23rd International Workshop on Matrices and Statistics Faculty of Mathematics and Physics Ljubljana, Slovenia June 8–12, 2014

Using the Gram-Schmidt Construction to Develop Linear Models

Lynn R. LaMotte Louisiana State University Health Sciences Center New Orleans GS-plus

$$A=(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m)$$

GS, with one little addition, constructs Q, T, such that Q'Q = I, sp(Q) = sp(A), and Q = AT.

$$i$$
-th step: $\operatorname{sp}(Q_i) = \operatorname{sp}(\boldsymbol{a}_1, \dots, \boldsymbol{a}_i), \ Q_i' Q_i = \operatorname{I}, \ Q_i = AT_i$ $\boldsymbol{a}_{i+1} \in \operatorname{sp}(Q_i)$: $Q_{i+1} = Q_i, \ T_{i+1} = T_i, \ i \longrightarrow i+1$ $\boldsymbol{a}_{i+1} \notin \operatorname{sp}(Q_i)$:

$$\mathbf{q}_{i+1} = c_{i+1}(\mathbf{a}_{i+1} - Q_i Q_i' \mathbf{a}_{i+1})$$

$$= c_{i+1} A \mathbf{e}_{i+1} - c_{i+1} A T_i Q_i' \mathbf{a}_{i+1}$$

$$= A \underbrace{c_{i+1}(\mathbf{e}_{i+1} - T_i Q_i' \mathbf{a}_{i+1})]}_{t_{i+1}}$$

$$= A \mathbf{t}_{i+1}$$

 $Q_{i+1} = (Q_i, \boldsymbol{q}_{i+1}), T_{i+1} = (T_i, \boldsymbol{t}_{i+1})$

A sequence of easily-proven propositions leading to:

 \mathcal{S} is a linear subspace of $\Re^n \Longrightarrow \exists \ Q$ such that Q'Q = I and $\operatorname{sp}(Q) = \mathcal{S}$.

GS establishes that, for any non-zero $n \times m$ matrix A, there exists an $n \times \nu$ matrix Q such that sp(Q) = sp(A) and $Q'Q = I_{\nu}$.

Proposition 2

If
$$Q'Q = I_{\nu}$$
 then
(1) $\mathbf{z} \in \operatorname{sp}(Q) \iff QQ'\mathbf{z} = \mathbf{z};$ and
(2) $\operatorname{sp}(Q) = \operatorname{sp}(QQ').$

If Q and R are $n \times \nu$ and $n \times \eta$ matrices, respectively, such that $Q'Q = I_{\nu}$ and $R'R = I_{\eta}$, then

$$\operatorname{sp}(Q) \subset \operatorname{sp}(R)$$

 \iff

$$RR' - QQ' = (RR' - QQ')(RR' - QQ');$$

and

$$\operatorname{sp}(Q) = \operatorname{sp}(R) \iff RR' = QQ'.$$

Proof uses Prop. 2.

If
$$\operatorname{sp}(Q) \subset \operatorname{sp}(R)$$
 then $\eta \geq \nu$. If $\operatorname{sp}(Q) = \operatorname{sp}(R)$ then $\eta = \nu$.

Proof.
$$\operatorname{sp}(Q) \subset \operatorname{sp}(R) \Longrightarrow$$
, by Prop. 3,

$$(RR'-QQ')=(RR'-QQ')(RR'-QQ')$$

$$\Longrightarrow \operatorname{tr}(RR' - QQ') = \eta - \nu \ge 0.$$

$$\operatorname{sp}(Q) = \operatorname{sp}(R) \Longrightarrow RR' = QQ'$$
, by Prop. 3, \Longrightarrow $\operatorname{tr}(RR') = \eta = \operatorname{tr}(QQ') = \nu$.

If
$$\operatorname{sp}(Q) \subset \operatorname{sp}(R)$$
 and $\nu = \eta$ then $\operatorname{sp}(Q) = \operatorname{sp}(R)$.

Proof.
$$\operatorname{sp}(Q) \subset \operatorname{sp}(R) \Longrightarrow$$
, by Prop. 3,

$${\rm tr}[(RR'-QQ')(RR'-QQ')]={\rm tr}(RR'-QQ')=\eta-\nu=0$$

$$\Longrightarrow$$
 $RR' = QQ', \Longrightarrow$, by Prop. 2(2), $\operatorname{sp}(Q) = \operatorname{sp}(R)$.

If S is a linear subspace of \Re^n and $S \neq \{\mathbf{0}\}$, then there exists an $n \times \nu$ matrix Q such that $Q'Q = I_{\nu}$ and $\operatorname{sp}(Q) = S$.

Proof is sequential construction of Q_i with ν_i columns, similar to GS. It ends in at most n steps with $\operatorname{sp}(Q_i) = \mathcal{S}$ because $\operatorname{sp}(Q_i) \subset \operatorname{sp}(\operatorname{I}_n)$.

Let S be a non-trivial linear subspace of \Re^n , and let \mathbf{y} be an n-vector. There exists exactly one vector $\hat{\mathbf{y}}$ in S such that $\mathbf{y} - \hat{\mathbf{y}}$ is in S^{\perp} .

Proof.
$$\hat{\mathbf{y}} = QQ'\mathbf{y} \in \operatorname{sp}(Q) = \mathcal{S} \text{ and } Q'(\mathbf{y} - \hat{\mathbf{y}}) = \mathbf{0}.$$
 $\tilde{\mathbf{y}} \in \mathcal{S} \text{ and } Q'(\mathbf{y} - \tilde{\mathbf{y}}) = \mathbf{0} \Longrightarrow QQ'\tilde{\mathbf{y}} = \tilde{\mathbf{y}}, \text{ by Prop. 2(1)},$ $\Longrightarrow \mathbf{0} = QQ'(\mathbf{y} - \tilde{\mathbf{y}}) = \hat{\mathbf{y}} - \tilde{\mathbf{y}}.$

Let Q be an $n \times \nu$ matrix such that $Q'Q = I_{\nu}$, $\nu \geq 1$.

If P is an $n \times n$ matrix such that, for each $\mathbf{y} \in \Re^n$, $P\mathbf{y} \in \operatorname{sp}(Q)$ and $\mathbf{y} - P\mathbf{y} \in \operatorname{sp}(Q)^{\perp}$, then P = QQ'.

Definition 1

The orthogonal projection of $\mathbf{y} \in \mathbb{R}^n$ on a linear subspace \mathcal{S} of \mathbb{R}^n is the vector $\hat{\mathbf{y}} \in \mathcal{S}$ such that $\mathbf{y} - \hat{\mathbf{y}} \in \mathcal{S}^{\perp}$.

Let $\mathbf{P}_{\mathcal{S}}$ denote the matrix such that $\mathbf{P}_{\mathcal{S}} \mathbf{y} \in \mathcal{S}$ and $\mathbf{y} - \mathbf{P}_{\mathcal{S}} \mathbf{y} \in \mathcal{S}^{\perp} \ \forall \ \mathbf{y} \in \Re^{n}$.

Linear equations Ax = b

GS on
$$A \longrightarrow Q$$
, T such that $sp(Q) = sp(A)$, $Q'Q = I$, $Q = AT$.

Check consistency with $\mathbf{P}_{A}\mathbf{b} - \mathbf{b}$.

If $\mathbf{b} \in \operatorname{sp}(A)$, then $\mathbf{x}_* = TQ'\mathbf{b}$ is a solution.

$$\{\boldsymbol{x}: A\boldsymbol{x} = \boldsymbol{b}\} = \{\boldsymbol{x}_*\} + \operatorname{sp}(I - TQ'A)$$

GS on
$$A=(A_1,A_2)\longrightarrow Q=(Q_1,Q_2)$$
 $\operatorname{sp}(Q_1)=\operatorname{sp}(A_1)$ and $\operatorname{sp}(Q_2)=\operatorname{sp}(A)\cap\operatorname{sp}(A_1)^\perp.$ $Q_2Q_2'=\mathbf{P}_A-\mathbf{P}_{A_1}.$

Least Squares

Let S be a linear subspace of \Re^n and let \mathbf{m}_0 be a given n-vector.

Let
$$\mathcal{M} = \{ \boldsymbol{m}_0 \} + \mathcal{S}$$
.

Proposition 9

Let $\mathbf{y} \in \Re^n$.

$$\underset{\boldsymbol{m} \in \mathcal{M}}{\operatorname{argmin}}(\boldsymbol{y} - \boldsymbol{m})'(\boldsymbol{y} - \boldsymbol{m}) = \boldsymbol{m}_0 + \mathbf{P}_{\mathcal{S}}(\boldsymbol{y} - \boldsymbol{m}_0)$$

and

$$\min_{\boldsymbol{m}\in\mathcal{M}}(\boldsymbol{y}-\boldsymbol{m})'(\boldsymbol{y}-\boldsymbol{m})=(\boldsymbol{y}-\boldsymbol{m}_0)'(\mathrm{I}-\boldsymbol{P}_{\!\mathcal{S}})(\boldsymbol{y}-\boldsymbol{m}_0).$$

The Canonical Form of the Regression Model

$$E(\mathbf{Y}) = X\boldsymbol{\beta}, \text{ Var}(\mathbf{Y}) = \sigma^2 I,$$

with X a given $n \times (k+1)$ matrix and unknown parameters

$$\boldsymbol{\beta} \in \Re^{k+1}, \ \sigma^2 > 0.$$

The model for $\mu = \mathrm{E}(\mathbf{\textit{Y}})$ is $\mu \in \mathcal{M} = \mathrm{sp}(X)$.

Given a realization ${\bf y}$ of ${\bf Y}$, the objective is inference about the mean vector ${\bf \mu}$.

Basic LS Statistics

Given \mathbf{y} , the least-squares (LS) estimate of $\mu = X\beta$ is $\hat{\mathbf{y}} = \mathbf{P}_X \mathbf{y}$.

A *least-squares solution* for β is $\tilde{\boldsymbol{b}}$ such that $X\tilde{\boldsymbol{b}} = \mathbf{P}_X \boldsymbol{y}$. From GS on X, $\hat{\boldsymbol{b}} = TQ'\boldsymbol{y}$ is a LS solution.

$$\begin{split} SST &= \textbf{\textit{y}}'(I - \textbf{\textit{P}}_1)\textbf{\textit{y}} \\ SSR &= \textbf{\textit{y}}'(\textbf{\textit{P}}_X - \textbf{\textit{P}}_1)\textbf{\textit{y}} \\ SSE &= \textbf{\textit{y}}'(I - \textbf{\textit{P}}_X)\textbf{\textit{y}} \\ \text{Degrees of freedom} \\ \nu_R &= \operatorname{tr}(\textbf{\textit{P}}_X - \textbf{\textit{P}}_1), \nu_E = \operatorname{tr}(I - \textbf{\textit{P}}_X) \end{split}$$

Sampling distributions

If
$$\mathbf{Y} \sim \mathbf{N}(\boldsymbol{\mu}, \sigma^2 \mathrm{I})$$
 and $\mathbf{Q}'\mathbf{Q} = \mathrm{I}_{\nu}$

then
$$\textbf{\textit{Z}}=(1/\sigma)\textit{\textit{Q'}}\,\textbf{\textit{Y}}\sim\textbf{N}((1/\sigma)\textit{\textit{Q'}}\boldsymbol{\mu},I_{\nu}),$$

and
$$(1/\sigma^2) \mathbf{Y}'(QQ') \mathbf{Y} \sim \chi^2$$

with ν degrees of freedom and ncp $\delta^2 = \mu' QQ' \mu / \sigma^2$.

A major teaching objective: develop and justify the test statistic for the general linear hypothesis

$$H_0: G'\beta = \boldsymbol{c}_0$$

for given G and c_0 .

Restricted model

$$\mathcal{M}_0 = \{X\boldsymbol{\beta} \in \mathcal{M} : \boldsymbol{\beta} \in \Re^{k+1} \text{ and } \boldsymbol{G}'\boldsymbol{\beta} = \boldsymbol{c}_0\}$$

= $\{X\boldsymbol{b}_0\} + \operatorname{sp}(XN),$

$$\boldsymbol{b}_0$$
: $G'\boldsymbol{b}_0 = \boldsymbol{c}_0$ and $\operatorname{sp}(N) = \operatorname{sp}(G)^{\perp}$.

$$SSE_{Full} = \min_{Xeta \in \mathcal{M}} (\mathbf{y} - Xeta)'(\mathbf{y} - Xeta)$$
 $= \mathbf{y}'(\mathbf{I} - \mathbf{P}_X)\mathbf{y}$
 $df_{Full} = \operatorname{tr}(\mathbf{I} - \mathbf{P}_X)$
 $SSE_{Rest} = \min_{Xeta \in \mathcal{M}_0} (\mathbf{y} - Xeta)'(\mathbf{y} - Xeta)$
 $= (\mathbf{y} - X\mathbf{b}_0)'(\mathbf{I} - \mathbf{P}_{XN})(\mathbf{y} - X\mathbf{b}_0),$
 $G'\mathbf{b}_0 = \mathbf{c}_0 \text{ and sp}(N) = \operatorname{sp}(G)^{\perp}$
 $df_{Rest} = \operatorname{sp}(\mathbf{I} - \mathbf{P}_{XN})$
 $\Delta SSE = SSE_{Rest} - SS_{Full}$
 $= (\mathbf{y} - X\mathbf{b}_0)'(\mathbf{P}_X - \mathbf{P}_{XN})(\mathbf{y} - X\mathbf{b}_0),$
 $\Delta df = \operatorname{tr}(\mathbf{P}_X - \mathbf{P}_{XN})$

The test statistic:

$$F=rac{\Delta SSE/\Delta df}{\hat{\sigma}^2}$$

with $\hat{\sigma}^2 = SSE_{Full}/df_{Full}$.

Note that $\mathbf{P}_X - \mathbf{P}_{XN}$ can be had as $Q_2 Q_2' = \mathbf{P}_H$ from GS on (XN, X). Then

$$F = rac{(oldsymbol{y} - Xoldsymbol{b}_0)' oldsymbol{P}_H (oldsymbol{y} - Xoldsymbol{b}_0)/\mathrm{tr}(oldsymbol{P}_H)}{\hat{\sigma}^2}.$$

Bridges

With
$$\operatorname{sp}(Q) = \operatorname{sp}(A)$$
 and $Q'Q = \operatorname{I}_{\nu}$, column $\operatorname{rank}(A) = \dim(\operatorname{sp}(A)) = \nu = \operatorname{tr}(QQ')$.

From GS on A,
$$A(TQ')A = A$$
 and $(TQ')A(TQ') = TQ'$:

TQ' is a reflexive generalized inverse of A. TT' is a reflexive generalized inverse of A'A.

Show that the column rank of A equals the row rank of A:

GS on $A \longrightarrow Q$, T; $Q'Q = I_{\nu}$, sp(Q) = sp(A), Q = AT. The column rank of A is ν .

By Prop. 2(1),
$$QQ'A = A \Longrightarrow A' = A'QQ' \Longrightarrow \operatorname{sp}(A') \subset \operatorname{sp}(A'Q)$$
. That also $\operatorname{sp}(A'Q) \subset \operatorname{sp}(A') \Longrightarrow \operatorname{sp}(A') = \operatorname{sp}(A'Q)$.

The ν columns of A'Q are linearly independent: $A'Qz = 0 \Longrightarrow T'A'Qz = Q'Qz = z = 0$.

Therefore the column rank of A' is ν .