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1. The EIV-Model with nonsingular covariance matrices

The EIV Model with nonsingular covariance matrices

I The EIV-Model

y = (A− EA)︸ ︷︷ ︸
n×m

ξ + ey, rk A = m < n,

e :=

[
ey

eA := vec EA

]
∼ (

[
0
0

]
, σ2

0

P−1
y

n×n
0

0 P−1
A

nm×nm

 =: σ2
0Q = σ2

0P−1)

I where: y is the n× 1 observation vector;
A is the n× m (random) coefficient matrix with full column rank;

EA is the n× m (unknown) random error matrix associated with A;
ξ is the m× 1 (unknown) parameter vector;

ey is the n× 1 (unknown) random error vector associated with y;
eA is the nm× 1 vectorial form of the matrix EA;
σ2

0 is the (unknown) variance component;
Q is the n(m + 1)× n(m + 1) block-diagonal pos.-def. cofactor matrix;

P := Q−1 is the corresponding block-diagonal pos.-def. weight matrix.

I The model generalizes the one used by Schaffrin and Wieser (2008) where a
Kronecker product structure for QA = P−1

A = Q0 ⊗ Qx was assumed.
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1. The EIV-Model with nonsingular covariance matrices

The weighted Total Least-Squares Solution

I Lagrange’s target function (with λ as an n× 1 vector of Lagrange multipliers):

Φ(ey, eA, ξ, λ) := eT
y Pyey + eT

APAeA + 2λT [y− Aξ − ey + (ξT ⊗ In)eA] = stationary

I Euler-Lagrange necessary conditions:
1
2
∂Φ

∂ey
= Pyẽy − λ̂

.
= 0 (1)⇒ ẽy = Qyλ̂ (1’)

1
2
∂Φ

∂eA
= PAẽA + (ξ̂ ⊗ In)λ̂

.
= 0 (2)⇒ ẽA = −QA(ξ̂ ⊗ In)λ̂ (2’)

1
2
∂Φ

∂ξ
= −(A− ẼA)T λ̂

.
= 0 (3)⇒ AT λ̂ = (λ̂T ⊗ Im) vec(ẼT

A) (3’)

1
2
∂Φ

∂λ
= y− Aξ̂ − ẽy + (ξ̂T ⊗ In)ẽA

.
= 0 (4)⇒

⇒ y− Aξ̂ = [Qy + (ξ̂ ⊗ In)
T QA(ξ̂ ⊗ In)]·λ̂ =: Q1·λ̂ (4’)

⇒ λ̂ = Q−1
1 (y− Aξ̂) since Q1 = Q1(ξ̂) is nonsingular.

I Sufficient condition: 1
2

∂2Φ

∂

[
ey
eA

]
∂
[
eT

y | eT
A

] =

[
Py 0
0 PA

]
is positive-definite.X
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1. The EIV-Model with nonsingular covariance matrices

Fang’s Algorithm (2011)

I Nonlinear normal equations from (3) and (4’):[
Q1 (A− ẼA)

(A− ẼA)T 0

] [
λ̂

ξ̂

]
=

[
y− ẼAξ̂

0

]
with: vec ẼA = ẽA = −QA(ξ̂ ⊗ λ̂) from (2’)

I Weighted Total Least-Squares Solution (WTLSS) according to Fang (2011):

ξ̂ = [(A− ẼA)T Q−1
1 (A− ẼA)]−1(A− ẼA)T Q−1

1 (y− ẼAξ̂)

where: λ̂ = Q−1
1 (y− Aξ̂) from (4’)

and: vec ẼA = ẽA = −QA(ξ̂ ⊗ λ̂) from (2’)

I Iteration is required!
I Variance component estimate:

ẽT
y Pyẽy + ẽT

APAẽA = λ̂T[Qy + (ξ̂ ⊗ In)
T QA(ξ̂ ⊗ In)

]
λ̂ = λ̂T(y− Aξ̂)⇒

⇒ σ̂2
0 = λ̂T(y− Aξ̂)/(n− m) usually not unbiased!
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1. The EIV-Model with nonsingular covariance matrices

Mahboub’s Algorithm (2012)

I Applying the “commutation (or vec-permutation) matrix” K of Magnus and
Neudecker (2007) to (3’) yields, in conjunction with (2’) and (4’):

AT Q−1
1 (y− Aξ̂) = AT λ̂ = (λ̂T ⊗ Im) vec(ẼT

A) = (λ̂T ⊗ Im)K · (vec ẼA) =

= (Im ⊗ λ̂T)ẽA = −[(Im ⊗ λ̂)T QA(ξ̂ ⊗ Q−1
1 )] · (y− Aξ̂) =: −R1Q−1

1 · (y− Aξ̂) (3”)

⇒ ξ̂ = [(AT + R1)Q−1
1 A]−1(AT + R1)Q−1

1 y (7)

where : λ̂ = Q−1
1 (y− Aξ̂), Q1 := Qy + (ξ̂ ⊗ In)

T QA(ξ̂ ⊗ In) = Q1(ξ̂)

and : R1 := (Im ⊗ λ̂)T QA(ξ̂ ⊗ In) = R1(ξ̂, λ̂)

I Iteration is required!

I Variance component estimate (not necessarily unbiased):

ẽT
y Pyẽy + ẽT

APAẽA = λ̂T Q1λ̂ = λ̂T(y− Aξ̂)⇒ σ̂2
0 = λ̂T(y− Aξ̂)/(n− m)

I Note: Later, Xu et al. (2012) published a similar algorithm where R1 has been
replaced by −ẼA, due to −R1λ̂ = ẼAλ̂, though R1 6= −ẼA (in general).
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1. The EIV-Model with nonsingular covariance matrices

Schaffrin-Wieser Algorithm (2008) when QA = Q0 ⊗ Qx

I Introducing a fairly general covariance matrix QA with Kronecker product structure:

QA = Q0
m×m
⊗ Qx

n×n
⇒ Q1 = Qy + (ξ̂T Q0ξ̂) · Qx ⇒

⇒ AT Q−1
1 (y− Aξ̂) = AT [Qy + (ξ̂T Q0ξ̂) · Qx]

−1(y− Aξ̂) = AT λ̂ = ẼT
A λ̂

with: ẽA = −(Q0ξ̂ ⊗ Qx)λ̂ = − vec (Qxλ̂ξ̂
T Q0)︸ ︷︷ ︸

n×m

= vec ẼA

⇒ AT [Qy + (ξ̂T Q0ξ̂) · Qx]
−1(y− Aξ̂) = −Q0ξ̂ · (λ̂T Qxλ̂) =: −Q0ξ̂ · ν̂

with: ν̂ := (λ̂T Qxλ̂)

and: λ̂ := [Qy + (ξ̂T Q0ξ̂) · Qx]
−1(y− Aξ̂)

I Iteration required!

I Variance component estimate:

ẽT
y Pyẽy + ẽT

APAẽA = λ̂T[Qy + (ξ̂T Q0ξ̂) · Qx
]
λ̂ = λ̂T(y− Aξ̂)⇒

⇒ σ̂2
0 = λ̂T(y− Aξ̂)/(n− m) usually not unbiased!
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1. The EIV-Model with nonsingular covariance matrices

Golub-van-Loan Algorithm (1980) for (diagonal) Qx = Qy

I For the cofactor matrices, specify Qx = Qy; then:

AT Q−1
y (y− Aξ̂) = −Q0ξ̂ · ν̂(1 + ξ̂T Q0ξ̂) =: −Q0ξ̂ · σ2

min

with: σ2
min = (λ̂T Qyλ̂)(1 + ξ̂T Q0ξ̂) = (y− Aξ̂)T Q−1

y (y− Aξ̂)/(1 + ξ̂T Q0ξ̂)⇒

⇒ σ2
min · (1 + ξ̂T Q0ξ̂) = yT Q−1

y (y− Aξ̂) + (ξ̂T Q0ξ̂) · σ2
min

⇒ σ2
min = yT Q−1

y (y− Aξ̂) = TSSR

⇒
[

AT Q−1
y A AT Q−1

y y
yT Q−1

y A yT Q−1
y y

] [
ξ̂
−1

]
=

[
Q0 0
0 1

] [
ξ̂
−1

]
· σ2

min

(“generalized eigenvalue problem”)

I Originally: Q0 := Im, Qy := Diag(p−1
1 , . . . , p−1

n ) = P−1; then:[
AT PA AT Py
yT PA yT Py

] [
ξ̂
−1

]
=

[
ξ̂
−1

]
· σ2

min

(“standard eigenvalue problem”)

I Variance component estimate (not necessarily unbiased):

σ̂2
0 = σ2

min/(n− m)
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2. The EIV-Model with singular covariance matrices, rk[A | Q1] = n

The EIV-Model with singular covariance matrices, rk[A | Q1] = n

I Assume that Qy and/or QA are singular, which may have an effect on the unique
solvability of Fang’s normal equation system:

[
Q1 (A− ẼA)

(A− ẼA)T 0

] [
λ̂

ξ̂

]
=

[
y− ẼAξ̂

0

]
, vec ẼA = ẽA = −QA(ξ̂ ⊗ λ̂);

I Since the Least-Squares approach within an iteratively linearized Gauss-Helmert
Model generates the same solution(s), the Neitzel-Schaffrin (2013) criterion can
be applied to the EIV-Model accordingly in order to ensure the uniqueness of the
TLS solution. In this case, the criterion to be checked reads:

n = rk
[
BQ | A

]
= rk(BQBT + ASAT) =

= rk(Q1 + ASAT) =: rk Q2 for B :=
[
In | −(ξ ⊗ In)

T].
Here, S is a suitably chosen symmetric positive-definite matrix (which may have
an impact on the convergence speed of an iterative solver).
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2. The EIV-Model with singular covariance matrices, rk[A | Q1] = n

Generalizing Fang (2011)

I The lower part of Fang’s normal equation system yields:

(A− ẼA)S(A− ẼA)T · λ̂ = 0

I After adding this to the upper part of Fang’s system:

Q3 · λ̂ :=
[
Q1 + (A− ẼA)S(A− ẼA)T] · λ̂ = (y− ẼA · ξ̂)− (A− ẼA) · ξ̂ = y− A · ξ̂ ⇒

⇒ 0 = (A− ẼA)T · λ̂ = (A− ẼA)T Q−1
3

[
(y− ẼA · ξ̂)− (A− ẼA) · ξ̂

]
⇒

⇒
ξ̂ = [(A− ẼA)T Q−1

3 (A− ẼA)]−1 · (A− ẼA)T Q−1
3 (y− ẼA · ξ̂)

with: λ̂ = Q−1
3 (y− Aξ̂) and: vec ẼA = ẽA = −QA · (ξ̂ ⊗ λ̂)

provided that Q3 := Q1 + (A− ẼA)S(A− ẼA)T remains nonsingular,
rk Q3 = rk Q2 = n.

I Iteration is required! After convergence:

σ̂2
0 = TSSR/(n− m) = (n− m)−1 · λ̂T(y− Aξ̂)

I Without proof: D̂{ξ̂} ≈ σ̂2
0 ·
{[

(A− ẼA)T Q−1
3 (A− ẼA)

]−1 − S
}

as first order

approximation.
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2. The EIV-Model with singular covariance matrices, rk[A | Q1] = n

Generalizing Mahboub (2012)

I Without detailed proof, the TLS solution can be obtained from:

ξ̂ = (AT Q−1
2 A + R2)

−1 · AT Q−1
2 y

with: Q2 : = Q1 + ASAT = Q2(ξ̂), rk Q2 = n,

R2 : = −(Im − AT Q−1
2 AS) ·

[
(Im ⊗ λ̂)T QA(Im ⊗ λ̂)

]
= R2(ξ̂, λ̂),

and: λ̂ = [Q2 + (AS⊗ λ̂T)QA(ξ̂ ⊗ In)]
−1 · (y− Aξ̂) =

=
[
Q2 + AS · (Im ⊗ λ̂T)QA(ξ̂ ⊗ In)]

−1 · (y− Aξ̂)

⇒ λ̂ = (Q2 + AS · R1)
−1 · (y− Aξ̂)

with: R1 := (Im ⊗ λ̂)T QA(ξ̂ ⊗ In) = R1(ξ̂, λ̂)

I Iteration is required! After convergence:

σ̂2
0 = TSSR/(n− m) = (n− m)−1 · λ̂T(y− Aξ̂)

I Iteratively: D̂{ξ̂} ≈ σ̂2
0(AT Q−1

2 A + R2)
−1 · AT Q−1

2 · Qy · Q−1
2 A · (AT Q−1

2 A + RT
2 )−1

as first order approximation.
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3. The new family of weighted TLS algorithms

The new family of weighted TLS algorithms I

(i) Assuming that C{ey, eA} = 0 (as so far)
I From the generalized Mahboub algorithm:

AT Q−1
2 (y− Aξ̂) = R2 · ξ̂ = (AT Q−1

2 AS− Im) ·
[
(Im ⊗ λ̂)T QA(Im ⊗ λ̂)

]
· ξ̂

⇒
AT Q−1

2

[
y− AS · (Im ⊗ λ̂)T QA(Im ⊗ λ̂) · ξ̂

]
=

=
[
AT Q−1

2 A− (Im ⊗ λ̂)T QA(Im ⊗ λ̂)
]
· ξ̂

to be solved iteratively in conjunction with(
Q2 + AS · R1

)
· λ̂ =

[
Q2 + AS · (Im ⊗ λ̂)T QA(ξ̂ ⊗ In)

]
· λ̂ = y− Aξ̂

I Variance component estimate:

σ̂2
0 = TSSR/(n− m) = (n− m)−1 · λ̂T(y− Aξ̂)

I No new formula for the estimated dispersion matrix D̂{ξ̂} yet.
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3. The new family of weighted TLS algorithms

The new family of weighted TLS algorithms II

(ii) In case of non-negligible cross-covariances, C{ey, eA} = σ2
0QyA 6= 0

I From Snow (2012, §3.2), for Z := (Im ⊗ λ̂)T QyA:

(A− Z)T(Q′2)
−1(y− Aξ̂) = R′2 · ξ̂ =

=
[
(A− Z)T(Q′2)

−1(A− Z)S− Im
]
·
[
(Im ⊗ λ̂)T QA(Im ⊗ λ̂)

]
· ξ̂

where Q′2 := Q′1 + (A− Z)S(A− Z)T

and Q′1 := Q1 − QyA(ξ̂ ⊗ In)− (ξ̂ ⊗ In)
T QAy

⇒
(A− Z)T(Q′2)−1[

(y− Zξ̂)− (A− Z)S · (Im ⊗ λ̂)T QA(Im ⊗ λ̂) · ξ̂
]

=

=
[
(A− Z)T(Q′2)−1

(A− Z)− (Im ⊗ λ̂)T QA(Im ⊗ λ̂)
]
· ξ̂

to be solved iteratively in conjunction with[
Q′2 + (A− Z)S·R1

]
·λ̂ =

[
Q′2 + (A− Z)S·(Im ⊗ λ̂)T QA(ξ̂ ⊗ In)

]
·λ̂ = (y− Zξ̂)− (A− Z)ξ̂

I Variance component estimate:

σ̂2
0 = TSSR/(n− m) = (n− m)−1·λ̂T[(y− Zξ̂)− (A− Z)ξ̂

]
= (n− m)−1·λ̂T(y− Aξ̂)
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3. The new family of weighted TLS algorithms

New algorithmic scheme

New algorithm (suggested):
Step 1: Compute an initial solution

ξ̂(0) := N+c for
[
N | c

]
:= AT Q+

y
[
A | y

]
, λ̂(0) = Q+

y
(
y− Aξ̂(0)),

Step 2: For i ∈ N and a chosen matrix S, compute

Z(i) =
(
Im ⊗ λ̂(i−1))T QyA,

Q′(i)
1 = Qy+

(
ξ̂(i−1) ⊗ In

)T QA
(
ξ̂(i−1) ⊗ In

)
− QyA

(
ξ̂(i−1) ⊗ In

)
−
(
ξ̂(i−1) ⊗ In

)T QAy,

Q′(i)
2 = Q′(i)

1 + (A− Z(i))S(A− Z(i))T ,

R(i)
1 =

(
Im ⊗ λ̂(i−1))T QA

(
ξ̂(i−1) ⊗ In

)
,

λ̂(i) =
[
Q′(i)

2 + (A− Z(i))S · R(i)
1

]−1 ·
(
y− Aξ̂(i−1)),

ξ̂(i) =
[
(A− Z(i))T(Q′(i)

2

)−1
(A− Z(i))−

(
Im ⊗ λ̂(i))T QA

(
Im ⊗ λ̂(i))]−1·

·(A−Z(i))T(Q′(i)
2

)−1·
[(

y−Z(i)ξ̂(i−1))−(A− Z(i))T S·(Im ⊗ λ̂(i))T QA(Im ⊗ λ̂(i))·ξ̂(i−1)]
Step 3: Stop when

∥∥λ̂(i) − λ̂(i−1)
∥∥ < δ and

∥∥ξ̂(i) − ξ̂(i−1)
∥∥ < δ for a chosen threshold

δ; then compute
σ̂2

0 = (n− m)−1 · λ̂T(y− Aξ̂).
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4. Conclusions and outlook

Conclusions and outlook

I The original Mahboub (2012) algorithm has been modified in such a way that, for
the computation of ξ̂, a symmetric system needs to be solved that has turned out
positive-definite so far.

I It is unclear, however, whether this matrix is necessarily nonnegative-definite (if
not positive-definite).

I In the limited number of examples considered so far, the new algorithm proved
faster and more efficient than the original Mahboub algorithm.

I A more systematic comparison, that also includes the generalized version of
Fang’s (2011) algorithm, still needs to be completed.
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