Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

Mika Mattila Joint work with Pentti Haukkanen and Jori Mäntysalo

University of Tampere, School of Information Sciences

May 30, 2014

- 日本 不得 とうき とうせい 田

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# Basic assumptions and definitions

- Let  $S = \{x_1, x_2, \dots, x_n\}$  be a finite and GCD closed subset of  $\mathbb{Z}_+$  with  $x_1 < x_2 < \dots < x_n$ 
  - i.e.,  $gcd(x_i, x_j) \in S$  for all  $i, j \in \{1, 2, \dots, n\}$
- Let  $\alpha$  be a positive real number
- The  $n \times n$  matrix having  $(\gcd(x_i, x_j))^{\alpha}$  as its ij entry is the GCD matrix of the set S raised to the Hadamard power of  $\alpha$  (shortly power GCD matrix) and is denoted by  $(S)_{N^{\alpha}}$
- The  $n \times n$  matrix having  $(\operatorname{lcm}(x_i, x_j))^{\alpha}$  as its ij entry is the LCM matrix of the set S raised to the Hadamard power of  $\alpha$  (shortly power LCM matrix) and is denoted by  $[S]_{N^{\alpha}}$
- In the special case when  $\alpha = 1$  we obtain the usual GCD and LCM matrices of the set *S*, which are denoted by (*S*) and [*S*], respectively

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

#### Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# The Bourque-Ligh Conjecture

In 1992 Bourque and Ligh presented the following conjecture:

#### Conjecture

The LCM matrix of a GCD closed set S is always invertible.

Later it has been shown that

- ▶ The B-L-Conjecture holds for GCD closed sets S with less than 8 elements (i.e. the conjecture holds for  $n \le 7$ )
- For every n ≥ 8 there exists a GCD closed set S such that |S| = n and the LCM matrix [S] is singular (i.e. the conjecture does not hold generally for n ≥ 8)

This raises a couple of new questions:

- It is not sufficient to assume that the set S is GCD closed in order to guarantee the invertibility of the matrix [S], what further assumptions are needed?
- What conditions quarantee the invertibility of the power LCM matrix [S]<sub>N<sup>α</sup></sub> for all α > 0?

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

#### Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

Sufficient and necessary condition for singularity Since

$$[S]_{N^{\alpha}} = \operatorname{diag}(x_1^{\alpha}, \dots, x_n^{\alpha})(S)_{\frac{1}{N^{\alpha}}}\operatorname{diag}(x_1^{\alpha}, \dots, x_n^{\alpha}),$$

it follows that  $[S]_{N^{\alpha}}$  is singular if and only if  $(S)_{\frac{1}{N^{\alpha}}}$  is singular. Further, since the set S is GCD closed, we may define the function  $\Psi_{S,\frac{1}{N^{\alpha}}}$  on S as

$$\Psi_{S,\frac{1}{N^{\alpha}}}(x_i) = \sum_{x_k \mid x_i} \frac{\mu_S(x_k, x_i)}{x_k^{\alpha}}$$
(1.1)

くロト くぼと くまと くまと

By a well-known determinant formula we now have

$$\det(S)_{\frac{1}{N^{\alpha}}} = \Psi_{S,\frac{1}{N^{\alpha}}}(x_1)\Psi_{S,\frac{1}{N^{\alpha}}}(x_2)\cdots\Psi_{S,\frac{1}{N^{\alpha}}}(x_n).$$
(1.2)

Thus we may conclude the following result.

#### Proposition

The matrices  $[S]_{N^{\alpha}}$  and  $(S)_{\frac{1}{N^{\alpha}}}$  are both invertible if and only if  $\Psi_{S,\frac{1}{N^{\alpha}}}(x_i) \neq 0$  for all i = 1, ..., n.

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

#### Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# An auxiliary lemma

The following lemma is going to tell us something important about the zeros of the Möbius function of a finite meet semilattice.

#### Lemma

Let  $(L, \leq)$  be a finite meet semilattice,  $x \in L$  and  $C_L(x) = \{y \in L \mid x \text{ covers } y\}$ . Denote  $\xi_L(x) = \bigwedge C_L(x)$  if  $C_L(x) \neq \emptyset$  and  $\xi_L(x) = x$  if  $C_L(x) = \emptyset$ . If

$$z \notin \llbracket \xi_L(x), x \rrbracket \coloneqq \{ w \in L \mid \xi_L(x) \le w \le x \},\$$

then  $\mu_L(z, x) = 0$ .

#### Proof.

The proof is left as a cumbersome exercise (requires double induction: first on the size of  $C_L(x)$  and then on the size of the interval  $[\![z,\xi_{[\![z,x]\!]}(x)]\!]$ .

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

#### Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

Solutions for a couple of conjectures

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

# Conjecture on singularity of LCM matrices

It can be shown that if S is an odd GCD closed set with at most 8 elements, then the LCM matrix [S] is always nonsingular (an odd set is a set whose all elements are odd). Hong took this idea even further by presenting the following conjecture.

## Conjecture (Hong, J. Number Theory, 2005)

The LCM matrix [S] defined on any odd GCD closed set S is nonsingular.

However, this conjecture fails already when |S| = 9.

#### Theorem

The above conjecture does not hold.

### Proof.

Let us consider the odd set

$$\begin{split} S &= \{1,3,5,7,195,291,1407,4025,1020180525\} = \\ \{1,3,5,7,3\cdot 5\cdot 13,3\cdot 97,3\cdot 7\cdot 67,5^2\cdot 7\cdot 23,3\cdot 5^2\cdot 7\cdot 13\cdot 23\cdot 67\cdot 97\}. \end{split}$$

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

#### Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

We obtain

$$\Psi_{S,\frac{1}{N}}(1020180525)$$

$$=\frac{1}{1020180525}-\frac{1}{4025}-\frac{1}{1407}-\frac{1}{291}-\frac{1}{195}+\frac{1}{7}+\frac{1}{5}+\frac{2}{3}-1=0,$$
and thus the matrix [S] is singular.

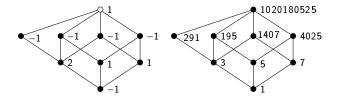


Figure: The Hasse diagram of the counterexample. The left figure shows the values  $\mu_S(x_i, x_9)$ , the right shows the respective elements of S.

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

#### Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# Odd singular numbers

A positive integer x is said to be a singular number if there exists a GCD closed set  $S = \{x_1, \ldots, x_n\}$ , where  $1 \le x_1 < \cdots < x_n = x$ , such that  $\Psi_{S,\frac{1}{N}}(x) = 0$ . Otherwise x is a nonsingular number. Moreover, x is a primitive singular number if x is singular and x' is nonsingular number for all  $x' | x, x' \ne x$ . Hong conjectured that there are infinitely many even primitive singular numbers. About odd primitive singular numbers he cojectured the following:

### Conjecture (Hong, J. Number Theory, 2005)

There does not exist an odd primitive singular number.

The earlier counterexample disproves also this conjecture.

#### Corollary

There exists an odd primitive singular number.

### Proof.

We know that 1020180525 is an odd singular number. If it is not primitive singular number itself, then it has a nontrivial factor which is an odd primitive singular number.

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

#### Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# The case with real exponent

So far we have been studying the singularity of the usual LCM matrices (with  $\alpha = 1$ ).

How much easier would it be to find semilattice structures which yield singular power LCM matrices, when the exponent  $\alpha$  is allowed to be any *positive real* number?

・ロト ・雪 ト ・ ヨ ト ・ 日 ト

ъ

We begin our study with two illustrative examples.

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# Example: chain semilattice

#### Example

Let  $L = \{z_1, z_2, \ldots, z_n\}$  be a chain with  $z_1 < z_2 < \cdots < z_n$ , let  $\alpha$  be any positive real number and let S be any set of positive integers such that  $(S, |) \cong (L, \leq)$ . Then we get

$$\Psi_{S,\frac{1}{N^{\alpha}}}(x_1) = \frac{\mu_S(x_1,x_1)}{x_1^{\alpha}} = \frac{1}{x_1^{\alpha}} > 0,$$

and for  $1 < i \le n$  we have

$$\Psi_{S,\frac{1}{N^{\alpha}}}(x_{i}) = \frac{1}{x_{i}^{\alpha}} - \frac{1}{x_{i-1}^{\alpha}} < 0.$$

Thus  $[S]_{N^{\alpha}} = [\operatorname{lcm}(x_i, x_j)^{\alpha}]$  is invertible for all  $\alpha > 0$ .



Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# Example: diamond semilattice

### Example

Let  $(L, \leq)$  be the four element diamond meet semilattice. Suppose that  $S = \{x_1, x_2, x_3, x_4\} = \{1, 3, 5, 45\}$ . Let  $\alpha$  be any positive real number. Applying (1.1) we obtain

$$\Psi_{\mathcal{S},\frac{1}{N^{\alpha}}}(1)=1, \quad \Psi_{\mathcal{S},\frac{1}{N^{\alpha}}}(3)=\frac{1}{3^{\alpha}}-1 \quad \text{and} \quad \Psi_{\mathcal{S},\frac{1}{N^{\alpha}}}(5)=\frac{1}{5^{\alpha}}-1,$$

which are all nonzero for all  $\alpha > 0$ . However,

$$\Psi_{S,\frac{1}{N^{\alpha}}}(45) = \frac{1}{45^{\alpha}} - \frac{1}{5^{\alpha}} - \frac{1}{3^{\alpha}} + 1,$$

which is negative for  $\alpha = \frac{1}{4}$  and positive for  $\alpha = 1$ . Since  $\Psi_{S,\frac{1}{N^{\alpha}}}(45)$  is a continuous function of variable  $\alpha$ , this function must have zero value for some positive  $\alpha_0$  (this  $\alpha_0$  is located approximately at 0.328594). It follows that the matrix  $[S]_{N^{\alpha_0}} = [[x_i, x_j]^{\alpha_0}]$  is singular. Thus the diamond structure does not possess the same property as chains were proven to have in our previous example.

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# Example: diamond semilattice

### Example

Although we just found one set S that yields a singular power LCM matrix for some positive real number  $\alpha$ , not every set of positive integers isomorphic to  $(L, \leq)$  has this property. To see this we only need to choose  $S' = \{x'_1, x'_2, x'_3, x'_4\} = \{1, 3, 5, 15\}$ . In this case we have

$$\Psi_{S',\frac{1}{N^{\alpha}}}(i) = \Psi_{S,\frac{1}{N^{\alpha}}}(i) \neq 0 \quad \text{for all } \alpha > 0 \text{ and for all } i = 1,2,3,$$

but also

$$\Psi_{S',\frac{1}{N^{\alpha}}}(15) = \frac{1}{15^{\alpha}} - \frac{1}{5^{\alpha}} - \frac{1}{3^{\alpha}} + 1 = \frac{1}{15^{\alpha}}(5^{\alpha} - 1)(3^{\alpha} - 1) \neq 0$$

for all  $\alpha > 0$ . This means that the power LCM matrix  $[S']_{N^{\alpha}} = [[x'_i, x'_j]^{\alpha}]$  is nonsingular for all  $\alpha > 0$ .



Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# A theorem on how to find singular power LCM matrices

Sometimes the lattice-theoretic structure of (S, |) alone tells us that the power LCM matrix of the set S is invertible for all  $\alpha > 0$ . On the other hand, in the remaining cases the information about the structure of (S, |) is inconclusive and does not reveal whether or not all the power LCM matrices of the set S are invertible. Our ultimate goal is to characterize all possible meet semilattices  $(L, \leq)$ , whose structure is strong enough to guarantee the invertibility of the power LCM matrix for all GCD closed set  $(S, |) \cong (L, \leq)$  and for all  $\alpha > 0$ .

#### Theorem

Let  $(L, \leq)$  be a meet semilattice with n elements. Assume that there exist elements  $x, y_1, \ldots, y_m$   $(m \geq 2)$  in L such that x covers  $y_1, \ldots, y_m$  and  $\mu_L(y, x) > 0$ , where  $y = y_1 \land \cdots \land y_m$ . Then there exists a set  $S = \{x_1, x_2, \ldots, x_n\}$  of positive integers and a positive real number  $\alpha_0$  such that  $(S, |) \cong (L, \leq)$  and the power LCM matrix  $[S]_{N^{\alpha_0}} = [[x_i, x_j]^{\alpha_0}]$  of the set S is singular. Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# The proof

Let us denote  $L = \{z_1, \ldots, z_n\}$ , where  $z_i \leq z_j \Rightarrow i \leq j$  (in particular,  $z_1 = \min L$ ). We begin by constructing a GCD closed set  $S' = \{x'_1, x'_2, \ldots, x'_n\}$  of positive integers such that  $(S', |) \cong (L, \leq)$ . Let  $p_2, p_3, \ldots, p_n$  be distinct prime numbers. We define  $x'_1 = 1$  and

$$x'_i = p_i \operatorname{lcm} \{x'_j \mid j < i \text{ and } z_j \leq z_i\} = \prod_{\substack{1 \leq j \leq i \\ z_j \leq z_i}} p_j$$

for  $1 < i \le n$ . It is easy to see that the set S' is both GCD closed and isomorphic to L (every element of S' is either 1 or a squarefree product of different primes). Now suppose that  $x'_i \in S'$  is an element such that it covers the elements  $x'_{i_1}, x'_{i_2}, \ldots, x'_{i_m} \in S'$  and  $\mu_{S'}(x'_k, x'_i) > 0$ , where  $x'_k = x'_{i_1} \land x'_{i_2} \land \cdots \land x'_{i_m}$ . Let r be an arbitrary positive integer. Now let  $S(r) = \{x_1, x_2, \ldots, x_n\}$ , where

$$x_j = \begin{cases} x_j' & \text{if } x_i' + x_j', \\ p_i^r x_j' & \text{if } x_i' \mid x_j'. \end{cases}$$

Clearly  $(S(r), |) \cong (S', |) \cong (L, \leq)$ .

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

Let *i* be as fixed above. Then  $x_i = p_i^r x_i'$ . Let *r* be sufficiently large (to be specified later). We define the function  $h_{i,r} : \mathbb{R} \to \mathbb{R}$  by

$$h_{i,r}(\alpha) = \Psi_{\mathcal{S}(r),\frac{1}{N^{\alpha}}}(x_i) = \sum_{j=1}^{i} \frac{\mu_{\mathcal{S}(r)}(x_j,x_i)}{x_j^{\alpha}}.$$

By Lemma we know that  $\mu_{S(r)}(x_j, x_i) = 0$  for all  $x_j \notin [x_k, x_i]$ . Thus the function  $h_{i,r}$  comes to the form

$$\begin{split} h_{i,r}(\alpha) &= \sum_{x_k \mid x_j \mid x_i} \frac{\mu_{\mathcal{S}(r)}(x_j, x_i)}{x_j^{\alpha}} = \frac{1}{x_k^{\alpha}} \sum_{a \mid \frac{x_i}{x_k}} \frac{\mu_{\mathcal{S}(r)}(ax_k, x_i)}{a^{\alpha}} \\ &= \frac{1}{x_k^{\alpha}} \left( \mu_{\mathcal{S}(r)}(x_k, x_i) + \sum_{1 \neq a \mid \frac{x_i}{x_k}} \frac{\mu_{\mathcal{S}(r)}(ax_k, x_i)}{a^{\alpha}} \right). \end{split}$$

We are going to show that the factor on the right goes to zero for some  $\alpha$ .

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

Solutions for a couple of conjectures

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ・ うへぐ

We have

$$\lim_{\alpha \to \infty} (x_k^{\alpha}(h_{i,r}(\alpha)) = \mu_{S(r)}(x_k, x_i) + \lim_{\alpha \to \infty} \sum_{1 \neq a \mid \frac{x_i}{x_k}} \underbrace{\frac{\mu_{S(r)}(ax_k, x_i)}{a^{\alpha}}}_{\to 0 \text{ as } \alpha \to \infty}$$

$$= \mu_{\mathcal{S}(r)}(x_k, x_i) > 0.$$

The definition of the Möbius function  $\mu_{S(r)}$  implies that

$$x_{k}^{0}(h_{i,r}(0)) = \sum_{x_{k}|x_{j}|x_{i}} \mu_{S(r)}(x_{j}, x_{i}) = \delta_{S(r)}(x_{k}, x_{i}) = 0,$$

since  $x_k \neq x_i$ . In addition,

$$\frac{d(x_k^{\alpha}h_{i,r}(\alpha))}{d\alpha} = \sum_{1\neq a \mid \frac{x_i}{x_k}} -\log(a)\frac{\mu_{S(r)}(ax_k, x_i)}{a^{\alpha}}$$
$$= \left(\sum_{\substack{a \mid \frac{x_i}{x_k}\\a\neq 1, \frac{x_i}{x_k}}} -\log(a)\frac{\mu_{S(r)}(ax_k, x_i)}{a^{\alpha}}\right) - r\log(p_i)\log\left(\frac{x_i'}{x_k}\right)\frac{\mu_{S(r)}(x_i, x_i)}{\left(\frac{x_i}{x_k}\right)^{\alpha}}.$$

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

Thus when the integer r is sufficiently large, we have

$$\frac{d(x_k^{\alpha}h_{i,r}(\alpha))}{d\alpha}(0) = \sum_{\substack{a \mid \frac{x_i}{x_k} \\ a \neq 1, \frac{x_i}{x_k}}} -\log(a)\mu_{S(r)}(ax_k, x_i)$$
$$-r\log(p_i) \underbrace{\log\left(\frac{x_i'}{x_k}\right)}_{>0} \underbrace{\mu_{S(r)}(x_k, x_i)}_{>0} < 0.$$

Thus the function  $x_k^{\alpha}h_{i,r}(\alpha)$  obtains negative values for some positive  $\alpha$ . In addition,  $x_k^{\alpha}h_{i,r}(\alpha)$  is continuous. Now it follows from Bolzano's Theorem that there exists  $\alpha_0 \in ]0, \infty[$  such that  $x_k^{\alpha_0}h_{i,r}(\alpha_0) = 0$  and therefore  $h_{i,r}(\alpha_0) = \Psi_{S(r),\frac{1}{M^{\alpha}}}(x_i) = 0$ . Proposition now implies the matrix  $[S(r)]_{N^{\alpha_0}}$  has to be singular.

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

A characterization for the class of meet semilattices which yield singular power LCM matrices

#### Theorem

Let  $(L, \leq)$  be a meet semilattice with *n* elements, where  $L = \{z_1, z_2, ..., z_n\}$ . Then the following conditions are equivalent:

- 1. The LCM matrix  $([x_i, x_j]^{\alpha})$  is nonsingular for all  $\alpha > 0$  and for all sets  $S = \{x_1, x_2, \dots, x_n\} \subset \mathbb{Z}^+$  such that  $(S, |) \cong (L, \leq)$ .
- 2. L is ∧-tree set (i.e. every element covers at most one element).

3. For all 
$$z_i, z_j \in L : (\mu_L(z_i, z_j) > 0 \Rightarrow z_i = z_j)$$
.

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# The proof

(1)  $\Rightarrow$  (2) First we assume Condition 1. Suppose for a contradiction that some element of *L* covers more than one element. Suppose that  $z_i$  is minimal element such that it covers elements  $z_{i_1}, \ldots, z_{i_k} \in L$ , where  $k \ge 2$ . Let  $z_r = z_{i_1} \land \cdots \land z_{i_k}$ . If  $\mu_L(z_r, z_i) > 0$ , then the previous theorem would imply that the matrix  $([x_i, x_j]^{\alpha})$  is singular for some  $\alpha > 0$  and  $S \subset \mathbb{Z}_+$ , where  $(S, |) \cong (L, \le)$ . Thus we must have

$$\mu_L(z_r,z_i) = -\sum_{z_r \leq z_j < z_i} \mu_L(z_r,z_j) \leq 0$$

Let  $z_{l_1}, \ldots, z_{l_m} \in [\![z_r, z_i]\!]$  be the elements that cover  $z_r$ . Here  $m \ge 2$ , since otherwise we would have  $z_{l_1} \le z_{i_1}, \ldots, z_{i_k}$  and further  $z_r < z_{l_1} \le z_{i_1} \land \cdots \land z_{i_k}$ . So we know that the terms  $\mu_L(z_r, z_{l_1}), \ldots, \mu_L(z_r, z_{l_m})$  appear in the nonnegative sum

$$0 \leq \sum_{z_r \leq z_j < z_i} \mu_L(z_r, z_j)$$
  
=  $\mu_L(z_r, z_r) + \mu_L(z_r, z_{l_1}) + \dots + \mu_L(z_r, z_{l_m}) + \sum_{z_{l_1}, \dots, z_{l_m} < z_j < z_i} \mu_L(z_r, z_j)$   
=  $1 - m + \sum_{z_{l_1}, \dots, z_{l_m} < z_j < z_i} \mu_L(z_r, z_j).$ 

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

Therefore there exists  $z_j > z_r$  such that  $\mu_L(z_r, z_j) > 0$ . This means that  $z_j$  needs to cover more than one element (otherwise we would have  $\mu_L(z_r, z_j) = -1$  or  $\mu_L(z_r, z_j) = 0$  by Lemma). This is a contradiction, since  $z_i$  was supposed to be minimal element such that it covers at least two elements (and here  $z_j < z_i$ ). Thus condition (2) has to hold.

The implications  $(2) \Rightarrow (3)$  and  $(3) \Rightarrow (1)$  are straightforward.

(日本)(四本)(日本)(日本)

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# Fatal consequences of our work

It now follows that also these conjectures by Hong are false:

## Conjecture (Hong, J. Algebra, 2004)

Let  $\alpha \neq 0$  and let  $S = \{x_1, \ldots, x_n\}$  be an odd-gcd-closed set. Then the matrix  $[[x_i, x_j]^{\alpha}]$  is nonsingular.

### Conjecture (Hong, J. Algebra, 2004)

Let  $\alpha \neq 0$  and let  $S = \{x_1, \ldots, x_n\}$  be an odd-lcm-closed set. Then the matrix  $[[x_i, x_j]^{\alpha}]$  is nonsingular.

## Conjecture (Hong, J. Algebra, 2004)

Let  $S = \{x_1, ..., x_n\}$  be an odd-gcd-closed set and f a completely multiplicative function. If f is strictly monotonous, then the matrix  $[f[x_i, x_j]]$  is nonsingular.

### Conjecture (Hong, J. Algebra, 2004)

Let  $S = \{x_1, ..., x_n\}$  be an odd-lcm-closed set and f a completely multiplicative function. If f is strictly monotonous, then the matrix  $[f[x_i, x_j]]$  is nonsingular.

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

# Thank you for your attention!!!

Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions

M. Mattila

Introduction

On the zeros of the Möbius function of a semilattice

Singularity of the usual LCM matrices

Lattice-theoretic approach to singularity of power LCM matrices with real exponent

Solutions for a couple of conjectures

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで