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A Finite-Capacity Single-Server Queue

Consider a single server queue with capacity C, including the
server.

• Customers arrive according to Poisson process A(t) with
parameter λ.

• Service times Si are exponential with parameter µ.
• Each accepted customer generates θ dollars revenue.
• Customers that arrive when the queue is full are turned

away and subsequently generate no revenue.

The queue manager can observe the state and has the option
of buying or selling capacity at the start of each time period of
length T . How should he/she make this decision?
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A Finite-Capacity Single-Server Queue

We use a continuous-time Markov chain model.
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A Finite-Capacity Single-Server Queue

Chiera and Taylor (2002) approached a similar problem by
letting

Rn(t) = E[

∫ t

0
λθI(Q(u) = C)|Q(0) = n]du

denote the expected revenue lost in the interval [0, t ], given
that there are n connections at time 0 and

Rn(t |x) = E[

∫ t

0
λθI(Q(u) = C)|Q(0) = n, τ = x ]du

be the same quantity conditional on the fact that the first time τ
that the queue changes state is x .
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A Finite-Capacity Single-Server Queue

By thinking about the modelling, we can derive

Rn(t |x) =



0, n < C, t < x
θλt , n = C, t < x
µ

λ+µ
Rn−1(t − x)

+ λ
λ+µ

Rn+1(t − x), n < C, t ≥ x
θλx + RC−1(t − x), n = C, t ≥ x .
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A Finite-Capacity Single-Server Queue

Integrating with respect to the time of the first transition, we see
that

R0(t) =

∫ t

0
R1(t − x)λe−λxdx ,

Rn(t) =

∫ t

0
[µRn−1(t − x) + λRn+1(t − x)] e−(λ+µ)xdx

and

RC(t) =

∫ t

0
RC−1(t − x)µe−µxdx +

θλ

µ

(
1− e−µt) .
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A Finite-Capacity Single-Server Queue

Now taking Laplace transforms, it follows that R̃n(s) satisfies
the equations

R̃0(s) =
λ

s + λ
R̃1(s),

R̃n(s) =
λ

s + λ+ µ
R̃n+1(s) +

µ

s + λ+ µ
R̃n−1(s),

for 0 < n < C, and

R̃C(s) =
1

s + µ

(
µR̃C−1(s) +

θλ

s

)
.
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A Finite-Capacity Single-Server Queue

The solution to these equations is

R̃n(s) = A(s)r1(s)n + B(s)r2(s)n,

where

r1,2(s) =
s + λ+ µ±

√
(s + λ+ µ)2 − 4λµ
2λ

and the constants A(s) and A(s) can be derived from the
boundary conditions.

We used the Euler method as described by Abate and Whitt
(1995) to invert the transform of R̃n(s) to yield Rn(T ).
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The lost revenue functions for n = 0, . . . ,5 when
C = 5, λ = 3 and µ = 5
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Buying and selling prices

Now, indexing the lost revenue function by the capacity, we can
derive “buying" and “selling" values, Bn,C(T ) and Sn,C(T ) of
bandwidth when there are initially n < C customers present via
the expressions

Bn,C(T ) = Rn,C(T )− Rn,C+1(T )
Sn,C(T ) = Rn,C−1(T )− Rn,C(T ).

When n = C, we write

BC,C(T ) = RC,C(T )− RC,C+1(T )
SC,C(T ) = RC−1,C−1(T )− RC,C(T ) + f (θ).

where f (θ) represents a penalty function for ejecting a
customer.
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Buying and selling prices for n = 3,4,5 when
C = 5, λ = 3 and µ = 5
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The lost revenue functions again
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The lost revenue functions again

All the functions have slope equal to λθπC , which is the
stationary rate of losing revenue.

The difference between Rn(T ) and the line R = λθπCT is

∆n(T ) = λθ

∫ T

0
pn,C(u)du − λθπCT

= λθ

∫ T

0

[
pn,C(u)− πC

]
du.

This reminds us of the deviation matrix corresponding to the
generator Q of the Markov chain.
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The deviation matrix

For a continuous-time Markov chain with generator Q, the
deviation matrix D was discussed by Coolen-Schrijner and van
Doorn (2002). The used this terminology for the matrix whose
(i , j)th element is

Dij =

∫ ∞
0

[
pij(u)− πj

]
du

where pij(u) = P(X (t) = j |X (0) = u) and πt ≡ (πj) is the
stationary distribution, which satisfies

πtQ = 0.

with
πt1 = 1.
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The deviation matrix

With Π = 1πt , it is relatively easy to show that

D(−Q) = (−Q)D = I − Π,

(−Q)D(−Q) = −Q

and
D(−Q)D = D

so, not only is D a generalised inverse of −Q, it is the group, or
Drazin, inverse of −Q.
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The deviation matrix

For a specified column vector g, the deviation matrix is useful
for solving Poisson’s equation

−Qh = g − w1.

for the vector/scalar pair (h,w).

When the state space is finite, the solution is

h = −Dg + c1,

with
w = πg

and c a constant that needs to be specified.
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The deviation matrix

Our equations

R0(t) =
∫ t

0
R1(t − x)λe−λx dx ,

Rn(t) =
∫ t

0
[µRn−1(t − x) + λRn+1(t − x)] e−(λ+µ)x dx

and

RC(t) =
∫ t

0
RC−1(t − x)µe−µx dx +

θλ

µ

(
1 − e−µt

)
.

can be transformed into a time-dependent version of Poisson’s
equation of the form

R′(t) = QR(t) + g,

where gt = (0, . . . ,0, λθeµt ).
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The deviation matrix

In our capacity planning example, we effectively wrote the
solution in terms of

D(T ) =

∫ T

0
[P(u)− Π] du

rather than
D =

∫ ∞
0

[P(u)− Π] du.

These matrices are related via the equation

D(T ) =
[
I − eQT

]
D

but, since eQT is hard to calculate, it is not easy to see how to
get D(T ) this way.
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Coupling

Now we use a completely different approach. First consider the
continuous-time Markov chain model of the number of
customers to be driven by two independent Poisson processes
• the process A(t) of ‘potential arrivals’ with rate λ, and
• the process S(t) of ‘potential services’ with rate µ.

The ‘free’ process that starts with n customers

X̃ (t) = n + A(t)− S(t)

takes values on all of the integers and, when λ < µ, it will drift
towards −∞ with probability one.

However, on the set {1, . . . ,C − 1}, the process behaves like
our single-server queue.
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Coupling

To make the system behave exactly like our single server
queue, we introduce two new processes U(t) and L(t) that
count the number of arriving customers lost due to the queue
being full, and the number of services wasted due to it being
empty, respectively.

So we have

X (t) = n + [A(t)− U(t)]− [S(t)− L(t)]

where U(t) increases only when X (t) = C and an arrival
occurs, and L(t) increases only when X (t) = 0 and a potential
service occurs. This is the two-sided regulator or Skorokhod
map.

Slide 20



Coupling

When the capacity is C, the process θUC(t) gives us the
amount of revenue that we have lost up to time t : similarly when
the capacity is C + 1, the process θUC+1(t) gives us the amount
of revenue that we have lost up to time t . So the buying price is

Bc(t) = E [θ (UC(t)− UC+1(t))]

Instead of analysing θUC(t) and θUC+1(t) driven by
independent pairs of Poisson processes (AC(t),SC(t)) and
(AC+1(t),SC+1(t)) respectively, the trick is to drive the capacity
C and C + 1 queues with the same pair of Poisson processes.
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Coupling
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Coupling

Assume both queues start with n customers.

Their sample paths remain coupled until the first time τ1 that a
customer arrives when XC+1(τ1) = XC(τ1) = C. This customer
is accommodated in the capacity C + 1 queue, but lost from the
capacity C queue.

After time τ1, we have XC+1(t) = XC(t) + 1 until time τ2 when
XC+1(t) = 1 and XC(t) = 0 and a provisional service occurs.
The queues are then coupled again, both with no customers.
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Coupling

The successive couping/uncoupling intervals form an
alternating renewal process, with every ‘uncoupling’ renewal
corresponding to an increase by one in the difference
UC+1(t)− UC(t).

We can thus characterise the buying price function at time T in
terms of the expected number of uncoupling renewals by time
T .

We can again approach this via Laplace transforms.
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Coupling

For example, asymptotically,

lim
T→∞

B(T )

T
=

θ

mU + mC

where mU is the mean time between a coupling time instant
and an uncoupling time instant, and mC is the mean time
between an uncoupling time instant and a coupling time instant.
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