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Introducing Paratransitivity

Transitivity

Until further notice, V will stand for a finite-dimensional Complex

vector space of dimension at least 3, and L(V) will be the algebra

of the linear transformations on V .

Definition
A subalgebra A of L(V) is said to be transitive if for every non-zero x :

Ax = V .
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Introducing Paratransitivity

Transitivity

TFAE for a subalgebra A of L(V):
1 A is transitive;

2 A has no non-trivial (i.e. non-{0}, non-V) invariant subspaces;

3 For every non-zero x and any y ∈ V , there is some A ∈ A such

that

Ax = y ;

4 For every pair of one-dimensional subspaces X and Y , there is

some A ∈ A such that

AX = Y ; (equivalently : AX ∩ Y 6= {0});
5 A = L(V).
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Introducing Paratransitivity

Paratransitivity

Definition
A subalgebra A of L(V) is said to be (k ,m)-transitive if

for every k -dimensional subspace X and

every m-dimensional subspace Y of V :

AX ∩ Y 6= {0}.

The notion of (1,1)-transitivity is therefore the usual notion of

transitivity for algebras.
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Introducing Paratransitivity

First Observations

1 A is (k ,m)-transitive⇐⇒ A maps subspaces of dimension k or

larger to subspaces of co-dimension smaller than m;

2 A is (k ,m)-transitive⇐⇒ for every k -dimensional subspace X of

V and every m-dimensional subspace Y of V#: bAX ,Ye 6= {0};

3 A is (k ,m)-transitive⇐⇒ every k -dimensional subspace X of V
and every m-dimensional subspace Y of V : 〈AX ,Y〉 6= {0}; ↓a

a Independent of the choice of the inner product on V .
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Introducing Paratransitivity

First Observations (continued);

i.e. Second Observations

1 A is (k ,m)-transitive⇐⇒ A# is (m, k)-transitive; ↓a

2 A is (k ,m)-transitive⇐⇒ A∗ is (m, k)-transitive; ↓b↓c

a { }# indicates Banach adjoint.
b { }∗ indicates Hilbert adjoint.
c Independent of the choice of the inner product on V .
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Introducing Paratransitivity

Convenient Notation

Notation
When 1 ≤ k ,p ≤ dimV , let us write A〈k〉 = 〈p〉, to indicate that

dim(AW) = p wheneverW is a k -dimensional subspace of V .

The notation such as “A〈k〉 ≤ 〈p〉” and “A〈k〉 ≥ 〈p〉” is now

self-explanatory.

Note that A is (k ,m)-transitive if and only if

A〈k〉 ≥ 〈dimV −m + 1〉,

or equivalently

A〈k〉 > 〈dimV −m〉.
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Introducing Paratransitivity

“The Usual Suspects”

Theorem
IfW , Z are subspaces of V such that

1 dim(Z) = k − 1;

2 codim(W) = m− 1;

then the algebra A of all those linear transformations on V which map

V intoW , and vanish on Z , is a (k ,m)-transitive subalgebra of L(V).

Terminology

The algebras of the type described in this theorem shall be denoted by

A(Z ;W) and referred to as “the usual suspects”.
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Introducing Paratransitivity

Minimality

Definition
A (k ,m)-transitive subalgebra A of L(V) is minimal (k ,m)-transitive

if it contains no proper (k ,m)-transitive subalgebras.

By the dimensionality considerations, every (k ,m)-transitive

subalgebra of L(V) contains a minimal (k ,m)-transitive subalgebra of

L(V).

Since (k ,m)-transitivity obviously passes from subalgebras to the

algebras, minimal (k ,m)-transitive subalgebras of L(V) are the

objects of our primary interest.
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Introducing Paratransitivity

The Minimal Usual Suspects

Theorem
IfW , Z are subspaces of V such that

1 dim(Z) = k − 1;

2 codim(W) = m− 1;

then A(Z ;W) is minimal (k ,m)-transitive if and only if at least one of

the following holds:

co-dim(Z) = 1; (i.e. dim(V) = k)

dim(W) = 1; (i.e. dim(V) = m)

W is not a subspace of Z ; (i.e. A(Z ;W) is not nilpotent of order 2).
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Introducing Paratransitivity

◦¬: [=⇒]

IfW is a subspace of Z , where dim(W) > 1, co-dim(Z) > 1, write

Z =W ⊕X , and V = Z ⊕Y .

Let S be a proper transitive subspace of L(Y ,W).2

Then the proper subalgebra

[
0 S
0 0

]
of A(Z ;W) is (k ,m)-transitive.

2 It is known that L(Y ,W) has transitive subspaces of any dimension greater than or equal to
dim(Y) + dim(W)− 1, and so proper such subspaces when dim(Y) 6= 1 and dim(W) 6= 1.
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Exploring (1,d)-Transitivity

Will assume 1 ≤ d < dim(V)

It is easy to see that a subalgebra A of L(V) is (1,dim(V))-transitive if

and only if it has a trivial common kernel.

From now on we implicitely restrict our attention to the case

1 ≤ d < dim(V).

We shall also switch between linear transformational and matricial

points of view with impunity.
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Exploring (1,d)-Transitivity

(1,d)-Transitivity

The following are equivalent for a subalgebra A of L(V):

1 A is (1,d)-transitive;

2 For every x 6= 0: co-dim(Ax) < d .

3 Every non-trivial invariant subspace of A has co-dimension less

than d ; (i.e. A has no small non-trivial invariant subspaces);

4 For every x 6= 0:

either co-dim(Rad(A)x) < d or co-dim(WFac(A)x) < d . ↓f

f WFac(A) is an algebra such that A = WFac(A)uRad(A)
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Essential Tools Wedderburn-Malcev

Wedderburn’s Principal Theorem

Wedderburn’s Principal (Decomposition) Theorem [1908];

(restricted to our setting).

Every subalgebra A of L(V) can be written as an internal direct sum of

its nil radical and a semi-simple algebra; A = S uRad(A).

Terminology

A decomposition of a subalgebra A of L(V) into an internal direct sum

SuRad(A) is said to be a “ Wedderburn principal decomposition”

of A, and the necessarily semi-simple algebra S is said to be a

“Wedderburn factor” of A.
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Essential Tools Wedderburn-Malcev

Malcev’s Addendum

Malcev’s addendum [1942]; (restricted to our setting).

If S and S ′ are two Wedderburn factors of A in L(V), then

S ′ = (I −N)−1S(I −N) for some N ∈ Rad(A).
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Essential Tools Block-Upper-4 Forms of Matrix Algebras

Block-Upper-4 Forms

Up to similarity, every subalgebra A of Mn(C) has a simultaneous

block-upper-4 form, such that each Aii is either a full matrix algebra or

{O1×1}.

A =



�11 � � � . . . �

0 �22 � � . . . �

0 0 �33 � . . . �

0 0 0 �44 . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . �kk


Aii

def
= { Aii | A ∈ A } = Mni (C) or {01×1}.
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Essential Tools Block-Upper-4 Forms of Matrix Algebras

Block-Upper-4 Forms

Definition
Let us call this a maximal block-upper-4 form of A.

A =



�11 � � � . . . �

0 �22 � � . . . �

0 0 �33 � . . . �

0 0 0 �44 . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . �kk


Aii

def
= { Aii | A ∈ A } = Mni (C) or {01×1}.
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Essential Tools Block-Upper-4 Forms of Matrix Algebras

µ(A)

Notation
A maximal block-upper-4 form may not be unique, but the number k

of the blocks on the block-diagonal is an intrinsic property of A.

Let us denote this k by µ(A).



�11 � � � . . . �

0 �22 � � . . . �

0 0 �33 � . . . �

0 0 0 �44 . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . �
µ(A)µ(A)


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Essential Tools Block-Upper-4 Forms of Matrix Algebras

Nil Radical

Since irreducible matrix algebras are simple, when A is in a maximal

block-upper-4 form, the nil radical Rad(A) is exactly the subalgebra

of all strictly block-upper-4 matrices in A.

Rad(A) =



0
(1) � � � . . . �

0 0
(2) � � . . . �

0 0 0
(3) � . . . �

0 0 0 0
(4) . . . �

...
...

...
...

. . .
...

0 0 0 0 . . . 0
(µ(A))


In particular

(
Rad(A)

)µ(A)

= {0n×n}.
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Essential Tools Unhinged Block-Upper-4 Matrix Algebras

“Unhinged” Block-Upper-4 form

Terminology

A block-upper-4 subalgebra of Mn(C) is unhinged if the algebra is

an internal direct sum of its block-diagonal subalgebra and its strictly

block-upper-4 subalgebra.



�11 0 0 . . . 0

0 �22 0 . . . 0

0 0 �33 . . . 0
...

...
...

. . .
...

0 0 0 . . . �
µ(A)µ(A)


u



0 � � . . . �

0 0 � . . . �

0 0 0 . . . �
...

...
...

. . .
...

0 0 0 . . . 0


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Essential Tools Unhinged Block-Upper-4 Matrix Algebras

If A has an unhinged maximal block-upper-4 form, then it is clear that

the block diagonal subalgebra is a Wedderburn factor of A, and the

strictly block-upper-4 subalgebra is the nil radical of A.



�11 0 0 . . . 0

0 �22 0 . . . 0

0 0 �33 . . . 0
...

...
...

. . .
...

0 0 0 . . . �
µ(A)µ(A)


u



0 � � . . . �

0 0 � . . . �

0 0 0 . . . �
...

...
...

. . .
...

0 0 0 . . . 0


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Essential Tools Can We Always Unhinge the Block-Diagonal?

“A Natural Question”

Question
Given a matrix algebra A in a maximal block-upper-4 form, is it always

possible to unhinge A without “messing up” the underlying spatial

decomposition; i.e. via an application of a block-upper-4 similarity?
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Essential Tools Cleaning Up the Block-Diagonal

Barker-Eifler-Kezlan Theorem [1978]

(conjectured by H. Schneider)

Up to similarity, every subalgebra A in Mn(C) has a maximal

block-upper-4 form such that the non-zero block-diagonal positions

are either “ linked” or “independent”.

A ∼





A � � � . . . �

0 B � � . . . �

0 0 0 � . . . �

0 0 0 B . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . A






⊃





I � � � . . . �

0 0 � � . . . �

0 0 0 � . . . �

0 0 0 0 . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . I






Let us call this a maximal grouped block-upper-4 form of A.
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Essential Tools Cleaning Up the Block-Diagonal

J. F. Watters [1980]

Given a subalgebra A of Mn(F) in a maximal block-upper-4 form,

after some block-diagonal similarity one will arrive at an algebra in a

maximal grouped block-upper-4 form.

A ∼





A � � � . . . �

0 B � � . . . �

0 0 0 � . . . �

0 0 0 B . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . A






⊃





I � � � . . . �

0 0 � � . . . �

0 0 0 � . . . �

0 0 0 0 . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . I






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Essential Tools Cleaning Up the Block-Diagonal

Furthermore, the block-diagonal of a maximal grouped block-upper-4
form is fairly unique: if two such forms are similar, then (up to a

block-diagonal similarity) the block-diagonal blocks are simply being

permuted.

A ∼





A � � � . . . �

0 B � � . . . �

0 0 0 � . . . �

0 0 0 B . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . A




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⊃





I � � � . . . �

0 0 � � . . . �

0 0 0 � . . . �

0 0 0 0 . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . I






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Essential Tools Unhinging Semi-Simple Matrix Algebras

The answer to the “Natural Question” is affirmative

when A is semi-simple.

Theorem
Given a semi-simple subalgebra A of Mn(F) in a maximal

block-upper-4 form, there is a block-upper-4 similarity which

implements the compression to the block-diagonal of A;

i.e. there is an invertible block-upper-4 T such that

T−1AT = BlockDiag(A), for all A ∈ A
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Essential Tools Spatial Versions of Wedderburn’s Theorems

Spatial Wedderburn Decomposition of Semi-Simple Matrix Algebras

Of course, via Barker-Eifler-Kezlan-Watters’ theorem, we can insure

that the block-diagonal algebra BlockDiag(A) thus obtained has a

particularly simple grouped form.



A 0 0 0 . . . 0

0 B 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 B . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . A






⊃





I 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . I






At this point we can also use a block-permutation similarity to “shuffle”

the block-diagonal algebra so that the “linked” blocks become adjacent.
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Essential Tools Spatial Versions of Wedderburn’s Theorems

Spatial Wedderburn Decomposition of Semi-Simple Matrix Algebras

We have arrived at the following conclusion:

If A is a semi-simple subalgebra of Mn(C), then A is simulatneously

similar to an internal direct sum⊕
i

(
Mki (C)⊗ Ipi

)
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Essential Tools Spatial Versions of Wedderburn’s Theorems

Spatial Wedderburn Decomposition of Semi-Simple Matrix Algebras

In fact more is true:

If A is a semi-simple subalgebra of Mn(F), then there exist irreducible

division algebras Di of matrices over F, such that A is

simulatneously similar to an internal direct sum⊕
i

(
Mki (Di)⊗ Ipi

)
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Essential Tools Spatial Versions of Wedderburn’s Theorems

Spatial Wedderburn Decomposition of Semi-Simple Matrix Algebras

If A is a semi-simple subalgebra of Mn(F), then there exist irreducible

division algebras Di of matrices over F, such that A is

simulatneously similar to an internal direct sum⊕
i

(
Mki (Di)⊗ Ipi

)

Compare this to the classical theorem of Wedderburn which states that

a semi-simple finite-dimensional F-algebra A can be written, up to an

algebra isomorphism (and quite uniquely), as a direct sum of full matrix

algebras over division F-algebras.
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Essential Tools Spatial Versions of Wedderburn’s Theorems

Affirmative General Answer to the “Natural Question”

Theorem
Given a subalgebra A of Mn(C) in a maximal block-upper-4 form,

after some block-upper-4 similarity one will arrive at an algebra in an

unhinged maximal grouped block-upper-4 form.

Corollary

If S is any Wedderburn factor of a subalgebra A of Mn(C), then after

an appropriate change of basis, A sports an unhinged maximal

grouped block-upper-4 form, where the elements of S are exactly the

block-diagonal matrices.

These results are also true for algebras in a general field setting (but

there are some restrictions).

26



Essential Tools Spatial Versions of Wedderburn’s Theorems

Affirmative General Answer to the “Natural Question”

Theorem
Given a subalgebra A of Mn(C) in a maximal block-upper-4 form,

after some block-upper-4 similarity one will arrive at an algebra in an

unhinged maximal grouped block-upper-4 form.

Corollary

If S is any Wedderburn factor of a subalgebra A of Mn(C), then after

an appropriate change of basis, A sports an unhinged maximal

grouped block-upper-4 form, where the elements of S are exactly the

block-diagonal matrices.

These results are also true for algebras in a general field setting (but

there are some restrictions).
26



Essential Tools Spatial Versions of Wedderburn’s Theorems

A Neat Application

Recall that µ(A) stands for the number of blocks on the block-diagonal of any maximal

block-upper-4 form of a matrix algebra A, and that
(

Rad(A)
)µ(A)

= {0}.

Theorem
If F is algebraically closed, the following are equivalent for a

subalgebra A of Mn(F):

1

(
Rad(A)

)µ(A)−1

6= {0};

2 There is an element R ∈ Rad(A) such that R
µ(A)−1 6= 0.

In such a case, A is unicellular, i.e. the lattice of the invariant

subspaces of A is totally ordered by inclusion.
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Essential Tools Spatial Versions of Wedderburn’s Theorems

It is certainly known to the algebraists that the use of µ(A) is essential

in the result above. For example, consider the nilpotent algebra

A =




0 a b c

0 0 0 −b

0 0 0 a

0 0 0 0



∣∣∣∣∣∣∣∣∣∣∣
a,b, c ∈ C


.

It is clear that A3 = {0}, but A2 6= {0} since
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ◦


0 0 1 0

0 0 0 −1

0 0 0 0

0 0 0 0

 6= 0.

Yet it is easy to check that T 2 = 0 for every T ∈ A.
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(1,d)-Transitivity Two Essential Lemmas

Essential Lemma 1 (Back to (1,d)-Transitivity ...)

Lemma
If a minimal (1,d)-transitive subalgebra A of L(V) has a maximal

block-upper-4 form

�11 � � � . . . �

0 �22 � � . . . �

0 0 �33 � . . . �

0 0 0 �44 . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . �
µ(A)µ(A)


then

ni ≤ n− d + 1, for all i .
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(1,d)-Transitivity Two Essential Lemmas

Essential Lemma 1 (a different formulation)

Lemma
If a subalgebra A of L(V), minimal with respect to the property

A〈1〉 ≥ 〈p〉, is expressed in a maximal block-upper-4 form

�11 � � � . . . �

0 �22 � � . . . �

0 0 �33 � . . . �

0 0 0 �44 . . . �
...

...
...

...
. . .

...

0 0 0 0 . . . �
µ(A)µ(A)


then

ni ≤ p, for all i .
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(1,d)-Transitivity Two Essential Lemmas

Essential Lemma 2

Lemma
If A is a minimal (1,d)-transitive subalgebra of L(V), then the

invariant subspaces of co-dimension d − 1 are exactly the minimal

non-trivial invariant subspaces of A.

Consequently, there is an x such that

co-dim
(
Ax
)
= d − 1.
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(1,d)-Transitivity Two Essential Lemmas

Essential Lemma 2 (alternate formulation)

Lemma
If a subalgebra A of L(V) is minimal with respect to the property

A〈1〉 ≥ 〈p〉, then the invariant subspaces of dimension p are exactly

the minimal non-trivial invariant subspaces of A.

Consequently, there is an x such that

dim
(
Ax
)
= p.
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(1,d)-Transitivity Semi-Simple (1,d)-Transitive Matrix Algebras

Semi-Simple (1,d)-Transitive Matrix Algebras

If a subalgebra A of Mn(C) has a maximal block-diagonal form

�11 0 0 0 . . . 0

0 �22 0 0 . . . 0

0 0 �33 0 . . . 0

0 0 0 �44 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . �kk


,

then

A is (1,d)-transitive if and only if ni > n− d , for all i .
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(1,d)-Transitivity Semi-Simple (1,d)-Transitive Matrix Algebras

Semi-Simple (1,d)-Transitive Matrix Algebras

If a subalgebra A of Mn(C) has a maximal block-diagonal form

�11 0 0 0 . . . 0

0 �22 0 0 . . . 0

0 0 �33 0 . . . 0

0 0 0 �44 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . �kk


,

then

A〈1〉 ≥ 〈p〉 if and only if ni ≥ p, for all i .
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(1,d)-Transitivity Semi-Simple (1,d)-Transitive Matrix Algebras

Semi-Simple Minimal (1,d)-Transitive Algebras

Theorem
A subalgebra A of Mn(C) in a maximal grouped block-diagonal form is

minimal (1,d)-transitive ↓a if and only if d = n− n
k + 1 and

A =





A 0 0 0 . . . 0

0 A 0 0 . . . 0

0 0 A 0 . . . 0

0 0 0 A . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . A



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A ∈M n

k
(C)


= M n

k
(C)⊗ Ik

a 1 ≤ d < n
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(1,d)-Transitivity Semi-Simple (1,d)-Transitive Matrix Algebras

Semi-Simple Minimal (1,d)-Transitive Algebras

Theorem
A subalgebra A of Mn(C) in a maximal grouped block-diagonal form is

minimal with respect to the property A〈1〉 ≥ 〈p〉 if and only if

(1 6=) p|n and

A =





A 0 0 0 . . . 0

0 A 0 0 . . . 0

0 0 A 0 . . . 0

0 0 0 A . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . A



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A ∈Mp(C)


= Mp(C)⊗ In/p
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(1,d)-Transitivity Semi-Simple (1,d)-Transitive Matrix Algebras

i.e.

A minimal (1,d)-transitive subalgebra A of Mn(C) ↓a is semi-simple if

and only if d = n− n
k + 1 and A is simultaneously similar to

M n
k
(C)⊗ Ik .

a 1 ≤ d < n
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(1,d)-Transitivity Semi-Simple (1,d)-Transitive Matrix Algebras

i.e.
A semi-simple subalgebra A of Mn(C) is minimal with respect to the

property A〈1〉 ≥ 〈p〉 if and only if (1 6=) p|n and A is simultaneously

similar to Mp(C)⊗ In/p
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(1,d)-Transitivity Canonical Minimal (1,d)-Transitive Types

Canonical Minimal (1,d)-Transitive Types

Recall that we have seen one canonical type of a minimal

(1,d)-transitive matrix algebra so far:

“The Usual Suspects” type (not semi-simple)

A =

{ [
A B

0 0

] ∣∣∣∣∣ A ∈M
n−(d−1)

(C); B ∈M
(n−(d−1))×(d−1)

(C)

}
⊂Mn(C)

Of course these algebras are in a maximal block-upper-4 form, and

have a non-trivial nil radical.
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Canonical Minimal (1,d)-Transitive Types

“The Usual Suspects” type (not semi-simple)

A =

{ [
A B

0 0

] ∣∣∣∣∣ A ∈M
n−(d−1)

(C); B ∈M
(n−(d−1))×(d−1)

(C)

}
⊂Mn(C)

Now we also have a canonical semi-simple type:

“The New Kids on the Block (-Diagonal)” type (semi-simple)

d = 1 : A = Mn(C) (“smallest size”; Burnside’s)

d = n
2 + 1 : A = M n

2
(C)⊗ I2 (“just over half the size”)

d = 2n
3 + 1 : A = M n

3
(C)⊗ I3 (“just over two-thirds the size”)

etc.
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(1,d)-Transitivity “Para-Burnside’s” For “Smaller” d ’s.

“Para-Burnside’s” For “Smaller” d ’s.

Theorem

If d ≤
⌈ n

2

⌉
then the minimal (1,d)-transitive matrix algebras are

exactly “the usual suspects”.

Theorem
If d = n

2 + 1, then then the minimal (1,d)-transitive matrix algebras are

exactly “the usual suspects” and “the new kids on the block”:(
M n

2
(C)⊗ I2

)
.
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(1,d)-Transitivity “Para-Burnside’s” For “Smaller” d ’s.

“Para-Burnside’s” For “Smaller” d ’s.

Theorem

If p >
⌊ n

2

⌋
then the algebras minimal with respect to the property

A〈1〉 ≥ 〈p〉 are exactly “the usual suspects”.

Theorem
If p = n

2 then the algebras minimal with respect to the property

A〈1〉 ≥ 〈p〉 are exactly “the usual suspects” and “the new kids on the

block”:
(
Mp(C)⊗ I2

)
.
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(1,d)-Transitivity “Para-Burnside’s” For “Smaller” d ’s.

Still open:

What are the minimal (1,d)-transitive algebras for slightly bigger d ’s?
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(2,d)-Transitivity

Basic Observations
The following are equivalent for a subalgebra A of L(V) and

d ≤ dim(V):

1 A is (2,d)-transitive;

2 For every linearly independent pair x , y : co-dim(Ax +Ay) < d ;

3 Every non-trivial invariant subspace of A is either

one-dimensional or has co-dimension less than d .

Of course, every (1,d)-transitive algebra is automatically

(2,d)-transitive.

If d = dim(V) then A is (2,d)-transitive if and only if the common

kernel of A is at most 1-dimensional. So, again, we shall only

consider the case d ≤ dim(V)− 1 henceforth.
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(2,d)-Transitivity

An Essential Lemma

Unfortunately the direct analogues of the Essential Lemmas for

(1,d)-transitivity do not hold true for (2,d)-transitivity.

Fortunately there is still something we can say in this case.

Essential Lemma
If d < dim(V)− 1 then every (2,d)-transitive subalgebra of L(V) has

at most one 1-dimensional invariant subspace.

If d ≤
⌈

dim(V)
2

⌉
, then every minimal (2,d)-transitive subalgebra A of

L(V) has exactly one 1-dimensional invariant subspace.

i.e. if p >
⌊

dim(V)
2

⌋
then minimal A〈2〉 ≥ 〈p〉 algebras have exactly one

1-dimensional invariant subspace.
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(2,d)-Transitivity “Para-Burnside’s” for Smaller d ’s and Larger p’s

“Para-Burnside’s” for Smaller d ’s and Larger p’s

Theorem

If d ≤
⌊

dim(V)
2

⌋
, then the minimal (2,d)-transitive subalgebras of L(V)

are exactly “the usual suspects”.

In other words, for p >
⌈

dim(V)
2

⌉
, the minimal A〈2〉 ≥ 〈p〉 subalgebras

of L(V) are exactly the usual suspects.
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(2,d)-Transitivity Semi-Simple (2,d)-Transitive Algebras

Semi-Simple (2,d)-Transitive Algebras

Lemma (LL)
The following are equivalent for a semi-simple subalgebra A of

Mn(C):

1 A is (2,d)-transitive, but not (1,d)-transitive;

2 1 Case “d < n− 1”: A is simultaneously similar to either B ⊕ {01×1}
or to B ⊕CI1 , where B is a (1,d − 1)-transitive semi-simple

subalgebra of Mn−1(C); (i.e. B〈1〉 ≥ 〈n− d + 1〉) .

2 Case “d = n− 1”: A is simultaneously similar to either B ⊕ {01×1}
or to B ⊕CIn2

⊕ . . .⊕CInk
(k ≥ 2), where B is a (semi-simple)

algebra such that B〈1〉 ≥ 〈2〉, and it may be absent in the second

case.
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(2,d)-Transitivity Semi-Simple (2,d)-Transitive Algebras

Semi-Simple Minimal (2,d)-Transitive Algebras

Theorem (LL)

Up to similarity, the full list of the minimal (2,d)-transitive subalgebras
↓a that are semi-simple, is this:

minimal with respect to:

1. CIn A〈2〉 ≥ 〈2〉;
2.

(
M2(C)⊗ Ik

)
⊕ {0} A〈2〉 ≥ 〈2〉;

4. Mm(C)⊗ Ik 2 < m & 1 < k A〈2〉 ≥ 〈m〉;
5.

(
Mm(C)⊗ Ik

)
⊕ {0} 2 < m A〈2〉 ≥ 〈m〉;

a 1 ≤ d < n = the dimension of the underlying space, which is at least 3.
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(2,d)-Transitivity Semi-Simple (2,d)-Transitive Algebras

Still Open

What are the minimal (2,d)-transitive algebras for slightly bigger d ’s

(slightly smaller p’s)?
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Exact Paratransitivity

Exactly (k,m)-Transitive Algebras

For the rest of the talk, we shall include the case dimV = 2 in the

consideration.

We can completely classify the subalgebras A of L(V) such that:

1 A〈1〉 = 〈m〉;

2 A is minimal with respect to the property A〈2〉 = 〈m〉;

3 A is maximal with respect to the property A〈k〉 = 〈m〉;

4 A has the property A〈k〉 ≤ 〈m〉, where k ≥ m.
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Exact Paratransitivity

“The Exactly Usual Suspects”

Theorem
IfW , Z are subspaces of V such that

1 dim(Z) = k − 1;

2 dim(W) = m;

then the algebra A of all those linear transformations on V which map

V intoW , and vanish on Z , satisfies the condition

A〈k〉 = 〈m〉.

Terminology

The algebras of the type described in this theorem shall be denoted by

Ae(Z ;W) and referred to as “the exactly usual suspects”.
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Exact Paratransitivity

The Minimal Exactly Usual Suspects

Theorem
IfW , Z are subspaces of V such that

1 dim(Z) = k − 1;

2 dim(W) = m;

then Ae(Z ;W) is minimal such that A〈k〉 = 〈m〉 if and only if at least

one of the following holds:

dim(W) = 1; (i.e. m = 1)

W is not a subspace of Z ; (i.e. Ae(Z ;W) is not nilpotent of order 2).

Obviously the possibility of non-minimality only comes into play when

k > m > 1.
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Exact Paratransitivity

A〈1〉 = 〈m〉

Theorem
Subalgebras A of L(V) that satisfy

A〈1〉 = 〈m〉

are the exactly usual suspects,

except in the case m = 1, where the algebra CIV should be added to

the list.
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Exact Paratransitivity

Minimal A〈2〉 = 〈m〉, for m 6= 2

Theorem
For m 6= 2, the minimal A〈2〉 = 〈m〉 subalgebras of L(V) are (up to

similarity, of course) exactly the exactly usual suspects.
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Exact Paratransitivity

Minimal A〈2〉 = 〈2〉

Theorem
A subalgebra A of L(V) is minimal with respect to the condition

A〈2〉 = 〈2〉 if and only if it is (up to similarity, of course) one of the

following:

1 an exactly usual suspect;

2 CIV ;

3 A =

{ [
αIW T

0 0

] ∣∣∣∣∣ α ∈ C, T ∈ M
}
,

where dimV > 2 = dimW .

Here A is being expressed with respect to a decomposition V =W uZ ,

andM is a minimal transitive subspace of L(Z ,W).
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Exact Paratransitivity

Maximal A〈k〉 = 〈m〉

Theorem
Subalgebras A of L(V) that are maximal with respect to the property

A〈k〉 = 〈m〉

are exactly the algebras L(V ,W), whereW is an m-dimensional

subspace of V ,

except in the case m = k , where the algebra CIV should be added to

the list.

53



Exact Paratransitivity

A〈k〉 ≤ 〈m〉, where k ≥ m

Theorem
Given k ≥ m, the subalgebras A of L(V) that satisfy

A〈k〉 ≤ 〈m〉,

are exactly the subalgebras of the algebras L(V ,W) whereW is an

m-dimensional subspace of V ,

except in the case m = k where the algebras CE should be added to

the list, for all non-zero idempotents E .
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Exact Paratransitivity

Thanks for your attention!

Paratransitivity for Algebras of Linear

Transformations

Presented by Leo Livshits3

Colby College, Maine, USA

June 9, 2014

LAW 2014; Ljubljana, Slovenia

3Joint work with Gordon MacDonald, Laurent Marcoux and Heydar Radjavi
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