bar{x} = \begin{bmatrix} 32.95\\ 37.65\\ 35.55 \end{bmatrix}$$

$$\widehat{\Sigma} = \begin{bmatrix} 1279 & 1003 & 1216\\ 1003 & 1439 & 1180 \end{bmatrix}$$

1216 1180 1380

- One-factor model.
- Independent errors.



OF

FACULTY

Data and the confirmatory factor model

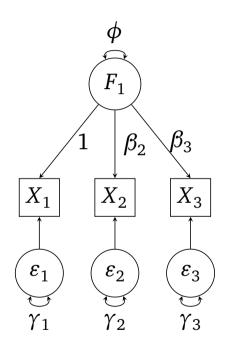
1916

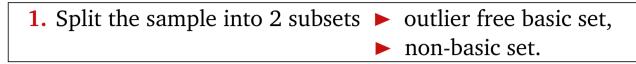
$$\bar{x} = \begin{bmatrix} 32.95\\ 37.65\\ 35.55 \end{bmatrix}$$

$$\begin{bmatrix} 1279 & 1003 \end{bmatrix}$$

$$\widehat{\Sigma} = \begin{bmatrix} 1279 & 1003 & 1210 \\ 1003 & 1439 & 1180 \\ 1216 & 1180 & 1380 \end{bmatrix}$$

- One-factor model.
- Independent errors.
- Heywood case: $\hat{\gamma}_3 = -50.584$





Distance from the model is measured with observational residuals

$$e_i = x_i - \hat{x} = x_i - \bar{x} - \widehat{\Lambda}\widehat{f}_i.$$

Regression method of *factor scores estimation*

$$\hat{f}_{i} = \widehat{\Phi}\widehat{\Lambda}^{T}\widehat{\Sigma}^{-1}(x_{i} - \bar{x}), \quad \text{where} \quad \widehat{\Sigma} = \widehat{\Lambda}\widehat{\Phi}\widehat{\Lambda}^{T} + \widehat{\Psi}.$$
$$\boxed{e_{i} = (I - \widehat{\Lambda}\widehat{\Phi}\widehat{\Lambda}^{T}\widehat{\Sigma}^{-1})(x_{i} - \bar{x})}$$

Summarized observational residuals are

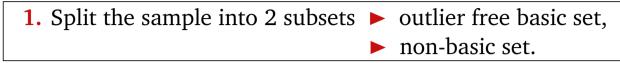
$$(e_i^S)^2 = e_i^T (\widehat{\Psi}\widehat{\Sigma}^{-1}\widehat{\Psi})^{-1} e_i.$$

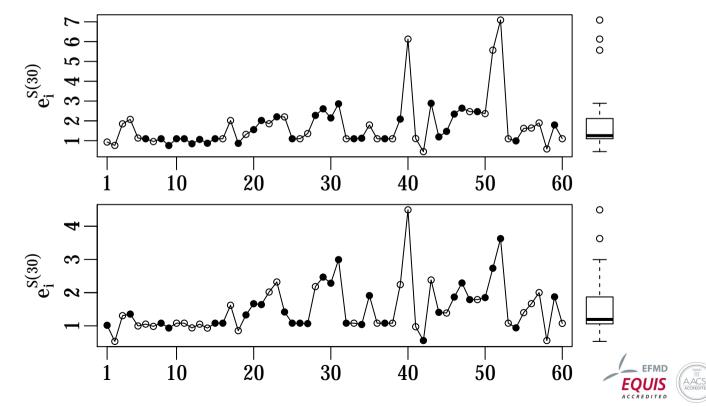
University of Ljubljana

Robust confirmatory factor analysis [4]

- Split the sample into 2 subsets ► outlier free basic set,
 non-basic set.
- **1.** Take a *random subet* $X^{(m)}$ of size m = 30.
- **2.** Estimate the confirmatory factor model on the subset.
- **3.** Compute $e_i^{(m)} = (I \widehat{\Lambda}^{(m)} \widehat{\Phi}^{(m)} (\widehat{\Lambda}^{(m)})^T (\widehat{\Sigma}^{(m)})^{-1}) (x_i \bar{x}^{(m)}).$ **4.** Compute $(e_i^{S(m)})^2 = (e_i^{(m)})^T (\widehat{\Psi}^{(m)} (\widehat{\Sigma}^{(m)})^{-1} \widehat{\Psi}^{(m)})^{-1} e_i^{(m)}.$
- **5.** Find the median of summarized observational residuals.

Repeat 1000-*times* and take the subset with the smallest median.





University of Ljubljana

OF

2. Add observations to the basic set.

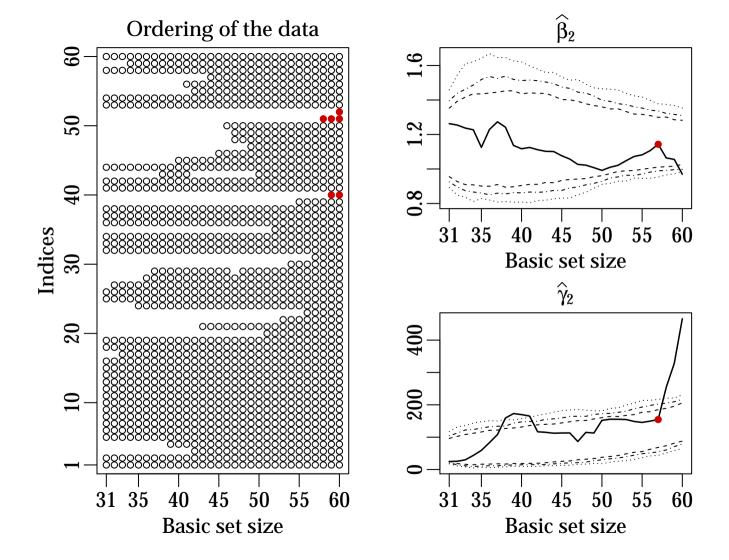
 $X^{(\ell)}$ the basic set with ℓ observations: we wish to include one more.

- **1.** Estimate the confirmatory factor model on the basic set.
- **2.** Compute $e_i^{(\ell)} = \left(I \widehat{\Lambda}^{(\ell)} \widehat{\Phi}^{(\ell)} (\widehat{\Lambda}^{(\ell)})^T (\widehat{\Sigma}^{(\ell)})^{-1}\right) (x_i \overline{x}^{(\ell)}).$
- **3.** Compute $\left(e_i^{S(\ell)}\right)^2 = \left(e_i^{(\ell)}\right)^T \left(\widehat{\Psi}^{(\ell)}\left(\widehat{\Sigma}^{(\ell)}\right)^{-1} \widehat{\Psi}^{(\ell)}\right)^{-1} e_i^{(\ell)}$.
- **4.** Take $\ell + 1$ observations with smallest summarized observational residuals.

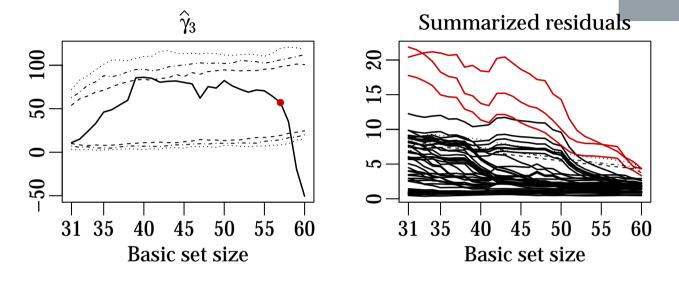
2. Add observations to the basic set.

 $X^{(\ell)}$ the basic set with ℓ observations: we wish to include one more.

- **1.** Estimate the confirmatory factor model on the basic set.
- **2.** Compute $e_i^{(\ell)} = \left(I \widehat{\Lambda}^{(\ell)} \widehat{\Phi}^{(\ell)} (\widehat{\Lambda}^{(\ell)})^T (\widehat{\Sigma}^{(\ell)})^{-1}\right) (x_i \overline{x}^{(\ell)}).$
- **3.** Compute $(e_i^{S(\ell)})^2 = (e_i^{(\ell)})^T (\widehat{\Psi}^{(\ell)} (\widehat{\Sigma}^{(\ell)})^{-1} \widehat{\Psi}^{(\ell)})^{-1} e_i^{(\ell)}$.
- **4.** Take $\ell + 1$ observations with smallest summarized observational residuals.
 - **3.** Use forward plots to show the dynamics of estimates.
- Ordering of the data.
- Parameter estimates, fit indices, summarized obs. residuals.

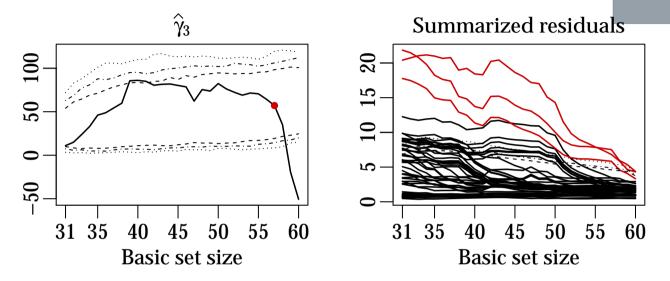


FACULTY OF ECONOMICS



OF

Robust confirmatory factor analysis [4]

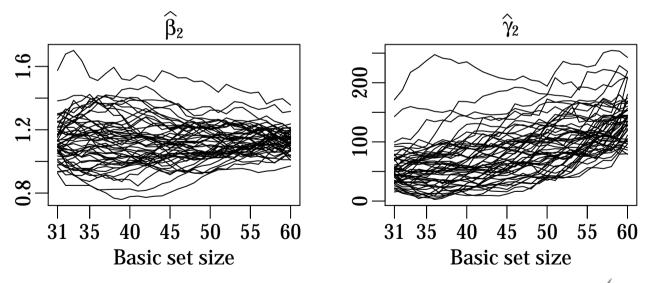


Conclusions

- Important to consider the model in robust inference.
- ▶ The algorithm enables us to explore the data.
- ▶ Rarely used in applied research.

Simulation envelopes

- Identify the step ℓ^* of the first major changes.
- Take $\widehat{\Lambda}^{(\ell^*)}$, $\widehat{\Phi}^{(\ell^*)}$, $\widehat{\Psi}^{(\ell^*)}$ and compute $\widehat{\Sigma}^{(\ell^*)}$.
- Simulate 1000 samples from $N_p(0, \widehat{\Sigma}^{(\ell^*)})$.
- Repeat forward search analysis on each of the samples.



► Find pointwise confidence interval.

References

- [1] A. C. Atkinson, M. Riani, A. Cerioli: *Exploring multivariate data with the forward search*, Springer-Verlag, New York, 2004.
- [2] **T. A. Brown:** *Confirmatory factor analysis for applied research*, The Guilford Press, New York, 2006.
- [3] W.-Y. Poon, Y.-K. Wong: A forward search procedure for identifying influential observations in the estimation of a covariance matrix, Structural Equation Modeling 11 (2004) 357–374.
- [4] **A. Toman:** *Robust confirmatory factor analysis based on the forward search algorithm*, Statistical Papers, **55** (2014) 233–252.

FACULTY OF ECONOMICS

Thank you for your attention!

ales.toman@ef.uni-lj.si

23rd International Workshop on Matrices and Statistics Ljubljana, June 9, 2014